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Abstract

Reflectional symmetry is a ubiquitous pattern in na-
ture. Previous works usually solve this problem by vot-
ing or sampling, suffering from high computational cost
and randomness. In this paper, we propose a learning-
based approach to intrinsic reflectional symmetry de-
tection. Instead of directly finding symmetric point
pairs, we parametrize this self-isometry using a func-
tional map matrix, which can be easily computed given
the signs of Laplacian eigenfunctions under the symmet-
ric mapping. Therefore, we manually label the eigen-
function signs for a variety of shapes and train a novel
neural network to predict the sign of each eigenfunc-
tion under symmetry. Our network aims at learning the
global property of functions and consequently converts
the problem defined on the manifold to the functional
domain. By disentangling the prediction of the matrix
into separated bases, our method generalizes well to new
shapes and is invariant under perturbation of eigenfunc-
tions. Through extensive experiments, we demonstrate
the robustness of our method in challenging cases, in-
cluding different topology and incomplete shapes with
holes. By avoiding random sampling, our learning-
based algorithm is over 20 times faster than state-of-the-
art methods, and meanwhile, is more robust, achieving
higher correspondence accuracy in commonly used met-
rics.

1. Introduction

Symmetry is a common pattern that appears ubiquitously
in the world. The majority of living things, including hu-
mans (Figure 1), animals, and plants (e.g. flowers) have
some form of symmetry. It is also a widely employed design
principle in man-made objects, including buildings, furni-
ture, vehicles, to name a few.

Due to its wide applicability, symmetry patterns have
been exploited in many tasks, including shape match-
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ing [40], segmentation [9], editing [27], completion [38],
and understanding [28]. In these application systems, sym-
metry detection is usually an integral component, so ef-
ficient symmetry detection has significant benefits, e.g.,
to avoid impeding real-time performance in 3D acquisi-
tion/reconstruction, and for improved user experience in in-
teractive shape editing by reducing users’ waiting time.

To study symmetry, researchers mainly focus on the
spatial domain, including extrinsic symmetry defined in
Euclidean space or intrinsic symmetry defined in non-
Euclidean (manifold) space. Extrinsic symmetry refers to
shape invariance w.r.t. rigid (including reflectional) trans-
formations. Compared to extrinsic symmetry, intrinsic sym-
metry is more difficult to detect due to its much larger solu-
tion space, as discussed in the previous work [42, 15, 31].

Given a shape model, intrinsic symmetry detection aims
to estimate a self-homeomorphism on the manifold that pre-
serves the geodesic distance between each point pair. Usu-
ally, the manifold is discretized as a triangle mesh, and al-
gorithms predict a point-wise correspondence matrix to rep-
resent symmetric pairs. State-of-the-art methods for intrin-
sic symmetry detection is largely based on embedding the
symmetry space to some lower-dimensional spaces, such
as Möbius transformation space [15], Global Point Signa-
ture (GPS) space [31], or functional map space [42, 29] and
performing random sampling or voting, which suffers from
high computational cost and uncertainty of results due to
randomness.

Despite great effort, efficient and robust detection of in-
trinsic symmetry remains challenging. Existing state-of-
the-art methods typically take several seconds or longer to
analyze one shape [29], and may produce unreliable re-
sults for difficult cases. To address this, we design the
first learning-based intrinsic symmetry detection method to
handle the intrinsic symmetry problem. Like most existing
works, we focus on intrinsic reflectional symmetry as it is
most common in the real world. Learning intrinsic symme-
try directly on meshes is challenging, due to their irregular
connectivity, and the global nature of symmetry. We sim-
plify this problem when designing the neural network, such
that it does not directly process the edges and faces of the
mesh, but instead takes intrinsic features as input.

Similar to [29], given an input mesh, the symmetry
mapping defined on it can be represented using a func-
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Figure 1. Intrinsic symmetry on human bodies, detected by our
method.

tional map, or equivalently using a functional map matrix.
Laplace-Beltrami eigenfunctions can be extracted to pro-
vide a basis for analysis. In the matrix, entries correspond-
ing to eigenfunctions associated with non-repeating eigen-
values are determined by the sign (odd or even) of the eigen-
function after the symmetry mapping is applied. State-of-
the-art work [29] determines the sign of the eigenfunction
through random sampling. Although it is faster than previ-
ous methods, this sampling-based method is still slow (re-
quiring several seconds for a typical mesh), and may not be
sufficiently robust.

In comparison, sign patterns can be easily recognized by
a human at a glance (see Figure 3). Inspired by this, we
label a training dataset for eigenfunction signs and train a
neural network to learn such patterns. We design SignNet,
a neural network for sign prediction, that in addition to the
eigenfunction to be predicted, also takes the first few Lapla-
cian eigenfunctions as input, which effectively encode in-
trinsic descriptions of the mesh characteristics, while avoid-
ing coping with mesh connectivity explicitly. After predict-
ing eigenfunction signs as entries of the functional map ma-
trix, we apply post-processing to further fine-tune the re-
sults (addressing issues such as near-identical eigenvalues
and slight non-isometry) and convert the functional map to
one-to-one point correspondence. The code is available in
the repository https://github.com/YilingQiao/
intrinsicSym.git.

