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Abstract

The tooth axes, defined on 3D tooth model, play a
key role in digital orthodontics, which is usually used as
an important reference in automatic tooth arrangement
and anomaly detection. In this paper, we propose an au-
tomatic deep learning network (TAD-Net) of tooth axis
detection based on rotation transformation encoding.
By utilizing quaternion transformation, we convert the
geometric rotation transformation of the tooth axes into
the feature encoding of the point cloud of 3D tooth mod-
els. Furthermore, the feature confidence-aware atten-
tion mechanism is adopted to generate dynamic weights
for the features of each point to improve the network
learning accuracy. Experimental results show that the
proposed method has achieved higher detection accu-
racy on the constructed dental data set compared with
the existing networks.

1. Introduction

With the growing concern of oral health and the widely
used of computer-aided design (CAD) / computer-aided
manufacturing (CAM) in orthodontics [1, 2, 3], digital
orthodontics has attracted tremendous attention in recent
years. In clinical practice, digital orthodontics enabled by
CAD/CAM and data-driven technologies [4] can greatly as-
sist dentists to efficiently make diagnosis or treatment plans.
In the workflow of digital orthodontics, dental features in-
cluding tooth feature axis, points and arch curve defined on
3D tooth models [5], are necessary conditions, as they are
usually used as important references in the treatments. In
this paper, we focus on the tooth axis detection, which is es-
sential for downstream tasks, such as classification of dental
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abnormalities [2], tooth redundancy analysis, and tooth ar-
rangement [6].

(a) Left: Ill-positioned teeth of a patient before orthodontics. Right: Tooth
arrangement after orthodontics

(b) Tooth axes definition

Figure 1. (a) illustrates the obvious changes of tooth axes before
and after orthodontic treatment. (b) illustrates the definition of
different tooth axes. The tooth shown here is the left upper canine
viewed from the midline position. The blue and red arrows rep-
resent distal axis (DA) and mesial axis (MA), and the green and
yellow arrows represent buccal surface axis (BA) and lingual axis
(LA), respectively.

Specifically, the inclination of a tooth is usually de-
scribed by the angle between tooth axes as shown in Fig. 1
(a), and the rotation of a tooth is usually described by the
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movement around the tooth axis. Thus, detecting tooth axis
on 3D tooth models is an important problem in clinical ap-
plications. Tooth axes, defined by the community of den-
tistry, are divided into four categories as shown in Fig. 1 (b):
Distal Axis (DA), a tangent away from the midline of the
tooth and parallel the distal surface; Mesial Axis (MA), a
tangent near the midline of the tooth and parallel the mesial
surface; Buccal Axis (BA), a tangent is along the inclined
surface of tooth near the front of the cheek; Lingual Axis
(LA), a tangent near the tongue and parallel to the long axis
of the tooth.

In clinical practice, it is laborious and time-consuming
for dentists to manually label tooth axes from 3D dental
models. Hence, developing an automatic and accurate tooth
axis detection method based on 3D tooth models is one of
the key problems for digital orthodontics. However, it is still
a challenging task due to the following factors. First, these
tooth axes are defined by dentists, only considering the
functional ability for orthodontic treatments, where there
is no clear mathematical definition. Second, the geomet-
ric features of dental models are not prominent for accu-
rate tooth axis detection. Thus, it is difficult to detect the
tooth axes in a direct regression way which only utilizes
the global geometric. Lastly, due to the varying geometric
characteristics caused by different types of teeth and tooth
axes, designing an unified detection method is extremely
challenging.

To address the above challenges, we design a novel
learning-based method for automatic tooth axis detection on
3D dental models. The core of our method is to represent
the tooth axis in a dense coding rotation transformation way,
which is reversible and helpful for the network to learn the
context information of the tooth model. Specifically, in our
proposed encoding module, the direction field of the tooth
model is first introduced to represent the tooth axis densely;
then, the direction field is transformed by the correspond-
ing quaternion, and the process is reversible. In this way,
the tooth axis detection problem is naturally converted to
a dense coding rotation transformation prediction problem.
Based upon this encoding method, we designed a rotation
transformation prediction network. Moreover, to improve
the detection accuracy, especially for different types of teeth
and tooth axes with different geometric features, we design
a point-wise feature confidence-aware attention mechanism
to dynamically learn the point-wise feature weights. Fi-
nally, the tooth axis is predicted by the rotation transfor-
mation decoding module based on quaternion inverse trans-
formation. Extensive results on benchmarks and ablation
studies demonstrate the effectiveness and robustness of the
proposed framework.

In summary, we make the following contributions:

• We propose a novel learning-based method for auto-
matic and accurate tooth axis detection, which is the

first work in this field to greatly accelerate the work-
flow of digital orthodontics.

