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Abstract

Encoder–decoder models have been widely used in
RGBD semantic segmentation, and most of them are de-
signed via a two-stream network. In general, jointly
rea-soning the color and geometric information from
RGBD is beneficial for semantic segmentation. How-
ever, most existing approaches fail to comprehensively
utilize multi-modal information in both the encoder and
decoder. In this paper, we propose a novel attention-
based dual supervised decoder for RGBD semantic seg-
mentation. In the encoder, we design a simple yet ef-
fective attention-based multi-modal fusion module to ex-
tract and fuse deeply multi-level paired complementary
information. To learn more robust deep representa-
tions and rich multi-modal information, we introduce a
dual-branch decoder to effectively leverage the correla-
tions and complementary cues of different tasks. Exten-
sive experiments on NYUDv2 and SUN-RGBD datasets
demonstrate that our method achieves superior perfor-
mance against the state-of-the-art methods.

1. Introduction

In recent years, scene understanding has received consid-
erable attention due to the wide applications in AR/VR [38],
autonomous driving [2, 53], UAVs [46], simultaneous local-
ization and mapping (SLAM) [32], Robotics [33], and other
artificial intelligence fields. As a result, semantic segmen-
tation for scene understanding becomes extremely impor-
tant. However, there still exists many challenges in RGBD
semantic segmentation caused by the complexity of the en-
vironment, the influence of inaccurate depth, and the joint
reasoning of multi-modal information.

Deep learning technique has been applied to the seman-
tic segmentation problem with great success. Though dif-
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(a) Atrous Conv. (b) Encoder-decoder for segmentation

(c) Encoder-decoder for multi-task including segmentation

(d) Dual supervised decoder for segmentation (ours)

Figure 1: Examples of typical structures for RGBD seman-
tic segmentation. The blue color and gray color indicate
the RGB and depth streams, separately. The F⃝ denotes the
combination operation.

ferent architectures are developed, the convolutional neural
networks (CNNs) are still prevalent due to their ability to
model non-linear, high-dimensional functions. Generally,
atrous/dilated convolution-based methods [3, 14, 29, 30] al-
low us to effectively enlarge the field-of-view of filters to in-
corporate multi-scale context (see Fig. 1(a)), especially for
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atrous spatial pyramid pooling (ASPP) [4]. But there ex-
ists a ‘gridding’ problem [48], and they fail to capture small
objects with accurate boundaries. Furthermore, it is com-
putationally intensive if denser output features are extracted
for this type of models.

The encoder-decoder models [36, 1, 24, 28, 45] allow for
faster computation in the encoder path and recovering sharp
object boundaries in the decoder. These models, however,
only use RGB data for semantic segmentation which cannot
achieve a satisfactory performance. Compared with color,
the depth data provide geometric cues to reduce the uncer-
tainty of the segmentation of objects in which the color is
similar to the background [17]. It is thus meaningful and
crucial to develop effective models to combine these com-
plementary modalities for segmentation. To achieve this
goal, numerous works [17, 8, 23, 21, 6, 50, 7] focus on
designing a two-stream network which processes the RGB
and geometry information in terms of depth or HHA, sepa-
rately. As shown in Fig. 1(b), the features from two modal-
ities are further fused by various mechanisms such as the
element-wise summation [17, 23], gate [8, 7], and atten-
tion [21, 44] in the encoder. Such approaches only process
the paired complementary cues in the encoder, but ignoring
the cross-modal information during decoding. Moreover,
training such a model is usually difficult to converge due to
this imbalance of the encoder and decoder.
Since other related tasks such as depth estimation could fa-
cilitate semantic segmentation, recent works [13, 26, 55,
35, 56, 58] have attempted to solve the segmentation prob-
lem via a multi-task learning framework. Fully convolu-
tional encoder-decoder networks have become the main-
stream. During the joint learning, different task-specific
decoders explore the correlations between these tasks as
shown in Fig. 1(c). Note that these methods perform the
multi-task distillation at a fixed scale (i.e. backbone fea-
tures) with specific receptive field in the decoder. However,
in fact, the influence between two tasks is different for var-
ious sizes of receptive field [47]. Furthermore, the capacity
of fully convolutional encoder-decoder, whose encoder and
decoder are simply integrated together (e.g. skip connec-
tion [55, 35, 58], multi-scale feature aggregation [56]), is
limited for such a complex task of semantic segmentation.

In this paper, we design a simple symmetric yet ef-
fective network (in Fig. 1(d)) to efficiently use the multi-
level cross-modal information for RGBD semantic segmen-
tation. Motivated by the above observations, we first pro-
pose an attention-based multi-modal fusion module to pro-
cess the multi-level paired complementary information in
a two-stream encoder. To learn cross-modal information
during decoding, we introduce a novel dual-branch decoder
in which the primary is designed for semantic segmenta-
tion supervised by another task-guided branch. Such design
enables us to incorporate multi-scale context by the ASPP

module at the end of primary-branch, which contains the
pyramid supervision for enhancing the deep representation.
This specific dual-branch decoder is capable of improving
the performance of semantic segmentation through multi-
task distillation, while facilitating the convergence of train-
ing to solve the imbalance problem of the encoder and de-
coder. We conduct experiments on the NYUDv2 and SUN-
RGBD datasets to validate the superior performance of our
method in comparison with the state-of-the-arts.