The main contributions of this work are:

• We propose the first learning-based method to detect
global intrinsic reflectional symmetry of shapes. Com-
pared to previous works, our method is much more ef-
ficient than state-of-the-art (over 20 times faster). Our
method also achieves higher accuracy and is more ro-
bust.

• To compute the entries of the functional map matrix,
we labeled a dataset containing 3,000 eigenfunctions
along with corresponding signs, and design a novel
neural network to predict the sign of each eigenfunc-
tion. The data and code for annotation, training, and
visualization will also be publicly released.

2. Related Work

We now review papers most related to our work, namely
those on intrinsic symmetry detection and 3D shape analy-
sis with deep learning.

2.1. Intrinsic Symmetry Detection

Many previous works cast their attention on intrinsic
symmetry detection tasks. Ovsjanikov et al. [31] formulate
the concept of intrinsic symmetry. They propose to use the
Global Point Signature (GPS) [36] to transform the intrin-
sic symmetry of shapes into the Euclidean symmetry in the
signature embedding space. The symmetry is detected by
first deciding the sign sequence of eigenfunctions and then
finding the nearest neighbors of the GPS of points. Xu et
al. [44, 43] extend the concept of intrinsic symmetry and
introduce partial symmetry where some parts of an object
are symmetric. In this paper, we focus on global intrinsic
symmetry due to its wide applicability, as most research in
this area does.

To address the large solution space, some works
parametrize intrinsic symmetry to some lower dimensional
space. A highly related problem is investigated by Mitra
et al. [26] who propose a method to symmetrize imper-
fectly symmetric objects. They find intrinsically symmetric
point pairs by voting, and then parametrize possible trans-
formations in a canonical space and optimize the transfor-
mation to align symmetric pairs. Kim et al. [15] use an-
other parametrization of symmetry transformations. They
find a set of symmetric points by detecting critical points of
the Average Geodesic Distance (AGD) function, and gener-
ate candidate anti-Möbius transformations that can describe
the symmetric transformation by enumerating subsets of the
points. As a voting-based method, the running-time could
be an issue. Also, the use of anti-Möbius transformation
limits the method to handle genus-zero manifolds. Lipman
et al. [19] detect symmetry by finding the orbit of points un-
der symmetric transformations. A fuzzy point-wise symme-
try correspondence matrix is generated randomly, based on
which they further compute a Symmetry Factored Embed-
ding (SFE) and Symmetry Factored Distance (SFD). How-
ever, the computation of the correspondence matrix is very
time-consuming. Raviv et al. [34] formulate full and partial
symmetries and solve the symmetries through a numerical
framework. [11] proposes a matching algorithm which can
also detect intrinsic symmetries in order to eliminate the
symmetric ambiguity in the correspondence between two
shapes. They achieve this by minimizing a linear objective
function for the sign of eigenfunctions. ZoomOut [24] pro-
poses a general method to efficiently refine mapping and
correspondence, which can also be used to optimize intrin-
sic symmetries.

The relationship between symmetry groups and matri-
ces is studied in [19]. Similarly, Wang et al. [42] establish a
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Figure 2. Pipeline of our method. Given a triangle mesh of a shape, our method can predict point-wise intrinsically symmetric corre-
spondences. First, we compute the Laplace-Beltrami eigenvectors of the mesh. Then we retain the eigenvectors associated with the first
K smallest eigenvalues (excluding eigenvalue 0) for analysis. We train a neural network called SignNet, that predicts the sign of each
eigenfunction ϕi (i = 1, 2, . . . ,K), under reflectional symmetry transformation T , i.e., whether ϕi ◦ T = ϕi or ϕi ◦ T = −ϕi. Instead
of feeding the extrinsic positions as input, we use as input the first t eigenvectors along with the i-th eigenfunction ϕi, which are invariant
under isometric transformation. The second box visualizes the shapes using the first three eigenvectors (ϕ1,ϕ2,ϕ3) as the coordinates
and ϕi as the color (where blue is small and red is large). The output is a two-dimensional vector, indicating the sign. We later combine
K signs and convert them to a diagonal functional map matrix whose entries cii are either +1 or −1. This induces an initial point-wise
symmetry map. To correct errors led by repeating eigenvalues and imperfect symmetry, we refine the diagonal matrix and obtain a better
symmetry mapping as shown in the last box through post-processing.

