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Abstract

Image-guided drawing can compensate for the lack
of skills but often requires a significant number of repet-
itive strokes to create textures. Existing automatic
stroke synthesis methods are usually limited to prede-
fined styles or require indirect manipulation that may
break the spontaneous flow of drawing. We present an
assisted drawing system to autocomplete repetitive short
strokes during users’ normal drawing process. Users
can draw over a reference image as usual. At the same
time, our system silently analyzes the input strokes and
the reference to infer strokes that follow users’ input
style when certain repetition is detected. Users can
accept, modify, or ignore the system predictions and
continue drawing, thus maintaining the fluid control of
drawing. Our key idea is to jointly analyze image re-
gions and operation history for detecting and predicting
repetitions. The proposed system can effectively reduce
users’ workload in drawing repetitive short strokes and
facilitates users in creating results with rich patterns.

1. Introduction

Drawing is a common form of artistic expression. By
varying the stroke, texture, and shading, artists can create
drawings with various styles [6]. Yet, it remains a largely
manual process that may require significant artistic expertise
and repetitive manual labor.

To reduce repetitive workload, various methods have
been proposed to automatically synthesize strokes from user-
provided examples [14, 8, 10] or through procedural steps
[13]. However, these methods usually perform in a batch and
less involve users in the art creation process. Besides, since
many methods have predefined the styles and only allow
users to tweak a few global parameters, the final results may
look monotonous and lack originality (Figure 3). There are
also interactive systems [22, 43] which preserve the normal
drawing flow while automating significant stroke synthesis.
We share a similar goal to theirs. However, they are more
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targeted at experts and require sufficient artistic expertise for
high-level picture composition and fine-grained control.

One common way to overcome this skill barrier is to use
a reference photo as a scaffold for drawing, i.e., tracing a
reference photo physically via transparent papers or digitally
via layers in digital drawing applications. Prior research
[42] shows that even when scaffolded with a reference im-
age, people still enjoy freedom for individual expressing.
We thus propose to enhance such image-scaffolded drawing
process by automating tedious repetitions. Our idea is to
bridge the two extremes: manual drawing, which allows
full control but can be tedious; and image-based algorith-
mic synthesis, which saves efforts but provides limited user
control and interactivity. As the first attempt towards this
goal, we focuses on autocompleting repetitive short strokes,
which are very common in pen-and-ink drawing (Figure 2),
under the guidance of a reference image. Like typical digital
drawing applications, users can draw freely on a reference
image with our system. Meanwhile, our system analyzes the
relationships between user inputs and the reference image,
detects potential repetitions, and suggests what users might
want to draw next. Users can accept, reject, or ignore the
suggestions and continue drawing, thus maintaining the fluid
control of drawing. See Figure 1 for an example scenario.

The major contribution of this paper is the technical de-
sign of an image-guided autocompletion drawing tool that
can preserve the natural drawing process and individual user
styles. Our approach is inspired by image analogy [14] and
operation history analysis and synthesis [43] while leverag-
ing two key insights. First, since the act of drawing repetitive
strokes usually indicates specific intentions (e.g., filling an
object or hatching a shading region), we use the common
image features among the coherent repetitive strokes to infer
the intended regions. Second, the drawing usually relates to
the underlying reference image (e.g., the density of strokes
with respect to the image lightness). Therefore, we analyze
the properties of both the drawing and the reference image
to infer possible relationships as contextual constraints for
stroke prediction.

We implemented a prototype and conducted a pilot study
with participants in different backgrounds to evaluate its
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(a) user input (b) suggestion (c) accept (d) type visualization (e) result

Figure 1: Example of our system workflow. A user stipples over a leaf region of a reference image (a) while our system predicts
what she might draw next (b) (blue strokes: inferred exemplars; pale red region: inferred target region; semi-transparent
strokes: system suggestions), which is then accepted by the user (c) (green strokes: user inputs or accepted suggestions in this
scene). (d) visualizes all the manually drawn content in black (261 strokes) and autocompleted content in red (3510 strokes).
(e) shows the final result with different repetitive stroke patterns over different regions. Our autocomplete system can reduce
tedious repetitive inputs, while being fully under user control.