Our contributions are summarized as follows.

• We propose a novel attention-based dual supervised
decoder to utilize the complementary information
across modalities for RGBD semantic segmentation.

• We design a simple yet effective attention multi-modal
fusion module to extract and fuse deeply multi-level
paired complementary information.

• We propose a dual-branch decoder to learn more robust
deep representations and rich multi-modal information
for the improvement of semantic segmentation perfor-
mance and the efficiency of training.

• The proposed method achieves superior performance
against the state-of-the-art methods on public bench-
mark datasets.

2. Related work

In recent years, CNN-based methods have been success-
fully applied to the RGBD semantic segmentation1. In
terms of structure, these methods can be roughly divided
into the following three groups.

Atrous/dilated Convolution. Several works [3, 14, 29,
39, 49, 30] utilized the atrous/dilated convolution to incor-
porate multi-scale context for RGBD semantic segmenta-
tion. For example, Chen et al. [3] proposed a dilated convo-
lution which can enhance the receptive field while keep the
resolution of the feature map. Qi et al. [39] introduced a 3D
graph neural network (3DGNN) to model accurate context
with geometry cues provided by depth based on the dilated
convolution. Lin et al. [30] presented RefineNet, a generic
multi-path refinement network that explicitly exploits all the
information available along the down-sampling process to
enable high-resolution prediction using long-range residual
connections. However, dilated convolution can result in los-
ing the continuity of feature maps. In addition, it is only ef-
fective for some large objects and invalid for small objects,
which is not helpful to extract accurate edges.

Encoder-decoder. Many efforts [36, 1, 8, 17, 24, 42,
28, 23, 45, 57, 6, 50, 7, 44] concerning encoder-decoder

1https://github.com/Yangzhangcst/RGBD-semantic-segmentation



Figure 2: Overview of the proposed ADSD architecture. We employ a two-stream encoder and a dual-branch decoder. The
input of the network is a pair of RGB-Depth images. The feature maps of backbone encoders are fused through AMF module,
which are further used to output the results through upsampling modules in the dual-branch decoder. At the end of primary
branch, the ASPP is introduced to improve the final segmentation performance. Meanwhile, each upsampling block predicts
a side output for pyramid supervision. In addition to the semantic supervision, the secondary branch requires supervision
from normal estimation, depth estimation, or semantic segmentation task.

architectures have been devoted to RGBD semantic seg-
mentation. For instance, DeconvNet [36] used stacked de-
convolutional layers to produce high-resolution prediction
and more semantic details. SegNet [1] shared a similar
idea using indices in pooling layers to promote the recov-
ery process. To learn the optimal fusion of multi-modal
features, RDFNet [28] extended the core idea of residual
learning to RGBD semantic segmentation. Hu et al. [21]
proposed a architecture ACNet with three parallel branches
and a channel attention-based module that extracts weighted
features from RGB and depth branches. Chen et al. [6]
proposed a spatial information guided convolution network
(SGNet) which allows to integrate 2D and 3D spatial in-
formation. ESANet [44] used two ResNet-based encoders
with an attention-based fusion for incorporating depth in-
formation, and a decoder utilizing a learned upsampling.
However, these methods only perform the multi-modal in-
formation in the encoder, but ignore the cross-modal cues
in the decoder. Moreover, when a large number of encoder
parameters are passed to the decoder, it is difficult to train
such a model to converge quickly.

Multi-task Learning. Numerous works [13, 26, 52, 55,
35, 56, 58, 47] have also explored the idea of combining
networks for complementary tasks to improve learning effi-
ciency and generalization across different tasks. For exam-

ple, Eigen et al. [13] proposed a single multi-scale network
(MSCNN) to address three different computer vision tasks.
Zhang et al. [55] proposed a joint task-recursive learning
(TRL) framework to refine the results of both semantic seg-
mentation and monocular depth estimation through serial-
ized task-level interactions. Zhang et al. [56] proposed a
pattern affinitive propagation (PAP) method to utilize the
matched affinity information across tasks. Zhou et al. [58]
proposed intra-task and inter-task pattern-structure diffu-
sion (PSD) to learn long-distance propagation and transfer
cross-task structures. Different from the previous works,
we incorporate multi-modal information in the both encoder
and decoder through attention-based dual supervised de-
coder to provide a unified pixel-wise scene understanding.

3. Method

In this section, we describe the proposed attention-based
dual supervised decoder (ADSD) in detail. First, we briefly
describe the overall architecture. Then, we discuss multi-
level fusion strategy and attention block used in attention-
based fusion module for multi-modal features in the en-
coder. Moreover, we give a detailed depiction of our dual-
branch decoder which significantly improves the perfor-
mance of semantic segmentation. Finally, we introduce the
objective function for optimizing the network.



3.1. The Network Architecture

The entire network architecture of our ADSD is pre-
sented in Fig. 2. For clear illustration, we use blocks with
different colors to indicate different layers. Note that each
convolution layer in our network is followed by a batch nor-
malization layer [22] before the activated function of recti-
fied linear unit (ReLU), and it is omitted in the figure for
simplification. The whole network can be divided into a
two-stream encoder and a dual-branch decoder. In the de-
coder, the primary branch with pyramid supervision is de-
signed for semantic segmentation, and the secondary branch
requires supervision from the other task such as normal es-
timation, depth estimation, or semantic segmentation.