homeomorphism between the symmetry group and the mul-
tiplication group of matrices. They introduce the functional
map to parametrize the symmetry and limit the search space
of matrix entries to the subspace of eigenfunctions. How-
ever, due to the noise in manifolds and errors during the nu-
merical calculation, eigenvalues which are ideally identical
are usually calculated as different values in practice, mak-
ing it difficult to determine true subspaces and resulting in
poor symmetry detection. As described in [42] the conti-
nuity and sparsity make functional maps a suitable repre-
sentation for correspondence problems, including intrinsic
symmetry. Functional maps are also used in the work [29].
As also mentioned in [31], eigenfunctions are invariant un-
der self-isometry, apart from sign ambiguity, and the diag-
onal entries of the functional map matrix are related to the
sign of corresponding eigenfunctions. To decide the signs,
landmark symmetric point pairs and the geodesic lines con-
necting them are selected. Nagar and Raman [29] design an
explicit solution to this problem, but since their method de-
pends on the landmark pairs, the random sampling requires
a trade-off between robustness and computation complex-
ity.

Compared to state-of-the-art methods, our learning-
based method avoids explicit sampling and is much faster
(over 20 times faster for a typical example). It circumvents
the randomness of sampling, and is thus more robust and
accurate.

2.2. Shape Analysis with Deep Learning

Our method learns the properties of eigenfunctions de-
fined on manifolds using neural networks. We review re-
search that successfully apply neural networks in tasks re-
lated to 3D shapes [37, 32, 14, 22, 8]. Boscaini et al. [4]
design an anisotropic convolutional neural network to learn
correspondences across shapes. Masci et al. [23] also de-
sign a network in the spatial domain.

Alternatively, another category of work constructs neu-
ral networks in the spectral domain. Bruna et al. [7] intro-
duce a spectral convolutional layer on graphs, which can be
viewed as a general form of meshes. As described in [6],
a fundamental problem of spectral convolution is its depen-
dency on the basis, making it difficult to be generalized to
different domains. To mitigate this, Yi et al. [45] propose
a network architecture to synchronize the spectral domains
and then perform convolutional operations on it. Rodolà et
al. [20] design the first network for finding correspondence
between shapes using functional maps; however, it does not
address the symmetric ambiguity explicitly. Roufosse et
al. [35] design fully connected networks to learn features
that can generate functional map matrices; however, fully
connected networks may suffer from overfitting, and they
do not learn on the functional space. Donati et al. [10]
propose to learn functional maps in an unsupervised man-
ner, but it can not solve the symmetries of shapes. Li et



al. design OptCuts [18] to refine the non-rigid functional
map results, which can be adopted as a post-processing step
in tasks like correspondence and symmetry detection. Hal-
imi et al. [13] propose an unsupervised method to learn the
correspondence between non-rigid shapes, but it is not de-
signed for symmetries.

3. Representing Intrinsic Symmetry by Func-
tional Maps

To cope with discrete and high-dimensional point-wise
correspondence matrices, we use functional maps to repre-
sent the self-mapping. The functional map was introduced
in [30], first used to describe the correspondences between
two shapes. In our problem, a self-isometry T can also
be viewed as a self-mapping T : M → M on manifold
M, which naturally introduces a bijective transformation
Tf ∈ GL(L2(M)) in the square-integrable space L2(M),
such that

∀f ∈ L2(M),m ∈ M, Tf (f)(m) = f(T (m)). (1)

Assume that L2(M) is equipped with an orthogonal ba-
sis {ϕi}i=1,2,.... For each T , the functional map can be rep-
resented by a matrix C, with entries cij =< Tf (ϕi),ϕj >.
For each function f =

∑
i biϕi ∈ L2(M) with coefficient

vector b = (b1, b2, . . . ), the coefficient vector of map Tf (f)
is Cb. In this way, we can represent the mapping by the ma-
trix C.

Following the choice of [30], we use the eigenfunctions
of the Laplace-Beltrami operator as the basis. For a mesh
with N vertices, the discrete Laplacian operator on the mesh
is defined as an N ×N matrix [25]

L = A−1(D −W ), (2)

where A = diag(a1, . . . , aN ) contains vertex weights,
with ai equal to the Voronoi area of the vertex (i.e., a
third of the sum of one-ring neighborhood areas). W =
{wij}i,j=1,...,N is the sparse cotangent weight matrix, D is
the degree matrix which is a diagonal matrix with diagonal
entries dii =

∑N
j=1 wij .

The aforementioned eigenfunction basis ϕ =
{ϕi}i=1,2,...,N is the solution of Lϕ = Λϕ, where
Λ is a diagonal matrix whose diagonal entries are eigen-
values in ascending order, λ0 ≤ λ1 ≤ · · · ≤ λN . For
efficiency and robustness, we take the eigenfunctions cor-
responding to the first K smallest eigenvalues (K << N ).
Note λ0 = 0 and the corresponding trivial eigenfunction is
ignored.

