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Abstract

Mesh inpainting aims to fill the holes or missing re-
gions from observed incomplete meshes and keep con-
sistent with prior knowledge. Inspired by the success
of low rank in describing similarity, we formulate the
mesh inpainting problem as the low rank matrix recov-
ery problem and present a patch-based mesh inpainting
algorithm. Normal patch covariance is adapted to de-
scribe the similarity between surface patches. By ana-
lyzing the similarity of patches, the most similar patches
are packed into a matrix with low rank structure. An
iterative diffusion strategy is first designed to recover the
patch vertex normals gradually. Then, the normals are
refined by low rank approximation to keep the overall
consistency and vertex positions are finally updated. We
conduct several experiments in different 3D models to
verify the proposed approach. Compared with existing
algorithms, our experimental results demonstrate the
superiority of our approach both visually and quantita-
tively in recovering the mesh with self-similarity patterns.

1. Introduction

With the development of 3D data acquisition and digi-
talization technologies, 3D meshes can be easily obtained.
However, the obtained 3D meshes are often contaminated
with missing or damaged parts introduced in scanning and
reconstruction processes. Mesh inpainting is always needed
to improve the mesh quality for further applications. The
problem can be viewed as how to fill the holes or missing
areas from the observed incomplete meshes while keeping
the recovered area consistent with prior knowledge.

Various methods have been proposed to solve this prob-
lem. Most of the existing methods heuristically address the

problem by using geometric constraints from the surround-
ing geometry, which ensures that the restored patches blend
naturally with their neighboring patches. They can success-
fully repair smooth surfaces but always fail for surfaces with
geometric details, especially for models with repeated tex-
tures. The primary issue is that these methods utilize only the
local geometric information rather than non-local patches.
Non-local methods, such as example-based methods [22] or
context-based methods [17, 34] attempt to recover the shape
by importing patches from similar regions. These methods
usually cut similar patches, align with hole boundaries and
paste them onto the hole regions, which are generally com-
plex. Moreover, it may produce unsatisfactory results near
boundaries.

In this paper, we present a patch-based inpainting ap-
proach which takes advantage of the self-similarity of mod-
els to synthesize the missing regions and restore geometric
details, especially for repeated textures of the models. The
problem of mesh inpainting here can be described as: given
an incomplete mesh with holes, we try to restore the con-
nectivities and geometric details of missing regions which
blend naturally with surrounding surfaces. The main chal-
lenges are how to describe the similarity of geometric details
especially for patches with partially missing areas and how
to utilize the geometric details to fill these areas naturally,
especially for meshes with irregular non-grid structure.

The low rank prior has been extensively studied in im-
age processing, such as denoising [39], inpainting [14] and
reconstruction [28]. The highly correlated similar image
patches are explored and a matrix with low rank structure
can be constructed by reshaping each patch as a column
vector. Hence, the image problems can be turned into low
rank matrix approximation problems.

Recently, low rank approaches have also been adapted
to geometry filtering task [23, 29] and work well for ge-
ometry details preservation. Essentially, geometry patches
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also have correlated properties, especially for patches with
similarity. Hence, in our work, we take advantage of these
properties and propose a patch-based mesh inpainting ap-
proach. We first construct the connectivities of the hole areas
using the existing method and develop a similarity descrip-
tor for patches with partially missing areas in the form of
the vertex normals. By analyzing the similarity of patches,
we pack the most similar patches in many similar normal
patch group matrices and recover the missing data by low
rank matrix completion. An iterative diffusion strategy is
designed to gradually recover the patch vertex normals and
obtained normals are further refined by low rank recovery.
The vertices are finally updated from the obtained vertex
normals and initial positions.

The rest of the paper is organized as follows. Section 2
briefly introduces the previous work related to our approach.
The algorithm details are given in Section 3. Section 4 shows
the experimental results and Section 5 concludes the paper.

2. Related work

There are a large number of algorithms for mesh repair in
the literature. In this section, we briefly review the previous
methods that are relevant to our work and simply introduce
the recent progress in low rank based methods in image and
geometry processing.

2.1. Mesh inpainting

Various methods have been proposed for mesh inpainting
which may be named hole filling, mesh completion and mesh
repair. Reference [3] surveys existing algorithms of mesh
repair for different applications.

One category of methods is filling the missing areas by
interpolating or triangulating under the boundary constraints.
Polynomial functions [2, 24], B-spline surfaces [36], radial
basis functions [6], curvature functions [8, 32], weight-based
methods [45] or advanced front methods [4] are commonly
used for interpolating. For triangulation, an improvement
step always needs to make the filled region smooth and co-
herent with boundary areas [25]. All these methods always
fill the missing areas with smooth surfaces and lose geo-
metric details. To recover the geometric features, different
geometry constraints are used in local geometry inpainting
methods, such as feature lines [5, 16, 25, 43], distance func-
tions [11, 35] and sparsity constraints [44]. The method
in [16] proposes a semi-automatic approach by providing
four points as a constraint to complete mesh holes. However,
all these methods only integrate limited information from
local geometry, and geometric details are usually lost.

Another category of methods utilizes the non-local sur-
rounding geometric details for inpainting, such as template-
based methods [13, 22] and dictionary learning meth-
ods [7, 37]. These methods first divide the incomplete
meshes into patches, and the most similar patches are

searched from the dictionary or template library. Then, the
most similar patches are aligned and deformed to fill miss-
ing areas. The key issue is how to find similar patches and
how to deform and blend these patches naturally with bound-
aries. Non-local methods can recover the detailed texture
information on mesh surfaces to a certain extent, especially
for random textures. However, the alignment and blending
operation is sometimes difficult to handle, and may cause
unsatisfactory results near boundaries.