In the encoder part, we design two independent branches
to extract features from RGB and depth images separately.
In these two branches, we simply choose ResNet-50 [18]
as the backbone to extract multi-scale hierarchical fea-
ture maps from inputs. The output features from RGB
and depth branch are combined to produce fusion features
(Fuse0∼Fuse4) through the attention-based multi-modal
fusion (AMF) module, where the details are given in Sec-
tion 3.2. It is worth noting that there is no connection be-
tween fusion features at different scales.

In the decoder part, we feed the above fusion features
into each task-branch to decode pixel-level information.
To produce high resolution predictions, we decode these
convolutional features and then combine with the same
scale fused features by upsampling blocks to produce task-
specific features as shown in Section 3.3. Specially, at the
end of the primary branch, the ASPP is introduced to im-
prove the final segmentation performance. Meanwhile, each
upsampling block predicts a side output for pyramid super-
vision, which are introduced in Section 3.4.

3.2. Encoder

The conventional fusion branch [21, 45] integrates multi-
scale features by coarse-to-fine CNNs and general attention
mechanisms. Such approaches are computationally expen-
sive leading to information redundancy easily. Considering
the complementarity between paired RGB and depth cues
in multiple layers, we design a simple yet effective AMF
module to fully extract and fuse multi-level paired comple-
mentary information. As illustrated in the middle part of
Fig. 2, we show the main process of AMF while leveraging
the high performance of the attention block. In our imple-
mentation, our AMF includes all five scales (i.e.1/2, 1/4,
1/8, 1/16, 1/32) of the backbone network.

To improve the performance of semantic segmentation,
the channel attention [54] allows the network to concentrate
on more useful channels and flattens the distribution of in-
formation among channels with the effective utilization of
complementary features. The architecture of the channel
attention is illustrated in Fig. 3(a). Assuming an input fea-

(a) Channel attention

(b) Spatial attention

Figure 3: Detailed structure of channel attention and spatial
attention.

ture map U = [u1, u2, ..., uC ] ∈ RC×H×W that passes
through channel attention block AC(·) to generate output
feature map Vac ∈ RC×H×W . Here, H and W are the
height and width respectively, with C being the number of
channels. Channel attention is firstly performed by a global
average pooling to produce a vector Z ∈ RC×1×1 with its
t-th element

Zt =
1

H ×W

H∑
i

W∑
j

ut(i, j) . (1)

Then Z is transformed to Ẑ = W1×1(δ(W1×1(Z))), with
W1×1 being the weight of a 1×1 convolutional layer and
the ReLU operator δ(·). A sigmoid σ(Ẑ) is applied to acti-
vate the convolution result, constraining the value of weight
vector to the interval [0,1]. Finally, we perform an element-
wise multiplication, and the result Vac can be expressed as:

Vac = AC(U) = [σ(Ẑ1)u1, σ(Ẑ2)u2, ..., σ(ẐC)uC ] (2)

In contrast to channel attention, spatial attention [41, 20]
has fewer parameters with a simpler structure. The archi-
tecture of the spatial attention is illustrated in Fig. 3(b).
We consider an alternative slicing of an input tensor U =
[u1,1, ..., ui,j , ..., uH,W ] that passes through the spatial at-
tention block AS(·) to generate output Vsc, where ui,j ∈
RC×1×1 corresponding to the spatial location (i, j). The
spatial attention is firstly performed by a 1×1 convolution
to generate a projection tensor Q ∈ RH×W . Each Qi,j

of the projection describes the linearly combined represen-
tation of a spatial location (i, j). This projection is then
performed on a sigmoid σ(·) to rescale activations to [0,1].



And the result Vsc can be expressed as

Vsc = AS(U) = [σ(Q1,1)u
1,1, σ(Q1,2)u

1,2, ...,

σ(Qi,j)u
i,j , ..., σ(QH,W )uH,W ] .

(3)

Specifically, this operation provides more importance to rel-
evant spatial locations and ignores irrelevant ones.

3.3. Decoder

Benefit from the exploration of correlation between dif-
ferent tasks in multi-task learning [52, 56, 58], we propose
a novel dual-branch decoder to learn more robust deep rep-
resentations and multi-modal information. It is well-known
that low-level layers of the CNNs usually have more po-
sitional information, while high-level layers contain more
semantic cues. Both the positional and semantic cues play
a key role in semantic segmentation. Inspired by upsam-
pling strategy in [21] and skip connection like [18], we use
transposed convolutional layers to upsample the features at
different pyramid scales, as illustrated in Fig. 4.

In particular, the fused feature map V ′
K of AMF is firstly

calculated by a 1×1 convolution W1×1 to project the fea-
ture map W1×1(V

′
K) with lower channel, allowing the de-

coder to have a lower memory consumption. And it passes
through upsampling block BU (·) to generate the feature
map SK of K-th slide output.

SK = BU [W1×1(V
′
K)] . (4)

Then SK is used to produce the next slide output as follows:

SK−1 = SK +⃝BU [W1×1(V
′
K−1)] , (5)

where +⃝ is element-wise summation. Repeatedly, we con-
tinue to upscale feature maps and perform the above decod-
ing process to produce a higher scale of feature maps. The
scale factor of each upsampling block is set to 2. All slide
outputs are employed for pyramid supervision which will
be introduced in Section 3.4. In particular, the ASPP is in-
troduced to incorporate multi-scale context at the end of this
branch. In our experiments, the dilated convolution rate is
set as 12, 24, and 36 in the ASPP.