4. Method

4.1. Overview

Our goal is to detect the intrinsic symmetry of shapes.
An intrinsic symmetry is the self-homeomorphism of a

smooth surface M, written as T : M → M, which pre-
serves geodesic distances dg

∀m,n, T (m), T (n) ∈ M, dg(m,n) = dg(T (m), T (n)).
(3)

Instead of directly computing a point-wise correspondence
matrix, we use a functional map to describe this self-
mapping. The functional map defined on the Laplacian ba-
sis is represented as a matrix, which is the coordinate trans-
formation matrix w.r.t. the source and target bases. Since
the Laplace-Beltrami operator is invariant under isometric
transformation, the eigenfunction space stays invariant un-
der self-mapping. Therefore, the matrix C corresponding
to the self-mapping T is a block diagonal matrix. More
specifically, only one of the two cases holds for eigenfunc-
tion ϕi associated with non-repeating eigenvalues (see also
in [31]):

• ϕi ◦ T = ϕi, where ϕi is called positive.

• ϕi ◦ T = −ϕi, where ϕi is called negative.

Therefore, the entry cii in the matrix corresponding to
each non-repeating eigenfunction ϕi should be either +1 or
-1, depending on whether ϕi is positive or negative. Fig-
ure 2 shows the pipeline of our method. We train a net-
work called SignNet to distinguish the sign of eigenfunc-
tions under reflectional symmetry. To provide sufficient
guidance, we train the network in a supervised fashion with
our annotated data. Given an input shape, once the signs
of Laplacian eigenfunctions are predicted using our Sign-
Net, we can fill in the diagonal of the initial functional map
matrix C̃ with +1 and -1. However, most of the time the in-
trinsic symmetry is imperfect, where some areas experience
non-isometric deformation. Moreover, there could also be
eigenfunction spaces associated with repeating eigenvalues,
in which condition the diagonal matrix cannot fully express
the mapping. Therefore we use a postprocessing step to
fine-tune the initial matrix C̃ to obtain the final matrix C.

4.2. Learning Intrinsic Symmetry

We now discuss the steps involved in learning intrinsic
symmetry using our method.

4.2.1 Diagonal entries of the functional map matrix

As described in Section 3, we detect intrinsic symmetry by
computing the functional map matrix C. Although the di-
mension of K×K functional map matrix C is already much
lower than the N × N point-wise correspondence matrix,
predicting the full K ×K matrix is still challenging for op-
timization methods or neural networks since there are still
too many variables. We further utilize the sparse structure
of the symmetry functional map to make it much easier to
predict the mapping.



Figure 3. The Laplace-Beltrami eigenfunction maps on shapes.
In this figure, we visualize the eigenfunctions on shapes from
SHREC 2007 [12], elephant, and flamingo [39]. Red vertices rep-
resent positive values of eigenfunctions and blue values are nega-
tive values. First row shows eigenfunctions where ϕi ◦ T = ϕi

(i.e. positive cases), and the second row presents negative cases,
satisfying ϕi ◦ T = −ϕi. Obvious symmetric/antisymmetric pat-
terns can be observed in these non-repeating eigenfunctions. We
further develop a neural network to predict the signs.

For an intrinsic mapping T defined in Equation (3) and a
Laplacian eigenfunction ϕi associated with a non-repeating
eigenvalue λi, ϕi ◦ T = ±ϕi. Generally, the entries of
transformation matrix are cij = < Tf (ϕi),ϕj >. If all
eigenvalues are non-repeating, then the entries of C can be
computed by cij = si, if i = j, or 0 otherwise. More
detailed proofs can be found in [31].

This means that C is a block diagonal matrix, where the
diagonal entry associated with the non-repeating eigenvalue
λi is si.

4.2.2 Predicting the sign of eigenfunctions

So the problem is much simplified and disentangled, such
that we can derive the whole matrix by separately consid-
ering the sign of each eigenfunction. The visualization of
the eigenfunctions on shapes is shown in Figure 3. From
the figure it can be seen that symmetric patterns are rather
obvious: positive functions appear symmetric under reflec-
tional symmetry, while negative ones are skew-symmetric.
Nagar and Raman [29] propose a sampling-based method
to decide the sign of the function. However, this approach
depends on random samples and computation of geodesic
distances, which takes a long time to compute and may oc-
casionally fail. In this paper, we propose to train a neural
network to learn the sign of eigenfunctions.

Figure 2 illustrates the pipeline of our method. Given
an input shape, we first compute its Laplacian matrix and
the first K eigenfunctions (excluding the trivial eigenfunc-
tion associated with eigenvalue 0). Instead of taking the
whole shape along with the eigenfunctions as input, which
requires the neural network to deal with irregular mesh
connectivity, our neural network (SignNet) processes each
eigenfunction ϕi separately. Assuming the i-th eigen-
function ϕi is being processed, the input to the network
includes not only ϕi, but also the first t eigenfunctions

ϕ1,ϕ2, . . . ,ϕt, which capture the characteristics of the in-
put mesh and are also intrinsic.