• We convert the tooth axis prediction problem to
a point-wise dense rotation transformation predic-
tion task on 3D point cloud. Importantly, a fea-
ture confidence-aware attention mechanism is intro-
duced to learn dynamic weights for point-wise fea-
tures, which in return enhance the learning at reliable
points.

• The proposed method can simultaneously predict mul-
tiple tooth axes on different kinds of teeth. It
has achieved the state-of-the-art performance on the
benchmark validated by various experiments.

2. Related Works

2.1. Point cloud learning in dental

3D dental data is the most commonly used data in dig-
ital dentistry. And point cloud model is an efficient 3D
model representation due to its simple structure and good
geometric capture ability. In recent years, the research of
point cloud learning has made a breakthrough. PointNet [7]
was first proposed. The feature extraction of point clouds
is achieved by sampling the features of point clouds. The
incoming point cloud is fed into a multilayer perceptron for
feature extraction; then, a Max Pooling operation is used to
generate representative features. PointNet++ [8] further im-
proved the performance by introducing multi-scale feature
extraction scheme to simultaneously encode global and lo-
cal features. In addition, PointConv [9], DGCNN [10] and
other methods can get better results by changing the fea-
ture abstraction mode after point cloud sampling and fusing
multi-level features as much as possible. After the gradual
maturity of point cloud learning technology, many studies
have applied it to the 3D tooth model. For example, Ma et
al. [11] designed a point cloud model to consider the spatial
characteristics of teeth for tooth classification problem. In-
stead, Zanjani et al. [3] used a deep learning approach for
dental segmentation on the intra-oral scanning (IOS) point
cloud model. But this kind of square is not fine enough for
the segmentation of the boundary and other parts. Cui et
al. [12] proposed a two-stage method to segment the tooth
point cloud model for accurate style and achieved promising
results in the IOS model. These networks achieved state-of-
the-art performance on many segmentation and classifica-
tion tasks, and provided the potential of deep learning in
tooth axis detection from 3D tooth models.

2.2. Quaternion-based learning

Quaternion is a kind of hyper-complex number that is
widely used in computer graphics and control theory to rep-
resent 3D rotation, with the following three main advan-



Figure 2. Illustration of the architecture of our proposed tooth axis detection framework. It consists of three components: the rotation
transformation encoding module, the point-wise rotation transformation prediction network, and the rotation transformation decoding
module. Lastly, we can obtain the final four kinds of tooth axes.

tages: it has solved the Gimbal Lock problem; it only re-
quires storing four parameters, which is much lighter than
the rotation matrix; it is more efficient than the rotation ma-
trix in both inverse and series operations. Recently, many
works have been explored to introduce quaternion based-
learning models [13, 14, 15, 16] to the applications of deep
learning. For example, Thomas et al. [17] proposed the
Tensor field networks (TFN) that are equivariant to 3D ro-
tations, translations, and permutations of localized filters,
and it can cover the continuous groups. However, TFN is
designed for physics applications with large memory con-
suming. Based upon the TFN, Zhang et al. [15] proposed a
quaternion equivariant capsule network for 3D point clouds
to estimate the direction of an object unsupervisedly. Zhao
et al. [16] proposed a quaternion product unit to represent
data on 3D rotation groups. In addition, Parcollet et al. [13]
and [14] introduced a quaternion version to RNN for speech
recognition tasks. Different from these existing models, our
method combined the quaternion with the dense encoding
for tooth axis detection, which detects the tooth axes by uti-
lizing the point-wise predicted rotation transformation way
based on the tooth point cloud model.

2.3. Tooth axis detection

In dental clinical applications, tooth orientations are im-
portant quantitative metrics in dental diagnosis and surgery
planning [1, 2]. Many traditional methods [4, 18, 19, 20]

based on the handcrafted geometric features have been pro-
posed to detect tooth axes. Xie et al. [18] detected the
tooth axes by using principal component analysis on the
segmented soft pulp and dentine, which first detected the in-
dividual teeth, and then segmented the soft pulp and dentine
for axis prediction. However, the tooth axis detection result
of this method is usually affected by the dynamic conditions
of neighboring teeth or its surrounding jawbones. Kim et
al. [19] proposed an interactive technique to detect axes of
single-root teeth. It first interactively segments the tooth,
then the tooth axis is obtained by artificially drawing a 2D
line on the corresponding slice. The method needs extensive
human’s interactive adjustments and relies on professional
knowledge in orthodontics, which usually affected the de-
tection result greatly. Yang et al. [4] proposed an algorithm
to estimate the tooth axes from the 3D CT images for miss-
ing teeth. However, the proposed method divided teeth into
two classes: single-root teeth and multi-root teeth. Different
techniques are proposed to compute tooth axes in different
classes. Thus, the proposed method cannot be uniformly
applied to different kinds of teeth. In recent years, digital
orthodontics have received tremendous research attention.
Automation becomes the goal in digital orthodontics [20].
We are the first to explore deep-leaning in the tooth axis de-
tection task, which is an unified method and can be directly
applied for all types of teeth with leading performance.