(a) ©Alphonso Dunn (b) ©Vincent van Gogh

Figure 2: Inspiring manual drawings by artists.

(a) our result (b) produced with [1] (c) produced with [28]

Figure 3: Our work is designed to reduce the workload
of completing repetitive patterns during the manual drawing
process. The full control of the drawing process leads to more
dynamic results than (b) Photoshop’s Art History Brush Tool
[1] and (c) StippleShop [28].

utility and usability. The quantitative analysis and qualitative
feedback, as well as various drawing results created by users,
suggest that our system effectively reduces users’ workload
in drawing repetitive short strokes and facilitates users in
creating results with rich patterns.

2. Related Work

2.1. Image-assisted Drawing

Many drawing support tools adopt reference images and
provide intelligent assistance to novices, e.g., beautifying
users’ sketches with extracted image features [20, 37, 42, 25],
or providing educational guidance to novice users [17, 29,
41]. We share a similar goal to [11, 3, 39] so as to reduce
the user workload. However, these works use predefined
algorithms to generate strokes along cursor movement and
only take users’ input as an indicator of where to render, thus
greatly limiting users’ artistic freedom. In contrast, we aim
to provide more flexibility between automatic synthesis and
manual artistic control by autocompleting tedious repetitions
during users’ normal drawing processes.

2.2. Image-based Artistic Rendering

Our work is related to image-based artistic rendering
(IB-AR) [23], especially stroke-based methods and example-
based methods.

Stroke-based methods create artistic results from images
by strategically generating brushstrokes whose properties
(e.g., position, density, orientation, color, size) are related
to the image properties (e.g., gradient, edge, color, salience)
[13]. Among those methods, the closest to ours are the early



image-based pen-and-ink rendering methods [35, 15], which
allow users to input sample elements for distribution. How-
ever, users have to prepare the sample elements separately
(usually as a standalone file) and then tweak parameters
to view the rendered output. In contrast, our system lets
users directly specify exemplars on a reference image while
silently inferring the distribution properties.

Example-based methods aim to model the visual features
of example images for transferring. There are two major
modeling approaches: the parametric approach [19, 10, 9]
that is based on the summary statistics of stroke characteris-
tics and thus preserves the global textures better, and the non-
parametric approach [14, 21, 8] that is based on patch-wise
mapping and thus captures the local structures better. We
combine both methods for generating strokes: the paramet-
ric approach to infer statistical relationships between stroke
properties and image features, and the patch-wise matching
method to preserve the local arrangements of strokes. Stylit
[8] allows users to stylize a rendered ball and simultaneously
propagates the style to arbitrary 3D shapes. Our method
shares a similar idea in interactive style propagation but with
two main differences. First, instead of propagating a style
globally, we propagate a style to its perceptually similar
local areas so that users can conveniently define different
styles in different areas. Second, we represent drawings as
discrete stroke operations instead of raster textures for better
preserving their structures and enabling procedural editing
[36], such as changing the color or size of the drawn strokes.

2.3. Operation History-assisted Authoring

Operation histories [31] have been leveraged in different
authoring tasks, such as sketching [43], animation [44, 32],
modeling [33, 38], beautification of freehand drawings [7],
and handwritings [47]. Our work is most closely related
to that by Xing et al.’s [43], which autocompletes repeti-
tive sketching by analyzing the dynamic operations recorded
during authoring. Our method extends their work to con-
sider additional information from a reference image and thus
enables the propagation of strokes to regions with similar
image attributes such as color or semantic meaning.

In our use scenario, an operation is an input stroke, so our
work is also related to stroke pattern analysis and synthesis
[2, 18, 5, 22, 16]. These works disregard the temporal rela-
tionship among past strokes and do not use image guidances
and thus are different from ours.

To sum up, we list our major differences from the dis-
cussed closely related works in Table 1.

3. User Interface

Our system prototype follows a standard digital drawing
interface, with the added autocomplete feature, as shown
in Figure 4. A user draws on top of the reference image
displayed semi-transparently on the main canvas, while our

Table 1: The differences between our tool and closely re-
lated works. “batch” means the generation is performed in
a batch, based on predefined attributes; “dynamic” means
the generation is performed based on dynamic operation
history. “direct” means users can specify a style by directly
operating on the output. “Y” and “N” represent yes and no,
respectively, for using image references.