The output of SignNet is a 2-dimensional softmax vec-
tor. The distributions of the eigenfunctions on the mesh can
reflect the pattern of the sign to a great extent. Here we do
not use the original positions of vertices as input since they
are extrinsic features. In contrast, the first t dimensions of
Laplacian eigenvectors are intrinsic, thus more suitable for
detecting intrinsic symmetry.

To visualize this, in the second block of Figure 2, we plot
the embedding of vertices taking the first three eigenfunc-
tions (ϕ1(p),ϕ2(p),ϕ3(p)) evaluated at vertex p as ver-
tex coordinates and ϕi(p) as the color (blue to red means
small value to large value). It can be observed that the
shapes of the embedding are extrinsically symmetric even
if the mesh is only intrinsically symmetric. Also, we can
see that those eigenfunctions are either symmetric or skew-
symmetric, corresponding to positive or negative eigenfunc-
tions.

In the SignNet neural network, we use Multi-Layer Per-
ceptrons (MLPs) to extract vertex features with increasing
complexity. Then a max-pooling is applied on all vertices
to aggregate global features. Following the pooling lay-
ers are several fully-connected layers with decreasing num-
bers of channels. In the end, the network predicts a two-
dimensional score vector vi = (vi,1, vi,2), i.e.

vi = SignNet(ϕ1,ϕ2, . . . ,ϕt;ϕi), (4)

such that the sign is predicted to be negative if
argmaxk vi,k = 1, or positive if argmaxk vi,k = 2, for
k = 1, 2. Let ŝi be a two-dimensional vector, ŝi = (1, 0)
if si = −1, and ŝi = (0, 1) if si = 1. The loss function is
designed as the cross entropy between vi and ground-truth
sign label ŝi, formulated as

Loss = CrossEntropy(vi, ŝi). (5)

4.3. Training Data

Our learning-based approach requires a dataset for train-
ing. For this purpose, we choose as a training set a fusion of
sets SHREC 2007 [12], elephant, and flamingo [39]. This
dataset contains deformed shapes which are intrinsically
symmetric. As a shape retrieval dataset, SHREC dataset
includes shapes of different categories. Meanwhile, they
are also independent from the test sets (SCAPE [1] and
TOSCA [5]). This ensures fairness and evaluates the gen-
eralizability of our learning-based approach. Our method
thus generalizes well to various kinds of shapes and poses
as in Figure 5.

We built a simple user interface to visualize and manu-
ally label each Laplacian eigenfunction as either positive,
negative or neither under reflectional symmetry transform.



Figure 4. Eigenfuntions with repeated eigenvalues are neither odd
nor even. Those eigenfunctions are labeled as ‘0’ and discarded in
the later training process.

Figure 5. Our method generalizes well to various shapes including
male, female, gorilla, horse, wolf, and dog [3, 5].

In the labeling process, we first compute the eigenfunc-
tions and visualize them on the meshes (similar to Figure 3
and Figure 4). As a human, we can easily differentiate the
“sign” of an eigenfunction in a short time. For example,
eigenfunctions in the first row in Figure 3 are symmetric
(even) and labeled as ‘+1’, while those in the second row
are anti-symmetric (odd) and labeled as ‘-1’. There are also
some eigenfunctions that are neither even nor odd as shown
in Figure 4. Usually, those eigenfunctions are only par-
tially even/odd. We label them as ‘0’ and do not use them
for training. The dataset is released to the community to
facilitate future research.

4.4. Network Architecture

In our SignNet, the input placeholder is set to work with
4500 points, which are padded with 0 if the mesh has less
than 4500 vertices, and for meshes with more than 4500
vertices, they are downsampled to 4500 points. As shown
in Fig. 2, we use multi-layer perceptrons (MLPs), max-
pooling layers, and fully connected layers. There are five
MLP layers, having 64, 128, 256, 512, 4096 channels re-
spectively, and there are ReLU activation layers and batch
normalization layers right after the output of each MLP
layer. Then we use a max-pooling layer to aggregate the
global features. Such a combination of shared-weight MLP
layers and max-pooling layers are proven to be effective
to fit functions defined on the point set (see the appendix
in [33]). Then, four fully connected layers are applied to

the global features. Their output channels are 512, 128, 32,
2. The first three layers are also connected with ReLU acti-
vation, batch normalization, and (70%) dropout layers.

Although both [35] and our method use deep learning
models and the concept of functional maps, the problem
settings and the input/output/structure of the network are all
different. Their approach cannot be naively used to solve
the intrinsic symmetry problem. Considering the design
of the network, compared to their fully-connected network,
our share-weight MLP network defined on the eigenfunc-
tion space uses fewer parameters and is invariant under dif-
ferent input vertex orders.