3. Method

In this section, we present a novel framework, named
TAD-Net, for tooth axis detection on 3D point cloud mod-
els. As shown in Fig. 2, our approach takes the 3D point
cloud as input, which is sampled from the input dental
model and aims to compute the tooth axes. The rota-
tion transformation from the dense fields of initial direc-
tion to the target tooth axes direction field is first encoded
by quaternions and view it as the final supervised informa-
tion (Section 3.1). Then, we introduce the point-wise rota-
tion transformation prediction network and design a feature
confidence-aware attention mechanism to improve the tooth
axis detection accuracy (Section 3.2). At last, the rotation
transformation decoding module is applied to obtain the fi-
nal tooth axes (Section 3.3).

3.1. Rotation transformation encoding module

In this part, we first initialize a direction vector for each
point sampled on a tooth model. In other words, the initial-
ization strategy is to convert the tooth axis into a dense di-
rectional field representation. Secondly, the rotation trans-
formation was generated as the supervision information,
transformed from the initial direction field into the tooth
axes direction field . To realize this rotation transformation,
we utilize the quaternion to encode the rotation transfor-
mation between initial direction vector and different tooth
axes. At last, we will provide the details of the two pri-
mary components in the rotation transformation encoding
module: direction field representation of tooth model and
quaternions-based rotation transformation.
Direction field representation of tooth model. For the
direction field (DF ), each point in the tooth point cloud
model has a corresponding direction vector. Fig. 3 illus-
trates a direction field that takes a tooth model as an exam-
ple. The direction field of a tooth point cloud model is a 3D
vector field substantially. Thus, the direction field can be
defined DF = {v1, · · · ,vn}.

Let Dtrain = {(Ti,Li) ; i = 1, · · · , N} is the set of
training data, where Ti indicates the tooth point clouds, and
Li is the corresponding annotated tooth axis. Specifically,
for each tooth point cloud Ti, there are three direction fields:
DFinitial, DFtarget and DFpredicted. DFinitial is the ini-
tial direction field, and each point has an initial direction
vector v. The initial direction vector is arbitrary and has a
slight impact on the final result. Here needs to be explained
is that we adopt the unified setting way which is all points
have the same initial direction vector for all tooth models in
this paper. The related discussions will illustrate in ablation
study. DFtarget is the target direction field (i.e., also named
tooth axis direction field). In the DFtarget, each point di-
rection vector is the tooth axis Li annotated on the tooth
point cloud Ti. That means the DFtarget = {l1, · · · , ln},
and l1 = · · · = ln = Li. n is the point number of

Figure 3. The direction field (DF ) of the tooth model. These grey
points present the tooth point cloud. Each red arrow presents the
direction vector of the point.

the single tooth point cloud. DFpredicted is the predicted
tooth axis direction field or predicted direction field. In the
DFpredicted, each direction vector is the final predicted re-

sult. Thus, DFprediction =
{̂
l1, · · · , l̂n

}
, where l̂ is the

predicted tooth axis result for a point. Our goal is to find
a strategy to accurately predict the rotation transformation
from the initial direction vector of DFinitial into the tar-
get direction vector of DFtarget. Particularly, the rotation
transformation can be learned by a deep learning network.
Finally, we utilize the predicted rotation transformation to
get the DFprediction.
Quaternions-based rotation transformation. To our best
knowledge, the quaternion is widely used in computer
graphics to represent 3D rotation [15], which only requires
four parameters to describe a rotation transformation, and
it is more efficient than the rotation matrix in both inverse
and series operations. Meanwhile, it has a complete system
of mathematical theory and can concisely and effectively
describe the rotation transformation between the initial di-
rection vector of DFinitial and the target direction vector
of DFtarget. Thus, we utilize quaternion algebra to encode
the rotation transformation from the initial direction vector
to the target direction vector in rotation transformation en-
coding module, which is named quaternion transformation.
Note that it is a reversible transformation. That is, given a
initial direction vector of DFinitial, we can also recover the
corresponding tooth axis direction vector of DFtarget by
using quaternion inverse transformation in rotation trans-
formation decoding module.