Method [15] [14] [10] [22] [43] Ours
Reference Y Y Y N N Y
Process batch batch batch batch dynamic dynamic
Format stroke pixel stroke stroke stroke stroke
Operate indirect indirect indirect direct direct direct

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: User interface, consisting of a central drawing
canvas (a), a toolbar for drawing and selection (b), a toggle-
switch of the autocomplete mode (c), a brush property tool-
bar (d), a filling property toolbar (e), and a layers panel
(f).

(a) selection (b) result (c) updated (d) final

Figure 5: An example of autocompletion. The user selects
part of the suggestions via the lasso selection tool (a) with
the result in (b), continues to draw leading to the updated sug-
gestions (c), and accepts all the suggestions via a hotkey (d).
The blue strokes in (a) and (c) indicate inferred exemplars
from user-input strokes.

system analyzes the input strokes and the reference image in
the background.

3.1. Autocomplete

In the autocomplete mode, our system automatically an-
alyzes whenever the user finishes a new stroke. When a
potential repetition is detected, our system highlights the
currently repetitive strokes and an inferred propagation re-
gion, updates the inferred parameters in the filling property
panel, and generates autocompletion suggestions. Users can



accept or reject all the suggestions via hotkeys, accept part of
them via lasso selection, or ignore them and continue to draw
(Figure 5). The suggestions will keep updating according to
user inputs.

3.2. Interactive Editing

(a) initial (b) new region (c) result

Figure 6: Region editing example. The initial prediction (a)
contains only the brown region. The user-specified region (b)
contains the entire apple, with the corresponding synthesis
result in (c).

(a) (8, 0, 0) (b) (15, 0, 0) (c) (8, 0.2, 0) (d) (8, 0, 0.6)

Figure 7: Density editing example with different values of
spacing, lightness and gradient parameters. Larger spacing
parameters lead to sparser strokes, while larger lightness and
gradient parameters lead to larger stroke density variations.

(a) (b) (c) (d)

Figure 8: Orientation editing example. (a) User gesture. (b)
Orientation field updated based on the user gesture and the
original image flow field. (c) Updated result. (d) A result
without any orientation field.

Our system provides a set of tools to refine the autocom-
pleted results.

Propagation region editing. Users can create/add/subtract
a new region using the intelligent scissors tool [30] or
expand an existing region by a fixed width (Figure 4e)
for stroke autocompletion. Figure 6 shows an example
of creating a new region for stroke regeneration.

Density editing. Users can tweak three parameters to ad-
just the density of the generated strokes: the average

spacing, the lightness coefficient and the gradient coef-
ficient. The latter two define the relationships between
density and image lightness/gradient, respectively. Our
system automatically updates these parameters upon
prediction, and the updated parameters provide a start-
ing point for users to manipulate. Figure 7 shows an
example.

Orientation editing. Our system automatically predicts
whether the input exemplar correlates with the image
flow, which can also be tweaked by users manually.
Users can also modify the image flow field via the ges-
ture brush, and the touched strokes will be rotated to
align with the gesture direction. See Figure 8 for an
example.

3.3. Auxiliary Functions

Our prototype also includes the auxiliary functions below.
These are not unique to our system but can facilitate the
usual drawing processes.

Post-edit stroke properties. Users can select the existing
strokes and edit their properties, such as size and color.

Auto-color. This function, when toggled on, can automat-
ically colorize strokes with color from the reference
image.

Switch view. Users can press the space key to switch be-
tween the canvas view, reference view, and pure draw-
ing view.

4. Our Approach

Our system involves two key steps: (1) inferring the input
exemplar, the output region, and the contextual constraints
from the stroke history and the reference image; (2) syn-
thesizing suggestive strokes accordingly. This section first
describes how to synthesize (Section 4.1) strokes, assuming
all the information is available, and then explains how to
infer (Section 4.2) the necessary information for synthesis.