4.5. Post-processing

Most of the time, the meshes that we are processing are
not perfectly intrinsically symmetric. The entries of func-
tional matrices would not be exactly -1 and +1. More-
over, owing to the imperfect triangulation and discretiza-
tion of the Laplacian operator, in numerical computation,
eigenvalues are mostly non-repeating, but there are actually
eigenfunction spaces with multiple eigenfunctions. There-
fore, the entries associated with sub-eigenfunction spaces
need more entries, usually in the form of an orthogonal sub-
matrix, to describe the functional map.

In consideration of the above two reasons, we use a post-
processing step to correct the matrix and convert it to point-
wise correspondence. Similar to [29], we use functional
constraints [30] to align the correspondences. As shown in
Figure 7, this can correct initially imprecise mappings.

5. Results and Evaluation

We first describe the implementation details of our
method in Section 5.1. In Section 5.2 we compare our
method with existing methods, both qualitatively and quan-
titatively. In addition to the accuracy of symmetry, we also
measure the run time of different methods, showing the sig-
nificant superiority of our method in efficiency. We further
test the robustness of our method in Section 5.4. Due to the
shared-weight structure of our network, our method stays
robust under different topology and vertex numbers.

5.1. Implementation Details

We now present details of the training and test process of
our SignNet.

The computation of the Laplacian matrix and eigenvec-
tors are described in Section 3. Please refer to [25] for
more implementation details related to these steps. We im-
plement the neural network architecture with Tensorflow.
The network is optimized using Adam [17] solver. The ini-
tial learning rate is set to 1 × 10−4 and momentum is 0.9.
We choose to truncate at first 12 lowest eigenvectors (i.e.,
K = 12), and by default, the input feature has 4 dimen-
sions, composed of the first 3 eigenvectors (i.e., t = 3) and



Table 1. Comparison of correspondence rate, mesh rate, and run-
ning time on the SCAPE dataset. We compare our method with
MT [15], BIM [16], OFM [21], GRS [42], ZO [24], and FA [29].

MT BIM OFM GRS ZO FA Ours
Corr. Rate(%) 82.0 84.8 91.7 94.5 94.2 97.5 97.9
Mesh Rate(%) 71.8 76.1 97.2 98.6 93.05 100 100

Time(s) 18.0 304.26 50.70 20.28 51.58 6.77 0.24

Table 2. Correspondence rate (%) comparison on TOSCA.

MT BIM OFM GRS ZO FA Ours
Cat 66.0 93.7 90.0 96.5 94.6 95.6 96.0

Centaur 92.0 100 96.0 92.0 92.0 100 100
David 82.0 97.4 94.8 92.5 96.5 96.2 97.2
Dog 91.0 100 93.2 97.4 96.8 98.8 100

Horse 92.0 97.1 95.2 99.5 100 97.3 96.4
Michael 87.0 98.9 94.6 91.4 94.7 96.5 98.7
Victoria 83.0 98.3 98.7 95.5 92.8 96.2 97.8

Wolf 100 100 100 100 100 100 100
Gorilla - 98.9 98.9 100 100 100 100
Average 85.0 98.0 95.1 94.5 96.4 97.8 98.1

the i-th eigenvector. We train the network for 150 epochs
on a PC with an NVIDIA 1080TI GPU and an Intel i7-7700
CPU. The network inference time is 0.06s. When we train
the network using batch size = 4, the GPU memory used is
5.8G. The preprocessing time for computing eigenvectors is
0.03s, and the postprocessing time to finetune the results is
0.24s. In total, our method is still at least 20 times faster
than the previous methods.

5.2. Comparison of Results

As one of the biggest advantages of learning-based meth-
ods, our algorithm runs much faster than previous sam-
pling based intrinsic symmetry detection algorithms. Also,
the neural network can learn some common properties of
eigenfunctions across models to distinguish the sign of
eigenfunctions. This would avoid randomness of sam-
pling, so also has better performance in terms of correspon-
dence accuracy. In this section, we compare our method
with state-of-the-art methods including MT [15], BIM [16],
OFM [21], GRS [42], ZO [24], and FA [29] in the following
two metrics, widely used in the literature:

1. Correspondence rate: Assume that (m,m′),m,m′ ∈
M is a ground truth correspondence pair, and the al-
gorithm’s prediction is (m,T (m)). If the geodesic dis-
tance dg(m′, T (m)) between m′ and T (m) is less than

the threshold
√

area(M)
20 , then we count this point as a

correct matching. Correspondence rate measures the
ratio of labeled points that are correctly matched.

2. Mesh rate: It measures the percentage of meshes
whose correspondence rate is above the threshold β.

Table 3. Mesh rate (%) comparison on TOSCA.