In this task, quaternion q in the quaternion domain H,
can be reprsented as q = s + xi + yj + zk and the imag-
inary units i, j,k obey the quaternion rules that i2 = j2 =
k2 = ijk = −1, which is a type of hyper complex num-
ber with 1D real part s and 3D imaginary part (x, y, z).
A quaternion can be represented as the combination of a
scalar and a vector as q = [s,v] = [s, (x, y, z)] by ignor-
ing the imaginary symbols. Given an initial direction field



DFinitial = {v1, · · · ,vn} and a tooth axes direction field
DFtarget = {l1, · · · , ln}, the 3D rotation from a initial di-
rection vector vi ∈ R3 to the tooth axis li can be described
as a rotate around an axis u with an angle θ:

Rotation Axis: u =
v × l

∥v × l∥2
,

Rotation Angle: θ = arccos

(
⟨v, l⟩

∥v∥2 ∥l∥2

)
,

(1)

where v × l refers to cross product and ⟨v, l⟩ is for inner
product. Each point p is described by a 4-D vector q =[
cos

(
1
2θ

)
, sin

(
1
2θ

)
u
]
, where ∥u∥2 = 1. ∥.∥2 presents the

2-norm of a vector. We derive a quaternion transformation
method to encode the rotation transformation that is concise
and complementary as shown in Fig. 4. Finally, the rotation
transformation of a tooth model Ti is encoded by quater-
nions, which can be defined Qi = {q1, · · · ,qn}. Through
quaternion encodes the rotation transformation, the rotation
transformation has invertibility.

Figure 4. The rotation transformation of a initial direction vector
into the target direction vector by a quaternion. The red, gray, and
blue arrows represent target direction, initial direction and rotate
axis, respectively. θ is the rotate angle. The initial direction vector
rotates around an rotate axis with an angle θ to obtain the final
direction vector.

3.2. Point-wise rotation transformation prediction net-
work

We design a deep learning network for rotation trans-
formation prediction as shown in Fig. 2. After the rota-
tion transformation encoding module, the point cloud of
the 3D dental model is the input of the point-wise rotation
transformation prediction network, which mainly includes
three components: point-wise feature extraction, feature
confidence-aware attention mechanism, and loss function.
The details are described as following.
Point-wise feature extraction. Point cloud feature extrac-
tion is achieved by sampling and feature aggregation of

point clouds. Specifically, the tooth point cloud P sampled
from the 3D tooth model is input into the network. Firstly,
the farthest point sampling strategy is used to obtain the
sampling points from the point cloud, and its neighborhood
are chosen within a fixed radius. Then the point cloud fea-
tures in the neighborhood are aggregated through three lay-
ers of multi-layer perceptron (MLP), followed by the batch
normalization and ReLU nonlinear activation function. The
feature obtained by these operations is the abstraction and
fusion of the geometric information of the input point cloud.
Finally, the deep feature information, obtained after multi-
ple sampling and feature aggregation for the original point
cloud model, can be used for this task.
Feature confidence-aware attention mechanism. Since
different tooth axes have various geometric characteristics,
the feature distribution of the input tooth point cloud exists
significant difference. We should pay attention to those re-
liable points with stronger feature expression ability so as
to highlight the discrepancies among different feature dis-
tributions. Based upon this idea, the feature confidence-
aware attention mechanism, inspired by [21] [22][23], is
introduced to further improve detection accuracy. In this
module, the feature confidence-aware attention mechanism
measures the reliability of each point by learning a confi-
dence map with dynamic weights for different point fea-
tures. The confidence-weighted features, using for predic-
tion, were obtained by multiplying each point feature and
its corresponding feature confidence map. The higher the
confidence value is, the more accurate the prediction re-
sult is. However, the confidence-weighted features only fo-
cus on the higher confidence value points and ignores these
points whose feature confidence value is lower. Thus, we
concatenate the extracted all point features and confidence-
weighted features together. Then, the final point-wise fea-
tures were fed into the fully connected layer to predict the
point-wise rotation transformation of the tooth model. The
mechanism is the same for different tooth axes.
Loss function. Given the point cloud of the tooth model Ti

and the ground truth quaternions Qi = {q1, · · · ,qn}, the
point-wise transformation prediction network outputs cor-
responding point-wise quaternion vectors. The overall di-
rection field of tooth model prediction loss function L is
defined as:

L =
1

N

N∑
i=0

Lq
i ,

Lq
i =

1

n

n∑
j=0

(qj − q̂j)
2
,

(2)

where Lq
i is the prediction loss of tooth Ti, which indicates

the point-wise loss between the predicted quaternion vector
q̂ and the ground truth quaternion vector q. We utilize the
mean square error (MSE) as loss function to calculate the
regression error.



3.3. Rotation transformation decoding module

With the help of quaternion algebra, we propose the ro-
tation transformation decoding module, which introduces
how to get the predicted tooth axis L̂ by quaternion in-
verse transformation from the predicted quaternions Q̂ and
the initial direction field DFinitial. For the initial direction
vector v of each point in the DFinitial, we can use the fol-
lowing equation to obtain the final predicted tooth axes l̂:[

0, l̂
]
= q̂ [0,v] q̂∗, (3)

where q̂ = [s,v] is the predicted quaternion and q̂∗ =

[s,−v] stands for the conjugation of q̂.
[
0, l̂

]
and [0,v]

represent the pure quaternions of l̂ and v.
For each tooth point cloud model Ti, we can get the pre-

dicted direction field DFprediction =
{̂
l1, . . . , l̂n

}
. Then,

we obtain the final tooth axis L̂ = 1
n

∑n
j l̂j by calculating

the average of the dense predicted tooth axes l̂. The de-
coding method is applied for all kinds of tooth axes in the
same way. Finally, we can obtain four kinds of tooth axes
simultaneously.