In secondary branch of decoder, we repeat the operations
on the primary branch to upsample the fused feature map
V ′
a. The final upsampling feature map S0 is directly used

to generate the predict which can be surface normal, esti-
mated depth, or segmentation result. In practice, we pro-
pose a more efficient training method that takes advantage
of multi-modal feature sharing during training. Inspired
by the training strategy in [15], we train the model for a
depth-guided branch decoder at the pre-training stage and
the semantic-guided branch decoder at the fine-tuning stage.

Figure 4: Detailed diagram of the proposed dual-branch
decoder. The primary branch computes multi-scale fused
features through 1×1 convolutional layers and upsampling
blocks. The final features is refined by the ASPP to predict
segmentation result, which is supervised via the output gen-
erated by normal-/depth-/semantic-guided branch.

3.4. Objective Function

Pyramid Supervision. The pyramid supervised training
scheme alleviates the gradient disappearance problem by
introducing supervised learning at different levels [23]. As
shown in Fig. 4, the primary-branch of decoder computes
K slide outputs by upsampling blocks with different spatial
resolutions. In our implementation, the K is set to 4, and
the slide outputs are defined as Scale 1 to 4. The resolution
scales are 1/2, 1/4, 1/8, and 1/16, and the final result is a
full resolution. We calculate the score map of each output
through a 1×1 convolution, and then feed it into a softmax
layer and cross-entropy function to build the loss function
LPk

(k ∈ [1,K]).
Loss Function. For semantic segmentation, most methods
utilize cross-entropy to measure the difference between the
prediction and ground-truth. However, for existing datasets,
the distribution of semantic labels is extremely imbalanced.
This will bias the learning towards the dominant samples
and lead to low accuracy in minority categories. To alleviate
the data imbalance issues, we re-weight the training loss of
each class in the cross-entropy function using the median
frequency setting proposed in [13, 23]. That is, we weight
each pixel by a factor of αc = pm/pc, where c denotes
the ground-truth category. pc is the pixel probability of that
category, pm is the median of all the probabilities of these
categories.

For different task supervision, we use task-guided loss
functions defined as LT which can be normal LN , depth LD



or semantic LS . Following the depth estimation algorithms,
we use berHu loss [27] for the depth supervision:

LD =
∑
i

{
|di −Di|, |di −Di| ⩽ β
(di−Di)

2+β2

2β , |di −Di| > β
, (6)

where di is the predicted depth for pixel i, and Di is the
ground-truth. β = 1

5max(|di −Di|). Such a loss function
can provide more obvious gradients at the locations where
the depth difference is low, and thus can help to better train
the network. As for surface normal, we also use the berHu
loss [27]. Together with the above pyramid supervision loss
LPk

for semantic prediction at intermediate layers, the total
loss L can be defined as:

L = LS + LT +

K∑
k=1

LPk
. (7)

Finally, a fully end-to-end optimization is computed by us-
ing gradient back-propagation.

4. Experiments

To evaluate our proposed method, we conduct exten-
sive experiments on NYUDv2 dataset [34] and SUN-RGBD
dataset [43]. We start with the introduction of experimen-
tal setup such as implementation details, datasets, and eval-
uation metrics. We then conduct ablation experiments to
determine whether our network improve performance. Fi-
nally, we compare our method with the existing methods for
semantic segmentation on these datasets.

4.1. Implementation Details

We implement our method using the publicly avail-
able Pytorch. For the optimizer, we use Adam [25] with
(β1, β2) = (0.9, 0.999). For NYUDv2 dataset, we train
the model for 600 epochs and fine-tune 50 epochs with a
learning rate of 0.0002 and 0.00002, respectively. For SUN-
RGBD dataset, we train the model for 300 epochs and fine-
tune it for 30 epochs with the same learning rate. We adopt
the step learning rate policy whose learning rate is updated
after each 300 epochs. Specifically, all experiments are
trained with batch size 8 on a single NVIDIA Tesla V100
GPU. To avoid overfitting, similarly with [7, 12, 30], we
employ general data augmentation strategies, including ran-
dom scaling in the range of [0.8, 1.4], random horizontal
flipping, and random cropping. In particular, we resized the
inputs to a resolution of 480×640 for the above datasets.
During the inference, we only obtain the prediction results
from the primary decoder for semantic segmentation.

4.2. Datasets and Metrics

We use the NYUDv2 dataset [34] for the main evaluation
of our method and further use the SUN-RGBD dataset [43]

Table 1: Performance analysis of different task-guided
branches in the secondary decoder on NYUDv2 dataset.
During the inference, we only obtain the prediction results
from the primary decoder for semantic segmentation.

Decoder PixAcc. mAcc. mIoU

Semantic-guided 75.9 61.6 49.0

Depth-guided 76.8 64.6 51.2

Normal-guided 77.3 64.7 51.5

Depth-guided+ Normal-guided 76.8 64.0 51.0

Table 2: Performance analysis for the location of ASPP
module (at the end of different Fuse modules) in the pri-
mary decoder on NYUDv2 dataset.