MT BIM OFM GRS ZO FA Ours
Cat 54.6 90.9 90.9 100 90.9 100 100

Centaur 100 100 100 100 100 100 100
David 57.1 100 100 100 100 100 100
Dog 88.9 100 88.9 100 89.9 100 100

Horse 100 100 87.5 100 100 100 100
Michael 75 100 100 100 100 100 100
Victoria 63.6 100 100 100 91.7 100 100

Wolf 100 100 100 100 100 100 100
Gorilla - 100 100 100 100 100 100
Average 76 98.7 92.6 100 96.3 100 100

We use β = 75%, the same as [29, 42].

We run experiments on SCAPE [1] and TOSCA [5]
datasets which contain intrinsically symmetric meshes, and
the ground truth symmetric correspondences are from [2].
We also test our method on Handstand, Swing [41] and
FAUST [3] datasets for qualitative evaluation, as no ground
truth correspondences are available. As we mentioned in
Section 4.3, our training set is independent of the test sets,
to ensure fairness.

The results on the SCAPE dataset of deformed human
shapes are reported in Table 1. As can be seen, our method
achieves the best accuracy: improving the correspondence
rate from the previous best 97.5% (FA) to 97.9%. Both our
method and FA achieve 100% mesh correct rate. In terms
of runtime, our method is over 20 times faster than FA, and
even more than other existing methods.

The results on the TOSCA dataset are reported in Ta-
bles 2 and 3 for the comparisons of correspondence rate and
mesh rate, respectively. We report performance on individ-
ual object categories and the overall average. Our method
has similar improvements compared with existing methods.
Some qualitative comparison is shown in Figure 6.

5.3. Evaluation of Design Choices

As we said before, by default we use the first three Lapla-
cian eigenfunctions as the coordinates to embed vertices
into an intrinsic space. Compared to Laplacian eigenfunc-
tions, the raw positions are not invariant under global rigid
transformation, nor under non-rigid isometric deformation,
so not suitable for predicting the sign of eigenfunctions on
the mesh. In this experiment, we compare using the po-
sitions (x,y, z,ϕi) versus eigenfunctions (ϕ1,ϕ2,ϕ3,ϕi)
as input. Table 4 lists the average accuracy of sign pre-
diction on TOSCA and SCAPE datasets. It shows that the
accuracy using the position (denoted as Pos.) is much lower
than that of our design. During experiments, we observe
that when models have scales in a large range, the network
with position input performs even worse.



Figure 6. Qualitative comparison with previous work. (a) is sym-
metry predicted by our method; (b) is from FA [29]; (c) is result of
GRS [42]. We can see that our method has the least artifacts when
detecting symmetry.

We compute the functional map matrix by independently
predicting the sign of eigenfunctions. This strategy circum-
vents the flip of signs and permutation of eigenfunctions.
To show the advantage of this strategy, we design another
network which takes all the eigenfunctions as input and pre-
dicts the whole K diagonal entries at once. We denote this
alternative design as Diag. in Table 4. We can see the ac-
curacy of sign prediction is much lower than ours. This is
probably because the input and output dimensions are too
high for the network to learn.

The input to the network is the first t eigenfunctions as
well as the i-th eigenfunction, i.e., [ϕ1, ...,ϕt;ϕi]. Too
small the t value would make different vertices indistin-
guishable, impossible to determine the sign. And if t is
too big, it would make the network more complex, and in-
troduce more redundant noisy high-frequency eigenvectors.
Here we vary t from 2 to 4. The table shows that t = 3
(Ours) achieves the best performance. Our input is defined
on vertices. Although existing point-based deep learning
methods such as PointNet [33] take extrinsic point coordi-

nates as input, it is possible to feed the same intrinsic input
to such architectures for prediction. So we also test this by
feeding our input directly to PointNet [33] and report the
accuracy of sign prediction. The performance is also lower
than that of our method. This is probably due to our com-
pact network design that generalizes well to new data.

Table 4. Evaluation of our design choices. We compare the accu-
racy (=number of correctly predicted signs/total number of eigen-
functions) of different design choices.

Ours Pos. Diag. 2 Eig. 4 Eig. PointNet
Acc.(%) 98.4 60.6 66.1 96.3 94.1 96.2

5.4. Robustness

Different topology. Since the geodesic distance and the
eigenfunctions are defined on the manifold M, the topol-
ogy of M would contribute significantly to the computa-
tion of intrinsic symmetry. For example, MT [15] requires
the topology to be genus-zero. In our method, since the
eigenfunctions can work consistently under different topol-
ogy, the network can stay robust with topological changes.
As shown in Figure 7, we reconstruct those meshes with
self-intersection in space and the produced meshes are high-
genus. The first row shows the original shapes with prob-
lematic regions highlighted. The second row shows the ini-
tial correspondences of intrinsic symmetry mapping and the
correspondences after refinement. For those challenging
cases, intrinsic symmetry is no longer precisely satisfied,
and the refinement is effective in improving detected sym-
metry.