4. Experiments

In this section, we present detailed experimental results
and analysis of the proposed method, demonstrating the ef-
fectiveness of different key modules and the leading perfor-
mance compared to other methods.

4.1. Implementation and training details

Network details. In this framework, we use the PointNet++
network as our backbone. Given an input tooth model, we
first extract the mesh vertices and uniformly sample it to
obtain the input point cloud with dimension n × 3, where
n = 2500 is the number of sampled input points 3D coor-
dinates describe each point. Having the input point cloud,
we first set all the vectors of the initial direction field of
each tooth point cloud to [0, 0, 1], and use the quaternion
obtained by the quaternion transformation module as the su-
pervision information. Then, we normalize the tooth model
within a unit ball and extract the point-wise features by
three set abstractions and three feature propagations, which
include three blocks of multi-layer perceptrons (MLPs) fol-
lowed by a batch normalization layer and a ReLU nonlin-
earity layer. The output of the backbone is a set of fea-
tures of subsampled points and sent to a multi-layer percep-
trons layer for automatically learning the point-wise confi-
dence value. The feature confidence map is multiplied with
the corresponding feature to obtain the confidence-weighted
feature. We concat the confidence-weighted feature with the
point-wise feature, which is outputted from the backbone to
obtain the final point-wise feature for quaternion prediction.

Finally, the tooth axes can be obtained through the quater-
nion inverse transformation module.
Training details. All the experiments are conducted on a
single Nvidia GeForce RTX 3090Ti GPU. Our method is
trained using the ADAM optimizer [24]. The learning rate
and weight decay rate are set to 1 × 10−3 and 0.9, respec-
tively. The batch size is set to 64 for maximizing the GPU
memory occupancy. We train the network on the PyTorch
[25] platform and stop the training at 800 epochs as the val-
idation loss no longer decreases. The total training time is
about 8 hours.

4.2. Dataset

We trained and validated on a dataset that includes a to-
tal of 2910 3D point cloud tooth models. The dataset comes
from a medical research institution that has scientific re-
search cooperation with us. To obtain the ground truth,
the dataset was manually annotated with the correspond-
ing feature axes by professional dentists. Each tooth axis
is independently labeled by four professional dentists, then
removing invalid data with the largest variance. Finally, the
ground truth is obtained by averaging the valid labeled data.
The ground truth is labeled in four classes: Buccal surface
axis, Lingual axis, Mesial axis, and Distal axis. To train
the neural network, the dataset was randomly split into two
subsets, a training set and a testing set with 2034 and 876
3D tooth models, respectively.

4.3. Evaluation metrics

We define two reasonable evaluations for tooth axis to
evaluate the detection accuracy in the testing set.
Error angle. The test dataset is defined by Dtest ={(

Ti, L̂i

)
; i = 1, · · · , N

}
. We use the error angle Eangle

to evaluate the detection accuracy of tooth axes in test
dataset since the tooth axis is an independent coordinate
vector.

Eangle =
1

N

N∑
i=1

arccos
(
L̂i,Li

)
, (4)

where L̂i is the predicted tooth axis of the tooth Ti and Li

is the corresponding ground truth axis. N is the number of
tooth axes in testing dataset.
Angle average precision of tooth axes. To further analyze
the results, we proposed a metric named the angle Average
Precision (aAP). This metric is inspired by the mean aver-
age precision. The predicted tooth axis L̂i is considered to
be a positive sample or correct if and only if

arccos
(
L̂i,Li

)
≤ θL, (5)

where θL is a predefined threshold, and Li is the ground
truth tooth axis of Ti. The resting will be considered to be
negative samples. Specifically, we set the threshold θL to
5◦, 10◦, 15◦, denoted by aAP5◦ , aAP10◦ , aAP15◦ .



Figure 5. The visual comparison of tooth axis detection results produced different methods. Each row corresponding to a typical example
of tooth axes with different color arrow: BA (yellow arrow), LA (green arrow), MA (blue arrow), DA (red arrow). The gray arrow stands
for the ground truth result. From left to right are other comparison methods (the 1st-3rd and 5th-7th columns) and the result of our method
(the 4th and 8th columns). There are different types of tooth models to show the applicability of our method.

4.4. Results

The last row of Tab. 1 and Tab. 2 show the tooth axis
detection accuracy. It can be seen that we have achieved ex-
cellent results for all kinds of tooth axes, and the predicted
tooth axes match well to the ground truth. It should be noted
that the training and testing sets contain multiple types of
teeth, so our method can be successfully applied to differ-
ent kinds of teeth. In addition, Fig. 5 visualizes the tooth
axis prediction results from the testing set, which shows the
results of different tooth axes on different types of teeth. It
can be seen that the predicted tooth axes produced by our
method are closed to the ground truth annotated by the den-
tist for all kinds of teeth and tooth axes.