4.1. Stroke Synthesis

Problem statement. The inputs to our stroke synthesis
method include an exemplar E consisting of repetitive
strokes, the reference image I , a target region mask M ,
an orientation map O, and a radius map R. Pixel values of
R denote the extents of stroke spacing: a smaller value leads
to a denser distribution. Our goal is to compute an output
set of strokes X over the output region M , such that X is
similar to E with respect to I . We describe how to infer E,
M , O, and R from user interactions with I in Section 4.2.



p

v neighborhood radius

local orientation

Figure 9: (a) A stroke, with centroid p and dominant direc-
tion v. (b) The neighborhood of the black stroke includes
the n (n = 1 in this example) closest strokes (in green) from
each quadrant and the middle image patch (blue pixel grid).

output strokespast strokes

reference patch

neighborhood

Figure 10: Illustration of our synthesis algorithm. We
synthesize the predicted strokes (in green) from previously
drawn strokes (in gray) by matching their neighborhoods as
well as the image features.

Idea. To support the autocomplete function with the refer-
ence image, we extend the discrete element texture synthesis
method [27, 43], which represents strokes as point samples
and iteratively improves the sample distribution by minimiz-
ing the neighborhood difference between the exemplar and
the output, with an additional reference image. First, we
combine sample neighborhoods [27] with image features
[14] for measuring neighborhood difference. Second, the
range and orientation of sample neighborhoods are deter-
mined by the radius and orientation maps inferred from the
reference image. Figure 10 shows our key idea.

Stroke representation As shown in Figure 9a, a stroke s
is an ordered list of sample points, each with a timestamp
and appearance attributes such as thickness and color. Here
we focus on autocompleting short strokes, so we represent
each stroke by its centroid p and the average direction v for
efficiency during synthesis, without considering any other
information of the original stroke. To take the drawing order
into consideration, we obtain the dominant direction by av-
eraging the vectors from the start point to each subsequent
point. After synthesis, we reconstruct all the sample points
according to the updated centroid and direction.

Initialization. We pre-process the target region mask M
by removing the area occupied by existing strokes in the
same layer to avoid cluttering, and then initialize the output
X by generating sample positions with Poisson-disk sam-
pling based on the radius map R. For each sampled position,
we copy the input stroke with the smallest image feature
distance dI , which will be explained in Equation (2). We
then optimize the output for a few objectives, as detailed
below.

Neighborhood term. We define the neighborhood of a
stroke s as both its neighboring strokes as well as an
R(s) × R(s) image patch around its centroid, where R(s)
is the radius value at s. Prior methods (e.g. [27]) deter-
mine the neighboring strokes by spatial distances. Thus,
the neighborhood radius should be large enough in order to
capture an underlying pattern. However, this might include
redundant strokes and thus decrease the performance. There-
fore, we adopt Zhao et al.’s method [46] to automatically
find a minimum representative neighborhood, considering
not only the spatial distance between strokes but also their
locations. As depicted in Figure 9b, we set the neighborhood
radius of the center stroke s to 2R(s). We then divide all the
strokes within the neighborhood radius into four quadrants
with respect to the local frame defined by the orientation at
O(s), and collect the n nearest strokes from each quadrant
as the representative neighborhood, denoted as N(s). In
our implementation, we set n = 4 for the input exemplar
and n = 1 for the output strokes to ensure that each output
neighborhood can be maximally matched.

For a stroke s and a neighboring stroke s′ ∈ N(s), we
compute their offsets in position and direction as:

û(s′, s) =
( 1

R(s)
O(s)−1 (p(s′)− p(s)) , O(s)−1 (v(s′)− v(s))

)
,

(1)

whereO(s)−1 means to rotate the vector by the inverse orien-
tation of O(s). That is, the position and direction difference
is computed in the local frame defined by the density map
and orientation map. For an output stroke so and an input
stroke si, we first find their best matching pairs {(s′o, s′i)}
in the neighborhoods N(so) and N(si) using the Hungarian
algorithm [27, 26]. We use the norm-2 distance of the off-
sets from so or si in Equation (1) as the matching cost. The
neighborhood distance is then defined as:

dneigh(so, si) =
∑

s′o∈N(so)

|û(s′o, so)− û(s′i, si)|
2

+ µ |I(so)− I(si)|2︸ ︷︷ ︸
dI

, (2)