Incomplete shapes. Sometimes there could be missing
data on shapes due to imperfect scanning or mesh model-
ing. We expect an intrinsic symmetry detection algorithm
to work on such incomplete shapes. We perform a test by
making some holes on the surface of the models. Figure 8
shows the results of our method. It can be seen that the
symmetry pairs on the shapes are still reasonable.

Simple shape. We try to run intrinsic symmetry detec-
tion on a simple and regular shape as shown in Fig. 10,
which is far from the training set. The code of [29], how-
ever, crashes because they rely on landmark pairs while
there are more than two vertices with the same signature.
In fact, [29] would crash on all such “regular” meshes with
more than one symmetry. Our method works on the global
property of eigenfunctions and thus is more robust. “Ax-
iomatic” methods more or less have corner cases and re-
quire clean meshes, so robustness is another reason besides
higher efficiency that we apply deep learning in intrinsic
symmetry detection.

Multiple symmetries. Some shapes, including many
creatures, actually have more than one intrinsic symmetry.
The ant in Fig. 9 seemly has two symmetries, up-to-down
and left-to-right. The up-to-down symmetry is not obvious



Figure 7. Test with different topology. In this figure, we change
the topology of models from SHREC and TOSCA to test the ro-
bustness of our method in difficult topology. We reconstruct the
meshes by sticking spatially adjacent faces on the meshes together,
so the shapes are no longer genus-zero. Meanwhile, the intrinsic
symmetry correspondences obtained by our method are still rea-
sonable. We also show both the initial symmetry and the refined
symmetry in the second row. Since the reconstructed meshes are
changed and are no longer perfectly intrinsically symmetric, the
refinement step is important to polish the correspondences.

Figure 8. Symmetry detection on incomplete surfaces.

but will confuse the landmark points finding algorithm in
traditional intrinsic symmetry algorithms. As a comparison,
[29] fails on this case, while our method can still predict the
signs of eigenfunctions correctly, thus output a correct sym-
metry result, because it is based on the global properties of
the eigenfunctions.

5.5. Failure Case

As shown by the statistics, our method works well in
most cases. However, due to the deterministic network
structure, our method can only predict one symmetry result
for a certain object, even if it has multiple intrinsic sym-
metries. In Figure 11, the table has more than one reflec-

Figure 9. An example with multiple symmetries. Our method (b)
outperforms [29] (a) in the ant case where more than one symme-
try exists. The up-to-down symmetry is not obvious but will con-
fuse the landmark points finding algorithm in [29]. Our method
can predict the symmetry correctly because it is based on the
global properties of the eigenfunctions.

(a) Triangular prism (b) Detected symmetry

Figure 10. Symmetry detection on a simple triangular prism. This
model is far from the training data, but our method can find the
correct symmetry in (b). [29] crashes on this shape.

Figure 11. A failure case of our method. (a) is the symmetry detec-
tion result of the 151st model in SHREC 2007 [12] computed by
our method, (b) is the symmetry plane corresponding to our result,
and (c) is another possible symmetry plane.

tional symmetry plane, while our method cannot predict all
of them. It would be our future work to extend our method
to predict the entire symmetry group end-to-end.

Our method can also fail when the topology of an intrin-
sically symmetric shape changes too much. An example is
shown in Figure 12 where the cat’s jaw and claw are glued
together. The left side shows the shape and estimated corre-
spondence. Our method fails for this case. The right side of
the figure presents the 3rd-6th eigenfunctions on the shape.
They are all neither symmetric nor antisymmetric, making
our functional map based method fail. Actually, according
to the definition, this new shape should no longer be con-
sidered as intrinsically symmetric.

6. Conclusions and Future Work

In this paper, we have presented a novel learning-based
approach to intrinsic reflectional symmetry detection. Our
method is based on functional maps and further develops
a neural network architecture that predicts the sign of a
Laplacian eigenfunction at a time. We design the network



Figure 12. A failure case when we glue the jaw and claw of a
cat. The blue lines are the estimated symmetric point pairs. The
eigenfunctions on the right are neither symmetric nor antisymmet-
ric. The changed shape might not be considered as intrinsically
symmetric by definition, and our method fails to find the intrinsic
symmetry in this case.

to take the first few Laplacian eigenfunctions, in addition
to the eigenfunction to be predicted. Extensive experi-
ments show higher efficiency and superior accuracy com-
pared with state-of-the-art methods. We also performed ex-
periments to validate design choices and robustness of our
method in challenging cases.

This work addresses global intrinsic reflectional symme-
try, which is most common in practice. Note that it can also
detect some kind of rotational symmetries where there are
only two elements in the rotation group. As future work,
it would be interesting to also include rotational symmetry
detection, although the property of the rotational symmetry
functional map matrix is more complicated. Another pos-
sible direction is to extend this learning-based algorithm to
partial symmetry detection.
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