4.5. Comparisons

In order to verify advantage of our proposed the net-
work (TAD-Net), we compared our method with other per-
formance. However, considering there are few methods
designed for tooth axis detection in existing studies, and
there is no published dataset, it is difficult to conduct di-
rect comparative experiments. Thus, we use the same point
cloud as the input and compare our method with several

typical point cloud learning frameworks to directly regress
the tooth axes, including PointNet[7], PointNet++[8] and
PointConv[9]. These methods take point cloud as input, and
the output is four kinds of tooth axes. The overall tooth axis
detection results are summarised in Tab. 1 and Tab. 2.

• PointNet: We use the point cloud as input. There
are 2500 points in the point cloud. After the input
data is processed by T-net, we use three Conv1d lay-
ers [64,128,1024] to extract features, and output 1024-
dimensional feature vector as the global feature. Then,
the global features and the local features of each point
are concated into four fully connected layers.

• PointNet++: Compared with PointNet, PointNet++
provides more sampling sizes in point cloud. We also
use the same sampling method as our method back-
bone (i.e., PointNet++) and obtain multi-scale fea-
tures. Finally, we extract 256 dimensional feature vec-
tors from the point cloud followed by four fully con-
nected layers to predict the final results.

• PointConv: The architecture of PointConv in this ar-
ticle remains similar to that introduced in the original



Table 1. Comparison of different networks for tooth axis detection
based on Eangle (°).

MA DA LA BA Average
PointNet 13.85 15.48 12.93 12.58 13.71
PointNet++ 10.89 11.77 10.15 9.36 10.54
PointConv 8.56 11.01 11.28 9.01 9.97
Our method 2.78 3.42 3.65 3.48 3.33

Table 2. The aAP for different methods.

Axis aAP5◦ aAP10◦ aAP15◦

PointNet

BA 5.17 13.22 24.64
LA 5.29 11.78 22.72
MA 4.09 10.34 21.63
DA 3.25 9.13 18.27

PointNet++

BA 7.09 18.27 32.93
LA 5.65 14.06 26.44
MA 3.37 9.62 17.67
DA 3.61 8.29 14.3

PointConv

BA 8.29 24.04 43.39
LA 9.38 21.27 37.26
MA 5.29 15.99 31.61
DA 6.97 16.83 28.73

Ours

BA 42.91 69.47 82.33
LA 48.08 73.32 84.62
MA 41.59 65.63 78.49
DA 40.63 63.94 79.09

paper. To have a fair comparison with other competing
methods, we also use 3D coordinate information as the
network input without 3D normal information.

We conducted experiments under the same hardware and
parameter conditions. From the experimental results in
Tab. 2, we can see that our network achieves better results
under the same conditions and different threshold values.
That shows that the method by directly using dense rota-
tion transformation benefits the tooth axis detection. In
addition, the way that learns dynamic weights for point-
wise features can make the prediction results perform bet-
ter. Fig. 5 shows the performance of the four methods on
different tooth classes and axes. These figures from Fig. 5
strongly show the advantages of our method in dealing with
the tooth axes detection problem.

4.6. Ablation Study

To verify the effectiveness of our framework compo-
nents, including the rotation transformation encoding mod-
ule for dense tooth axis representation and the feature
confidence-aware attention module in the direction field
prediction network. In addition, we also discuss the influ-
ence of the setting of the initial vector in the initial direction
field. We use error angle Eangle as the evaluation metrics.

Table 3. Ablation study of the tooth axis detection. DE means
dense encoding module of tooth axes. RT stands for the rotation
transformation ecoding based on the dense encoding method. FCA
refers to feature confidence-aware attention mechanism. FMC rep-
resents point-wise feature and feature confidence map concatena-
tion (°).

DE RT FCA FMC MA DA LA BA Average
(a) 10.89 11.77 10.15 9.36 10.54
(b) ✓ 4.70 4.93 5.10 5.69 5.11
(c) ✓ ✓ 3.83 3.80 3.84 4.46 3.98
(d) ✓ ✓ 4.27 4.88 4.82 5.30 4.82
(e) ✓ ✓ ✓ 3.60 4.79 4.86 4.46 4.42
(f) ✓ ✓ ✓ ✓ 2.78 3.42 3.65 3.48 3.33