The second term measures the image feature distance dI ,
and µ (= 0.1 in our implementation) controls the relative
weighting. We use the mean Lab∗ color of an r × r patch at
the stroke centroid as the image feature vector. The overall
neighborhood term to minimize is:

φneigh(X,E) =
∑
so∈X

min
si∈E

dneigh(so, si). (3)

Correction term. Since the neighborhood term is a one-
way matching from the output neighborhoods to the input
neighborhoods, sometimes the optimization would tend to
leavse out some void regions. Besides, the neighborhood
term does not preserve strokes’ alignment to the image (e.g.,
Figure 11e). To address these issues, we apply a correction
term. We compute a weighted centroidal Voronoi diagram
from all the strokes’ center points, using 1

R as weight, and
denote the computed region centroids as {p̄}. Thus we can
minimize the distance between each output stroke centroid
and the region centroid, defined as follows:

φcorr(X) =
∑
so∈X

|p(so)− p̄(so)|2 . (4)

Solver. The energy function we aim to minimize is defined
as:

φ(X,E) = (1− w)φneigh + wφcorr. (5)

We iteratively minimize the energy function following the
EM methodology in [27]. In each iteration, for each output
stroke so, we search for the most matched input stroke si to
minimize φneigh, compute the Voronoi diagram centroid p̄ to
minimize φcorr, and solve a least-squares system combining
both terms. Let m be the total number of iterations. For
the i−th iteration, we set w = (i/m)2, which means that
more weight is given to φneigh in the beginning of iterations,
so that we can optimize the neighborhood distribution first
before doing corrections, which leads to better results.

Figure 11b - Figure 11d show the iterative optimization
process of both the objectives. In comparison, Figure 11e
shows the result without the correction term and Figure 11f
shows the result without using the image neighborhood in
both initialization and optimization.

4.2. Inference

In this section, we describe how to infer E, M , O, and
R used for our synthesis method in Section 4.1 from user
interactions with I .

4.2.1 Input exemplar E

This step aims to detect whether stroke repetitions exist and
obtain the repetitive group as an exemplar for the synthesis
process. Since people usually draw strokes in a coherent

manner [43] and they usually have specific intentions when
drawing repetitive strokes, we assume the example strokes
to be temporally consecutive and have certain similar prop-
erties.

We start from the last stroke input by the user and search
backward in the stroke sequence to incrementally find strokes
that have similar shape and image features to the last stroke.
Specifically, the stroke shape similarity is measured with the
Fréchet distance, and the image features include Lab∗ color
(weighted by 0.12, 0.44, and 0.44 to suppress the impact of
lightness) and precomputed semantic segmentation [45] at
a stroke’s center. Alternatively, one can also use different
image features for capturing different drawing intentions. We
compare the standard deviation of a feature in the traversed k
strokes against a threshold (15/255 for the color feature, 1 for
the segmentation feature) for similarity measurement. The
back-traversal stops when the next stroke does not contain
any similar feature or k > 50. These k strokes serve as the
input exemplar for the synthesis process. See Figure 12 for
an example of the incremental searching process.

4.2.2 Output region M

The shared features of the obtained stroke exemplar also indi-
cate the intended region. For instance, if all of the exemplar
strokes are inside the same object segmentation region, it is
very likely that the user intends to fill that region. Therefore,
we use the shared features obtained in the exemplar grouping
process to find a similar region for output.

Since there are only two features in our implementation,
we simply obtain the region by GrabCut [34] if the Lab∗
color feature is shared among the exemplar strokes, directly
take the corresponding segmentation if the semantic feature
is shared, and take the intersection if both features are shared.
See Figure 12 for an example. When there are multiple
disconnected regions, we retain the nearest region to the
user’s last stroke and discard the rest, because it is less
natural to propagate to distant regions.

4.2.3 Contextual constraints

Since the drawing usually relates to the underlying reference
image, we analyze the properties of both the drawn strokes
and the reference image to infer possible relationships that
control the global distribution of strokes.