ASPP Location PixAcc. mAcc. mIoU

with Fuse2 76.2 63.5 50.1

with Fuse1 76.4 64.2 50.4

with Fuse0 (Fig. 4) 77.3 64.7 51.5

for extensive comparison with the state-of-the-arts. The
NYUDv2 dataset consists of 1449 RGBD images showing
interior scenes. We use the segmentation labels provided
in [16], in which all labels are mapped to 40 classes. We use
the standard training/test split with 795 and 654 images, re-
spectively. The SUN-RGBD contains 10335 RGBD images
labeled with 37 classes. We use the official training set with
5285 images to train our network, and the official testing set
with 5050 images for evaluation. Compared with NYUDv2,
SUN-RGBD has more complex scene and depth conditions,
which are probably more suitable to measure the generality
of our method. For the evaluation of semantic segmentation
results, we follow the recent works [7, 12, 30, 56, 58] and
use three common metrics for evaluation, including pixel
accuracy (PixAcc.), mean accuracy (mAcc.), and mean in-
tersection over union (mIoU).

4.3. Ablation study

To discover the functionality of each component in our
method, we conduct an ablation study on the NYUDv2
dataset. Taking the network consisting of a two-stream en-
coder and a simple decoder (see Fig. 1(b)) as a baseline. In
the encoder, the combination operation of multi-modal fea-
tures is the element-wise summation (like FuseNet [17]).
We evaluate the effectiveness of our dual-branch decoder
by choosing different task-guided branches and changing
the location of AASP module. The results can be found
in Table 1 and Table 2. For task-guided branches of the



Figure 5: The visual results of ablation analysis on NYUDv2 dataset. From left to right, we show the inputs, ground-truths,
the results of baseline, with AMF, with AMF and dual-branch decoder, and our method, respectively.

Table 3: Ablation study of the proposed method on
NYUDv2 dataset. The Dual-decoder means dual-branch
decoder. The FT means fine-tuning stage in our training
method.

Method PixAcc. mAcc. mIoU

Baseline (Fig. 1(b))+LS 76.4 61.9 49.3

+AFF [10]+LS 77.1 63.9 50.9

+SA-Gate [7]+LS 73.3 58.3 45.4

+AMF(SA [41])+LS 75.9 61.1 48.2

+AMF(CA [54])+LS 77.2 63.3 51.0

+AMF(BAM [37])+LS 76.7 64.5 50.8

+AMF(CA)+Dual-decoder+L 77.3 64.7 51.5

+AMF(CA)+Dual-decoder+FT+L 77.5 65.3 52.5

secondary decoder, the normal-guided performs better than
the depth-guided, semantic-guided and the combination of
depth-guided and semantic-guided. For the location of
ASPP (at the end of different Fuse modules) in the primary
decoder, the ASPP with Fuse0 (in Fig. 4) performs better
than the ASPP with Fuse1 and Fuse2 modules.

The results of ablation analysis are shown in Table 3.
For the multi-model feature fusion solutions (Fig. 3), our
AMF with channel attention (CA) performs better than the
element-wise summation (i.e. baseline), separation-and-
aggregation gate [7], attentional feature fusion (AFF) [10],

bottleneck attention module (BAM) [37], and spatial at-
tention (SA). We owe this to the representation of chan-
nel attention that ignores less important channels of fused
features and emphasizes the important ones. The re-
sults demonstrate that our AMF can significantly improve
the performance of semantic segmentation. This observa-
tion also clarifies that incorporating depth information can
greatly improve the performance, which reveals the effec-
tiveness of reasoning color and geometry information to-
gether. By introducing the dual-branch decoder, the perfor-
mance is further improved. The final fine-tuning (FT) stage
of training strategy (see details in Section 3.3) for our model
gives another rise in the performance.

We show qualitative results of our method on NYUDv2
dataset for semantic segmentation in Fig. 5. For compari-
son, we also include the visual results of baseline, with the
proposed AMF, with the AMF and dual-branch decoder,
with the AMF, dual-branch decoder and fine-tuning (FT)
stage (our method). The results show that the geometry in-
formation is well distilled by our AMF, which can distin-
guish the objects with similar color. Moreover, when in-
corporating the dual-branch decoder, our network can re-
cover more context information and more accurate object
masks. As mentioned before, we argue that the training is
going faster and more robust along with our dual-branch de-
coder. This decoder can also deal with the imbalance prob-
lem caused by the phenomenon that the encoder uses multi-
modal information, while the decoder dose not. To verify
this statement, we report the loss values of our method and



Table 4: Comparison with state-of-the-arts on each category of the NYUDv2 dataset. Percentage (%) of IoUs are shown for
evaluation, with best performance marked in bold.
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DeepLab [3] 67.9 83.0 53.1 66.8 57.8 57.8 43.4 19.4 45.5 41.5 49.3 58.3 47.8 15.5 7.3 32.9 34.3 40.2 23.7 15.0

FCN [42] 69.9 79.4 50.3 66.0 47.5 53.2 32.8 22.1 39.0 36.1 50.5 54.2 45.8 11.9 8.6 32.5 31.0 37.5 22.4 13.6

Mutex Constraints [11] 65.6 79.2 51.9 66.7 41.0 55.7 36.5 20.3 33.2 32.6 44.6 53.6 49.1 10.8 9.1 47.6 27.6 42.5 30.2 32.7