Tab. 3 summarizes the comparisons. We describe the de-
tailed results of ablation studies in the following.
Rotation transformation encoding module of tooth axes.
The rotation transformation encoding is a dense encoding
way. To validate the importance of the rotation transforma-
tion encoding module of tooth axes, we first train a network
to detect tooth axes using the direct regression method.
The results of the direct regression method are shown in
the first row in Tab. 3. The direct regression method ac-
tually only utilizes the global geometric features. There-
fore, many cases are failed due to missing local geometric
information. Then, the dense encoding is introduced into
the baseline. Point-wise direction vector is regressed corre-
sponding to the tooth axis. The results are shown in the sec-
ond row (b). Obviously, dense coding is more suitable for
tooth axis detection, as the prediction results are greatly im-
proved. Finally, we also designed the rotation transforma-
tion encoding and decoding module. The results are shown
in the third row (c). Through these two modules, the tooth
axis prediction is transformed into the prediction of direc-
tional field transformation. The rotation transformation is
obtained through the feature prediction of each point, which
greatly improves the feature extraction ability of each point
in the point cloud and obtains more accurate prediction re-
sults.
Feature confidence-aware attention mechanism module.
The feature confidence-aware attention mechanism is a dy-
namic attention mechanism. This mechanism constantly
changes the weight of features in the training process. Ac-
cording to the needs of the task, it assigns different weights
to the features in different channels, which can potentially
learn the importance of different features and enhance the
learning at those points with more accurate prediction re-
sults. The results are shown in Tab. 3. By comparing the
results of rows (b) and (d), we can see that the network with
this mechanism achieves better performance.
Point-wise feature and confidence-weighted feature con-
catenation. The skipped connections concatenate the
point-wise feature and confidence-weighted feature. The



Table 4. Results of different initial direction vector setting (°).

MA DA LA BA Average
category1 19.29 18.08 18.04 17.80 18.30
category2 16.44 13.28 15.19 12.25 14.29
category31 3.31 3.43 3.22 3.79 3.44
category32 2.78 3.42 3.65 3.48 3.33

Table 5. Results of different backbone network (°).

MA DA LA BA Average
PointNet 7.75 7.17 8.74 6.96 7.66
PointConv 4.76 4.45 3.16 3.43 3.95
PointNet++ 2.78 3.42 3.65 3.48 3.33

confidence-weighted feature is obtained by the original
point-wise feature multiplied by the corresponding feature
confidence map. The feature confidence attention mecha-
nism strengthens the features with high confidence and sup-
presses some features with weak expressiveness. To avoid
losing weak feature information in learning, we concatenate
the confidence-weighted feature with the point-wise feature
to increase the weight of some more confident features but
simultaneously without losing the original point-wise fea-
ture information. The visual results of row (d) and row
(e) are consistent with the statistical results presented in the
Tab. 3.
Initial direction vector setting. To verify the effect of
the initial direction vector setting in our method, we de-
signed three experiments with different initial direction vec-
tor fields. Since our method is the point-wise prediction, the
first predefined initial direction vector field is that all points
sampled on a 3D tooth model have different direction vec-
tors. For example, we take the normal field as the initial
direction field. The second category is that each point in the
same tooth model has the same direction vector, and dif-
ferent tooth models have different initial direction vectors.
To meet this requirement, we calculate the principal direc-
tion for each tooth model by principal components analy-
sis (PCA), where the main direction was taken as the ini-
tial direction vector of all points in the corresponding tooth
model. The third category is that all points have the same
initial direction vector for all tooth models. Thus, the ini-
tial direction vector can be set to any vector. In the exper-
iment, we randomly select vectors [2, 1, 4] and [0, 0, 1] as
category31 and category32 to prove it. The visual and sta-
tistical results are presented in Tab. 4 and Fig. 6, showing
that the non-uniform initialization direction field makes the
learning of rotation transformation more difficult, and it is
very hard to learn a consistent result from disordered ini-
tial data. Thus, the unified initialization can improve the
performance of the model.
Backbone network. To verify the effectiveness of the

Figure 6. Loss curves of different initial direction vector setting.
The abscissa and ordinate represent the number of iterations dur-
ing the training period and corresponding loss.

dense encoding module based on direction field and the
feature confidence-aware attention mechanism module for
the tooth axis detection, we conducted an ablation exper-
iment that replaced the backbone network in our method
with PointNet, and PointConv [9], respectively. From the
results in the Tab. 5, we can see that our backbone network
is flexible and can achieve better performance when using
PointNet++ as the backbone network.