Orientation O. Artists usually adjust the stroke directions
to convey curvatures, but they may sometimes randomize or
fix the stroke orientation regardless of the depicted objects
to create different visual effects. Therefore, the problem is
to decide which case the input exemplar implies. We first
compute the edge tangent field (ETF) [24] for the reference
image and then calculate the angles between the exemplar



(a) input (b) initialization (c) iteration 5 (d) iteration 15 (e) w/o φcorr (f) w/o dI

Figure 11: Iteration process in (b) to (d) and ablation studies in (e) and (f). Without the correction term φcorr the predicted
strokes tend to clutter together as in (e). Without the image term dI the predicted strokes might not follow the reference
sufficiently as in (f).
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s11s12
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stroke index
12 11 10 9 8 7 6 5 4 3 2 1

k=10 k=11 k=1

color
semantic
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Figure 12: An example of predicting the input exemplar
and output region. The left column shows the input stroke
sequence visualized in black dots (only a few indices are
shown for clarity) on the reference image (top) and the image
features (bottom). The right columns show the threshold
lines and the image feature cost curves for s10, s11, s12
respectively (top), and the corresponding predicted output
regions (bottom). The cumulative number k is determined
when both cost curves exceed the threshold. Note that the
third region prediction result is only for demonstration: since
the exemplar only contains one stroke (i.e., k = 1), it is
not considered a valid exemplar and will not be used for
synthesis.

strokes and the ETF directions at their centroids. If the stan-
dard deviation of the angles is small (less than 15 degrees),
we consider the stroke orientations to be related to the ETF
and take the ETF as the orientation field; otherwise, we
set a default global coordinate frame to each point of the
orientation field.

Radius R. Since density is inversely proportional to the
spacing between strokes, we reframe the problem as predict-
ing a radius map that controls the extent of stroke neighbor-
hoods. First, we compute the distance from each exemplar
stroke to its nearest neighbor. We assume a linear relation-
ship between these minimum distances r and the image
features, including image lightness l and gradient strength g

at a stroke’s centroid, represented as:

r =
(
l g 1

)
· t, (6)

where t denotes the coefficients to solve. With the fitted
linear model, if the squared correlation value is lower than
0.5 (the closer to 1, the better explanation), we use the model
to compute a radius map. Otherwise, we consider the density
as uniform and create a constant radius map with the average
spatial distance of the exemplar. We then update the UI with
the computed coefficients.

5. Evaluation

We conducted a pilot study to evaluate the utility and
usability of our approach. We compared three modes through
quantitative analysis and qualitative feedback.

Autocomplete. Users have full access to our prototype, in-
cluding autocomplete and interactive editing.

Interactive batch filling. (aka batch mode) Users are re-
quired to create a texture example first and then manu-
ally specify the properties for batch filling. It simulates
the sequential procedure in many IB-AR methods (e.g.,
[35]), although they rarely allow users to directly define
examples on target images. This mode is performed on
our system with the autocomplete function off.

Fully manual drawing. (aka manual mode) Users have to
manually draw each stroke without any automatic syn-
thesis.

We also tested the expressiveness of our system through
an open creation session and obtained comments for future
improvements.

5.1. Target Session

The goal of this session is to compare the three interac-
tion modes in utility and usability. Since we aim to facilitate
image-scaffolded drawing, we hope to include general users
from different background while focusing more on less skill-
ful users, who are more likely to use reference images. We



(a) bear (b) drawing (c) segmentation (d) orientation

(e) beach (f) drawing (g) segmentation (h) orientation

Figure 13: Target session tasks. Reference photos in (a) and
(e), and the corresponding sample outputs in (b) and (f).

thus recruited 12 participants, including nine novices with
little drawing experiences, two amateurs with some experi-
ences (P3, P4), and a student majored in illustration (P5).
Most of the studies were conducted on a Lenovo Miix 520
tablet with stylus in a lab environment, except two studies
conducted remotely with mouse due to the pandemic.

The study procedure consisted of the following parts and
took each participant about two hours in total.

Tutorial. Each participant was first given a brief introduc-
tion to our system and then asked to fill the apple in Figure 4
with short hatches as a warm-up task. They were encouraged
to vary the density and orientation of input strokes and get
familiar with the features of our system.