BI (3000) [14] 61.7 68.1 45.2 50.6 38.9 40.3 26.2 20.9 36.0 34.4 40.8 31.6 48.3 9.3 7.9 30.8 22.9 19.5 13.9 16.1

LSD-GF [8] 78.5 87.1 56.6 70.1 65.2 63.9 46.9 35.9 47.1 48.9 54.3 66.3 51.7 20.6 13.7 49.8 43.2 50.4 48.5 32.2

STD2P[19] 72.7 85.7 55.4 73.6 58.5 60.1 42.7 30.2 42.1 41.9 52.9 59.7 46.7 13.5 9.4 40.7 44.1 42.0 34.5 35.6

RDFNet [28] 79.7 87.0 60.9 73.4 64.6 65.4 50.7 39.9 49.6 44.9 61.2 67.1 63.9 28.6 14.2 59.7 49.0 49.9 54.3 39.4
DeepLab-LFOV [4] 70.2 85.2 55.3 68.9 60.5 59.8 44.5 25.4 47.8 42.6 47.9 57.7 52.4 20.7 9.1 36.0 36.9 41.4 32.5 16.0

DeepLabV3 [5] 78.8 83.4 56.7 61.9 57.0 59.4 41.3 39.9 44.5 45.1 60.3 56.9 54.9 22.9 14.2 52.4 40.6 40.1 31.3 30.8

DCN [9] 77.0 83.0 56.4 64.7 57.0 60.8 39.9 35.5 44.6 44.7 59.3 55.8 59.9 20.3 12.3 55.9 51.2 39.8 36.2 34.2

VCD [51] 78.2 83.7 57.4 66.1 57.2 60.9 40.1 39.5 45.1 46.8 59.4 58.1 56.6 21.9 16.0 55.2 47.0 42.7 36.2 34.3

ADSD (Ours) 82.3 87.7 66.5 78.2 66.1 68.3 48.0 44.4 48.8 47.1 63.9 71.6 58.4 28.5 19.7 66.9 60.0 51.7 58.4 33.7
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DeepLab [3] 20.2 55.1 22.1 30.6 49.4 21.8 32.1 6.4 5.8 14.8 55.3 37.7 57.9 47.7 40.0 44.7 6.6 18.0 12.9 33.8

FCN [42] 18.3 59.1 27.3 27.0 41.9 15.9 26.1 14.1 6.5 12.9 57.6 30.1 61.3 44.8 32.1 39.2 4.8 15.2 7.7 30.0

Mutex Constraints [11] 12.6 56.7 8.9 21.6 19.2 28.0 28.6 22.9 1.6 1.0 9.6 30.6 48.4 41.8 28.1 27.6 0 9.8 7.6 24.5

BI (3000) [14] 13.7 42.5 21.3 16.6 30.9 14.9 23.3 17.8 3.3 9.9 44.7 15.8 53.8 32.1 22.8 19.0 0.1 12.3 5.3 23.2

LSD-GF [8] 24.7 62.0 34.2 45.3 53.4 27.7 42.6 23.9 11.2 58.8 53.2 54.1 80.4 59.2 45.5 52.6 15.9 12.7 16.4 29.3

STD2P[19] 22.2 55.9 29.8 41.7 52.5 21.1 34.4 15.5 7.8 29.2 60.7 42.2 62.7 47.4 38.6 28.5 7.3 18.8 5.1 31.4

RDFNet [28] 26.9 69.1 35.0 58.9 63.8 34.1 41.6 38.5 11.6 54.0 80.0 45.3 65.7 62.1 47.1 57.3 19.1 30.7 20.6 39.0

DeepLab-LFOV [4] 17.8 58.4 20.5 45.1 48.0 21.0 41.5 9.4 8.0 14.3 67.0 41.8 69.7 46.8 40.1 45.1 2.1 20.7 12.4 33.5

DeepLabV3 [5] 20.7 69.8 30.3 42.8 52.5 27.7 33.2 24.5 13.6 68.9 73.3 37.7 65.1 51.3 39.2 36.4 12.5 27.7 15.2 36.6

DCN [9] 22.3 63.3 26.9 52.8 58.7 29.9 39.8 40.4 14.9 65.3 76.2 39.9 67.1 50.3 38.7 40.1 7.3 26.7 16.5 36.9

VCD [51] 22.2 67.0 30.0 50.9 57.0 30.7 36.7 40.6 15.6 72.6 77.5 41.2 69.1 51.8 43.0 39.4 9.5 27.7 18.3 37.0

ADSD (Ours) 24.0 76.0 32.9 57.8 70.8 28.6 40.3 48.2 12.1 78.3 67.3 57.1 77.9 63.2 46.5 62.2 9.6 33.4 22.2 39.6

the methods without a dual-branch decoder during training.
As shown in Fig. 6, we observe that the multi-loss L of
our method is rapidly reduced only after 150 epochs from
the beginning. However, the loss of the methods without a
dual-branch decoder waves violently due to the imbalance
of encoder and decoder. We also find that the dual-branch
decoder can facilitate the convergence of training, which is
capable of reducing the adverse effects on this imbalance.