5. Discussion

5.1. Applications

Various applications can potentially benefit from tooth
axis prediction. In traditional dentistry, dentists measure
the tooth axes on the incisor to diagnose the occlusal con-
dition of patients based on prior knowledge, and then per-
form a series of follow-up treatments. However, it often
depends on the professional experience of a dentist. Also,
in digital dentistry, the tooth axis is more widely used since
digital dentistry can automatically measure more accurate
tooth axes for each tooth and analyze it energetically, more
information can be obtained through the tooth axes. For ex-
ample, in the applying of tooth axis, the two of the most
important applications are the detection and classification
of tooth abnormalities and the tooth arrangement with tooth
axes.
Detection and classification of abnormal tooth. This
task is to determine whether the teeth are abnormal by com-
paring the tooth axis distribution with the ideal occlusal
state. Normally, in an ideal occlusal state, the tooth axes
are evenly distributed along the arch line and symmetri-
cally distributed relative to the occlusal midline. The an-
gle between the same type of adjacent teeth is small and
the directions are close. The tooth axis from front to back
presents the characteristics of smooth changes, and the an-
gle between the corresponding upper and lower tooth axis



Figure 7. Abnormal tooth: Mesial malocclusion. This angle is
formed by the BA axis of the two upper incisors. In an ideal state,
the angle formed by the two BA is closed to parallel.

should also be kept within a reasonable angle range. If there
is a large difference in the tooth axis distribution compared
to the ideal occlusion, the abnormal situation in the tooth
can be judged accordingly. For example, if the angle of
adjacent teeth is large, there may be teeth crowding, mal-
occlusion problems, as shown in Fig. 7, where the angle of
intersection of the BA of the two incisors in the upper teeth
reaches 31.23◦. In an ideal occlusion, the two BA should
be close to parallel, so it can be judged that this case may
have mesial malocclusion. Also, if the angle of the teeth
axis between the upper and lower teeth of the front teeth
is too small, there may be the front teeth protruding, deep
overbite jaw and so on.

(a) Jaw-opening state before and after orthodontic treatment with DA and
MA

(b) Underbite state before and after orthodontic treatment with BA and
LA

Figure 8. Results before and after orthodontic treatment. The left
presents a set of ill-positioned teeth arrangements before orthodon-
tic treatment. The right presents the ideal tooth arrangement based
on the tooth axes by our method detected.

Tooth arrangement with tooth axes. Tooth arrangement
is a crucial and necessary step in orthodontic treatment
[6, 26, 27]. This task aims to obtain a ideal tooth arrange-

ment state from a set of ill-positioned teeth of a patient, as
shown in Fig. 8. In the traditional dental orthodontic pro-
cess, dentists need to comprehensively consider the over-
all occlusal state of patients, formulate treatment plans, and
then wear appliances to achieve the purpose of orthodon-
tics. Therefore, in these steps, we heavily rely on the den-
tist’s professional experience to design the orthodontic plan.
However, in digital dentistry, the deformity of teeth can be
accurately measured by calculating the tooth axis. Accord-
ing to some measurement indicators of malocclusion, the
orthodontic scheme of teeth can be made automatically to
reduce the difference between the tooth axis of ideal occlu-
sion and the tooth axis of malocclusion.

5.2. Limitations and future work

For tooth axis detection and the related applications, our
current method has certain limitations, and we believe it will
inspire and promote future works.

Figure 9. (a) and (b) are slightly incomplete tooth models. (c) is an
extremely incomplete tooth model. For (a) and (b), our method can
still get better prediction results. However, the prediction result of
(c) is not ideal since the shape has changed greatly.

Limitations. Although our method has achieved excellent
experimental results on our dataset, it still has some lim-
itations. For example, the tooth point cloud model is ex-
tremely abnormal or incomplete, which leads to the tooth
geometric information being inaccurate. For slightly in-
complete or abnormal, we can still achieve better results.
Thus, these problems are still a challenge to our method.
There are some predict failure cases shown in Fig. 9. In ad-
dition, the dense coding increases the supervision informa-
tion and improves the detection accuracy while the amount
of parameters also increases. In the process of network
training, it relatively takes more time for parameter learn-
ing and network convergence compared with the direct re-
gression method. In the future, we will explore the method
of tooth axis detection with lower resource costs and higher
accuracy.
Future work. Our network can only detect the tooth axes.
The relevant applications of tooth axes (i.e., Tooth arrange-
ment, detection and classification of abnormal tooth and
tooth redundancy analysis) are calculated separately and not



included in the network. It would still be interesting to inte-
grate the tooth axis detection and other relevant applications
in our an end-to-end pipeline.

6. Conclusion

In this work, we develop a novel automatic tooth axis
detection method. The method encodes the rotation trans-
formation of tooth point cloud model, which transforms the
tooth axes prediction into the direction field prediction rep-
resented by quaternions. Lastly, we decode the predicted
direction field to get the final tooth axes. In the network,
the confidence-aware attention mechanism is employed to
dynamically learn weights for the features of each point for
improving detection accuracy. We have evaluated our algo-
rithm both qualitatively and quantitatively, and compared it
with the related methods. Extensive experiments prove our
method that produces superior results and significantly out-
performs others. This method of accurately detecting the
tooth axis will be of great significance for digital dentistry.

References

[1] Joanneke M Plooij, Thomas JJ Maal, Piet Haers, Wil-
fred A Borstlap, Anne Marie Kuijpers-Jagtman, and Ste-
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