Target tasks. We used a within-subjects design, where
each participant was asked to reproduce two target drawings
(Figure 13) in all the three modes: autocomplete, interactive
batch filling, and fully manual drawing. The target drawings
include an object and a landscape, which are common illus-
tration topics (e.g., Figure 2). The assigned order of modes
was counter-balanced among all the participants. Since we
focus on region filling, we asked the participants to draw the
outlines of both images in advance, so that they could focus
on drawing the textures during the study. We encouraged
the participants to finish each drawing as soon as possible,
preferably in a dozen of minutes, but without any hard time
limit. After completing the two drawings in each mode, each
participant filled in a NASA-TLX questionnaire [12]. At the
end, we asked the participants about their preferred mode,
usage experience and other comments.

5.2. Open session

The goal of this session is to observe users’ interaction
with our system and learn about users’ subjective experience.
We invited seven participants (one professional artist, two
amateurs and four novices) for this session. They were asked
to create a drawing freely from the same reference image

(Figure 15a) with our system. The reference image was a
portrait photo, which is also common in illustrations. The
only requirement was that the drawings should contain some
repetitive content. We again gave a tutorial in the beginning
and conducted the task on a Lenovo Miix 520 tablet with
stylus. The participants were encouraged to think aloud and
describe their thought process and interactions during this
session. After this task, participants could optionally create
more drawings with any images they want. Since our proto-
type does not contain all common functions in commercial
drawing tools, we allow the participants to retouch the result
drawings without adding more strokes in Photoshop.

5.3. Results and Observations

Workload. Figure 14a shows the perceived workload
scores from the target session. Generally, the autocomplete
mode received the lowest (i.e., best) scores for almost all the
factors. One-way ANOVA showed the three modes have sig-
nificant difference in physical demand (F=10.69, p < 0.001)
while no significant difference in other factors. Regarding
the physical demand, post-hoc pairwise tests showed that
the autocomplete mode and batch mode were both rated sig-
nificantly lower than manual mode, while had no significant
difference from each other. This matches our expectation,
since automatic synthesis should only reduce physical load
and not cause extra pressure than manual work.

Efficiency. We calculate the average completion time (Fig-
ure 14b) and stroke count (Figure 14c) in each mode and each
task. Generally, the system synthesized about 82% strokes in
the autocomplete mode and about 92% strokes in the batch
mode. Although the manual mode took the shortest time for
the participants to complete, it also resulted in the fewest
total number of strokes. We thus calculated the strokes per
minute for each mode: autocomplete (111.03, SD=38.76),
batch (101.98, SD=45.13), manual (115.95, SD=46.73). It
turns out automatic generation did not improve the efficiency,
probably because the users spent extra time adjusting and
experimenting with the generated effects instead of just draw-
ing strokes. It should be noted that such directed tasks omit
the time for exploring alternative patterns, which, however,
might be high in a fully manual case.

Quality. We asked 30 external volunteers to evaluate the
quality of participants’ drawings, as shown in the supplemen-
tary material. We randomized all the drawings created by
the participants, showed each output drawing alongside the
target drawing, and asked volunteers to rate the resemblance
of the output drawing to the target drawing, on a scale from
1 (very dissimilar) to 5 (very similar). The volunteers were
instructed to focus more on the overall stroke distributions
and flows instead of individual stroke thickness and detailed



(a) NASA-TLX (b) time (c) # strokes

Figure 14: Target sessions results. (a) Average NASA-TLX scores from 12 participants. The lower the better. (b) Average
completion time. (c) Average stroke counts. The number of system-generated strokes is labeled in each column.

shapes. We calculated the average scores for each mode: au-
tocomplete (3.10, SD=1.24), batch (3.09, SD=1.21), manual
(2.98, SD=1.20). The quality of the drawings created with
automatic synthesis is slightly better than the fully manual
drawings, but without significant difference. From the partic-
ipants’ perspective, three novices commented the automated
strokes were better than their manual strokes, because they
tend to lose patience when manually drawing all strokes,
which results in worse quality.