To evaluate the performance of our model on the imbal-
anced distributed data, we also show the results on each cat-
egory, as shown in Table 4. Clearly, our method performs
better than other methods in most categories. Specially,
our method still achieves a relatively higher IoU on some
“hard” categories such as bed, curtain, dresser, shower, and
board, etc. Following previous methods [43, 31, 40, 8],
we also report the mACC. of our method on SUN-RGBD
dataset. As shown in Table 5, we achieve 62.1% mean ac-
curacy with 4.1% improvement over the recent method [8].
Specifically, we yield performance gains over 26 classes,

which demonstrates the effectiveness of the proposed ap-
proach. We owe the robustness among almost all the cat-
egories to the effectively learned multi-modal cues in the
encoder, and the cross-modal information in the decoder.
Note that our method achieves unsatisfactory performance
on some categories (e.g. blinds, person, bag) of NYUDv2
dataset, which may due to our joint reasoning on color and
geometric cues, as the depth may vary greatly compared
with the corresponding color appearance in different scenes.

4.4. Compared with State-of-the-arts

NYUDv2. The comparison results on the NYUDv2 dataset
with 40-category are shown in Table 6. We use ResNet-
50 and single-scale inference strategy for a fair comparison.
Following our training method mentioned in Section 3.3,
we use a normal-guided branch decoder at the pre-training
stage and the semantic-guided branch decoder at the fine-
tuning stage. Our method can still achieve 77.5% PixAcc.,
65.3% mAcc., and 52.5% mIoU, which is better than the



Table 5: Comparison with state-of-the-arts on each category of the SUN-RGBD dataset. Percentage (%) of IoUs are shown
for evaluation, with best performance marked in bold.
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Song et al. [43] 36.4 45.8 15.4 23.3 19.9 11.6 19.3 6.0 7.9 12.8 3.6 5.2 2.2 7.0 1.7 4.4 5.4 3.1 5.6

Liu et al. [31] 37.8 48.3 17.2 23.6 20.8 12.1 20.9 6.8 9.0 13.1 4.4 6.2 2.4 6.8 1.0 7.8 4.8 3.2 6.4

Ren et al. [40] 43.2 78.6 26.2 42.5 33.2 40.6 34.3 33.2 43.6 23.1 57.2 31.8 42.3 12.1 18.4 59.1 31.4 49.5 24.8

DeconvNet [8] 90.4 92.7 57.7 75.9 83.0 61.2 64.2 43.0 64.7 42.3 59.8 42.5 48.3 29.5 17.5 64.9 54.0 61.7 51.3

LSD-GF [8] 91.9 94.7 61.6 82.2 87.5 62.8 68.3 47.9 68.0 48.4 69.1 49.4 51.3 35.0 24.0 68.7 60.5 66.5 57.6

ADSD (Ours) 92.1 96.0 70.9 84.0 86.7 74.5 72.5 58.5 70.4 51.7 71.8 57.0 54.3 29.6 21.6 78.1 67.2 64.9 64.0
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Song et al. [43] 0 1.4 35.8 6.1 9.5 0.7 1.4 0.2 0.0 0.6 7.6 0.7 1.7 12.0 15.2 0.9 1.1 0.6 9.0

Liu et al. [31] 0 1.6 49.2 8.7 10.1 0.6 1.4 0.2 0.0 0.8 8.6 0.8 1.8 14.9 16.8 1.2 1.1 1.3 10.1

Ren et al. [40] 5.6 27.0 84.5 35.7 24.2 36.5 26.8 19.2 9.0 11.7 51.4 35.7 25.0 64.1 53.0 44.2 47.0 18.6 36.3

DeconvNet [8] 0.4 39.8 78.3 55.0 43.9 59.6 29.4 45.2 1.5 35.9 47.7 45.3 36.0 77.6 66.6 51.2 66.1 35.8 51.9

LSD-GF [8] 0 44.7 88.8 61.5 51.4 71.7 37.3 51.4 2.9 46.0 54.2 49.1 44.6 82.2 74.2 64.7 77.0 47.6 58.0

ADSD (Ours) 0 55.2 87.6 59.6 66.9 68.6 43.4 49.8 29.5 45.9 64.6 62.6 46.8 88.1 76.4 62.8 84.2 42.6 62.1

Figure 6: Statistics of loss values during a training proce-
dure on NYUDv2 dataset. Our dual-branch decoder can re-
duce the adverse effects on imbalance between encoder and
decoder to facilitate the convergence of training.

state-of-the-art methods. Specifically, we can find that uti-
lizing depth and normal as extra supervision could make
network more robust than general RGBD methods that take
both RGB and depth as inputs. Besides, it can be observed
that the methods try to use atrous/dilated convolution or gate
fusion to extract complementary feature, which are more
implicit than our model in selecting valid feature from com-
plementary information.

SUN-RGBD. We also compare our method with the state-
of-the-arts on the large-scale SUN-RGBD dataset. Due

to the lacking of surface normal ground-truths, we use a
depth-guided branch decoder at the pre-training stage and
the semantic-guided branch decoder at the fine-tuning stage.
As summarized in Table 6, our ADSD achieves 81.8% Pix-
Acc., 62.1% mAcc., and 49.6% mIoU, which is the best
results on mAcc. in comparison with the pervious meth-
ods. Moreover, our method obtains the superior perfor-
mance than the approaches based on atrous/dilated convo-
lution and encoder-decoder network, suggesting its superi-
ority and high performance for RGBD semantic segmenta-
tion. We can observe that our proposed ADSD is slightly
weaker than multi-task learning based methods such as
PAP [56] and PSD [58] on both PixAcc. and mIoU metrics.
The main reason is that we perform the dual-supervised de-
coder with a depth-guided branch at the pre-training stage
on SUN-RGBD dataset. Note that there are many low-
quality depth maps in SUN-RGBD dataset caused by the
capture device [43, 28], which may affect the auxiliary util-
ity from the depth. More details of qualitative results are
shown in the supplementary material.

5. Conclusions

In this paper, we have proposed a novel encoder-decoder
framework for RGBD semantic segmentation, which can
take full advantage of the complementary information
across modalities. The color and depth data were jointly
reasoned by forming a two-stream encoder. The multi-level
paired complementary cues can be processed by our pro-



Table 6: Comparison with state-of-the-arts on NYUDv2 test set in 40-class and SUN-RGBD test set in 37-class. Percentage
(%) of PixAcc., mAcc., and mIoU are shown for evaluation. In category, the ‘AC’, ‘ED’, and ‘MT’ denote atrous/dilated
convolution, encoder-decoder, and encoder-decoder for multi-task, respectively. In scale, the ‘S’, and ‘M’ denote single-scale
inference strategy and multi-scale inference strategy, respectively.

Method Category Data Backbone Scale
NYUDv2 (40-class) SUN-RGBD (37-class)

PixAcc. mAcc. mIoU PixAcc. mAcc. mIoU

DeepLab [3] AC RGBD VGG-16 M 68.7 46.9 36.8 – – –

BI (3000) [14] AC RGBD VGG-16 S 58.9 39.3 27.7 – – –

CFN[29] AC RGBD VGG-16 M – – 41.7 – – 42.5

3DGNN [39] AC RGBD VGG-16 M – 55.7 43.1 – 54.6 42.3

DeepLab-LFOV [4] AC RGBD VGG-16 M 70.3 49.6 39.4 71.9 42.2 32.1

D-CNN [49] AC RGBD VGG-16 S – 56.3 43.9 – 53.5 42.0

RefineNet [30] AC RGB ResNet-152 M 74.4 59.6 47.6 81.1 57.7 47.0

DeconvNet [36] ED RGB VGG-16 S – – – 66.1 32.3 22.6

FCN [42] ED RGBD VGG-16 S 65.4 46.1 34.0 68.2 38.4 27.4

SegNet [1] ED RGB VGG-16 S – – – 72.6 44.8 31.8

B-SegNet [24] ED RGB VGG-16 S 68.0 45.8 32.4 71.2 45.9 30.7

FuseNet [17] ED RGBD VGG-16 S – – – 76.3 48.3 37.3

LSD-GF [8] ED RGBD VGG-16 S 71.9 60.7 45.9 – 58.0 –

RDFNet-152 [28] ED RGB ResNet-152 M 76.0 62.8 50.1 81.5 60.1 47.7

RedNet [23] ED RGBD ResNet-50 S – 62.6 47.2 81.3 60.3 47.8

ACNet [21] ED RGBD ResNet-50 S – 63.1 48.3 – 60.3 48.1

CANet [57] ED RGBD ResNet-101 S 76.6 63.8 51.2 82.5 60.5 49.3

SGNet [6] ED RGBD ResNet-101 S 76.4 62.7 50.3 81.0 59.6 47.1

Malleable 2.5D [50] ED RGBD ResNet-101 M 76.9 – 50.9 – – –

SA-Gate [7] ED RGBD ResNet-101 M – – 52.4 – – 49.4

ESANet [44] ED RGBD ResNet-50 S – – 50.5 – – 48.3

MS CNN [13] MT RGB VGG-16 S 65.6 45.1 34.1 – – –

PU-Loop [26] MT RGB ResNet-50 S 72.1 – 44.5 80.3 – 45.1

TRL [55] MT RGB ResNet-50 S 76.2 56.3 46.4 83.6 58.2 49.6

PAD-Net [52] MT RGB ResNet-50 S 75.2 62.3 50.2 – – –

RTJ-AA [35] MT RGB MobileNetV2 S – – 42.0 – – –

PAP [56] MT RGB ResNet-50 S 76.2 62.5 50.4 83.8 58.4 50.5

PSD [58] MT RGB ResNet-50 S 77.0 58.6 51.0 84.0 57.3 50.6
MTI-Net [47] MT RGB HRNet48-V2 S 75.3 62.9 49.0 – – –

ADSD (Ours) ED RGBD ResNet-50 S 77.5 65.3 52.5 81.8 62.1 49.6

posed AMF in the encoder. We then introduced a dual-
branch decoder to effectively leverage the correlation and
complementation of different tasks. In the decoder, the pri-
mary branch was used to incorporate multi-scale context by
the ASPP with pyramid supervision. In addition, it was
further supervised by another task-branch like normal es-
timation to improve the performance of segmentation and
training convergence speed. Experiments on NYUDv2 and
SUN-RGBD datasets demonstrated the superiority of our
method compared with the previous approaches on RGBD
semantic segmentation. In the future, we will generalize our

method on more vision tasks and improve its efficiency.
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