Preferred mode. Seven participants preferred the auto-
complete mode while the rest five participants preferred the
batch mode. Generally, the autocomplete mode is considered
more convenient, yet less precise; the batch mode is consid-
ered more precise, but requires too many interactions. P12
commented, “the autocomplete mode is more straightfor-
ward, because you can see the filled effects instantly without
doing a lot of manipulation beforehand; while in the batch
mode, you have to remember the meaning of parameters and
tweak them in order to create strokes.” P10 also said, “Com-
pared with batch filling, the autocomplete mode provides a
quick guess of filled regions and allows me to get the results
more quickly with less work.” However, the autocomplete
mode is “less accurate at some vague and detailed regions,
such as the shadows of the boat, where it tends to include
some unwanted regions, so I have to manually subtract those
regions, which is a bit tedious”, according to P3. The pro-
fessional, P5, also preferred the batch mode for being able
to precisely select the regions. Therefore, we consider the
autocomplete function and the interactive editing function
are complementary in usability.
Creation results and experience. Figure 15 shows the
outcomes from the open session. Although from the same
reference image and widely using repetitive short strokes,
the study participants were able to create different results
by varying the stroke shapes and arrangement. Figure 16
demonstrates some sample results. Regarding the creation
experience, one user said “it is playful, the final result is

(a) reference (b) 81/1563 (c) 428/4593 (d) 272/1266

(e) 68/8356 (f) 165/17111 (g) 443/2931 (h) 261/6018

Figure 15: Example drawing results from the open session.
Each case is marked with the # of manual and autocompleted
strokes.

also good”; two users described it as “encouraging”, be-
cause the system allows beginners to quickly create stylistic
drawings; one user commented that she “felt creative when
drawing with this system”, because she could test out pat-
terns over image regions conveniently and she was more
comfortable with drawing from a reference image than from
scratch. The professional suggested that the tool itself was
somewhat limited to pointillism and hatching styles, but can
be helpful in adding interesting textures into color paintings
(e.g., Figure 16i). Two users commented that the reduction
of workload is useful, but they also complained about some
inaccurate inference of autocompletion. We will discuss
about this problem in Section 7.

6. Conclusion

We have presented a new drawing concept and designed
an assisted drawing system to help users autocomplete repeti-



(a) (b) 446/9617 strokes (c)

(d) (e) 264/840 strokes (f)

(g) (h) 654/1971 strokes (i)

Figure 16: Sample results. In each example, the left column shows the reference images, the middle column visualizes
the manual strokes (black) and autocompleted results (red) of the final drawings on the right column. In the last example,
the strokes are created with our system first and then imported into Photoshop for background coloring. Please check the
supplementary material for more results.



tive short strokes with guidance from reference images while
maintaining the flexible control of manual drawing. By ex-
tending operation history analysis and synthesis with image
analysis, our system is able to generate results that adapt to
reference images and users’ prior inputs. We conducted a
pilot study to validate the usefulness of our approach and
show various drawing results from the users.

7. Limitations and Future Work

From our observation and users’ feedback, we identified
several improvement opportunities.

Improve accuracy of autocompletion. We rely on simple
Lab∗ color and semantic segmentation for region inference.
While color feature is sufficient for most cases, regions with
similar colors but different semantics will require sufficient
segmentation accuracy for region inference (e.g., Figure 13c).
More advanced semantic selection methods (e.g., [4]) might
help inferring more accurate regions. However, the granu-
larity of selection requires further study. For example, when
users draw on a bear’s limb, is the intended region the whole
bear or all the limbs? We left this as a future work.

Figure 17: Example of
visual blocking. Left:
reference image. Right:
canvas view.

Resolve visual blocking.
Since the drawing and the
system suggestions are over-
laid on the reference image,
it might be difficult for users
to refer to the image when
selecting parts of the sug-
gestions (e.g., Figure 17) or
adding a new layer of strokes.
Although users can switch the
views via a hotkey, it might
be helpful to provide some
reference information, like
image darkness or boundaries,
through additional visual hints
[42, 41].

Consider relationships with higher-level image features.
We only consider the relationships between strokes and low-
level image features, like colors and flows, over regions. By
considering higher-level image features, such as elements
and edges, it is possible to extend the scope of autocomple-
tion, such as autocomplting the sparse flowers in the fore-
ground of Figure 16i through the correspondences between
strokes and elements.

Support more stroke types. Our method only supports
short strokes, while artists also use long repetitive strokes
frequently [6]. It is worth investigating the possibility of

incorporating continuous strokes [40] in our framework and
extending the support for different input strokes.
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