2.2. Low rank based methods

Recently, there has been a growing interest in low rank
based approaches in both image processing and geometry
processing. In fact, many problems in image and geometry
processing can be converted into low rank matrix approxi-
mation problems. Hence, low rank based methods have been
successfully applied in denoising, inpainting and reconstruc-
tion in image processing and denoising and reconstruction
in geometry processing.

In image denoising, they assume that a noise-free image
can be represented as a low rank matrix [18, 39]. The im-
age denoising problem can be formulated as the low rank
matrix recovery problem. Total variation norm is used for
reweighted low rank matrix recovery to maintain the overall
smoothness of image structures in [39]. For the particularity
of HSI data which contains hundreds of spectral channels,
different intensity noise bands in images and the correlation
between bands are took into consideration in [18]. Both of
these methods have a better effect in improving the quality
of image denoising.

In image inpainting, the problem can be solved by find-
ing the similar patches and reshaped them as vectors into a
matrix. Then, the missing pixels can be recovered by low
rank matrix recovery techniques. The key of this problem
is how to find the similar patches. In papers [26, 27], they
find similar patches from datasets and the methods proposed
in [14, 20, 33] find the similar patches from the original
images by analysing the self-similarity of images. Low rank
based image inpainting methods have advantage in maintain-
ing the similarity of images because they introduce similarity
analysis.

Recent advances suggest that structured sparsity often
leads to more powerful signal reconstruction techniques in
various compressed sensing studies. Hence, the nonlocal
low-rank regularization is adapted to exploit the structured
sparsity of images and the reconstruction could be improved
due to the prior knowledge of image structures [12, 40].

Similar to image denoising and reconstruction, the low
rank technique is also extended for geometry processing.
In 3D denoising, a non-local low rank filtering is proposed
by exploring the geometric similarity between patches and
devising a low rank recovery model by means of patch
groups [23].The low rank models are generally used for



Figure 1. The pipeline of our algorithm.

reconstructing 3D models from low rank images [30, 31, 38]
in 3D reconstruction. Low rank models are also used in mo-
tion estimation to help 3D segmentation[19]. However, there
is still little work to address the mesh inpainting problem
using a low rank prior. The method proposed in [1] only
adjusts points when the connectivity of mesh is known, and
does not work well on repeated textures since the non-local
similarity of mesh is not taken into consideration. With a de-
formable mesh and self-similarity prior learned by network,
mesh inpainting problem was solved in [15] which may pro-
duce poor local feature. In this paper, we introduce a mesh
inpainting method based on low rank recovery technique.

3. Our approach

3.1. Overview

Suppose given an incomplete triangular mesh denoted
as M0 with holes whose boundaries are denoted as HB =
{hbi}, where hbi are the hole boundary vertices. Mesh in-
painting is to find a complete mesh M , that is, to recover the
connectivity and vertex positions of M −M0 with bound-
aries HB. Based on the observation that the vertex nor-
mals of similar patches are highly correlated, the matrix
will have a low rank structure property if we reshape the
normal patches as column vectors into the matrix properly.
The proposed method searches similar patches and gradually
recovers the missing vertex normals using low rank approxi-
mation and updates the vertices from obtained normals.

The overview of our algorithm is as follows. For the given
M0, (1) we use the B-spline based method to construct an
initial mesh which is always smooth. This initial mesh gives
a base structure without geometric details. (2) We divide the
surrounding surfaces of M −M0 into patches. A similarity
descriptor is proposed and patches are packed into a matrix.
(3) An iterative diffusion approach is developed for patch
normal recovery. (4) Vertex positions are updated from
obtained vertex normals. Repeat (2) - (4) until it satisfies
the termination condition. Fig. 1 shows the pipeline of our
algorithm. Fig. 2 shows the details of our algorithm.

3.2. Smooth base structure construction of holes

We use the B-spline based method proposed in [36] to
obtain a smooth base structure of the holes. The basic idea
is that it detects the boundaries of holes and constructs a
circular B-spline surface along the tangential directions of
the boundary until the holes are completely filled. It uses
the curvature of the hole boundaries to smooth the filled
region. With this approach, the incomplete mesh M0 will be
initialized as a complete mesh denoted as M1.

3.3. Similar patch selection and packing

Because the consistency of the hole is only related to
a certain range, we first define an r-ring neighborhood of
HB. r is the neighborhood number. 1-ring neighborhood is
defined as all the vertices that connected to HB. Then, r-ring
neighborhood includes all the vertices that connected to (r−
1)-ring neighborhood. Fig. 3(a) and (b) show 1-ring and 2-
ring neighborhood examples of HB. We perform similarity
analysis within this region to speed up our algorithm.

In this subsection, we select the k patches most similar
to the target patch and pack them into a matrix. The major
workflow is as follows: (1) extract the mesh surface into
several patches, (2) use a similarity descriptor to find the
similar patches, (3) pack similar patches into a matrix.

3.3.1 Patch extraction

First, the r-ring neighborhood of HB is constructed, denoted
as NBr ∈M1. Then, for each vertex vi ∈ NBr, we extract
patchN (vi) by searching its neighbors ring by ring counter-
clockwise until it achieves sp vertices. Note we always
choose the neighbor that is nearest to vi when we start a new
ring. Fig. 3(c) shows an illustration of patch extraction in
2 dimension. D is the known region with hole denoted as
Dh. The r-ring neighborhood NBr is showed within black
curve. Fig. 4 gives different patches on surface. The patch
may contain two parts: the subpatch in M0 which is marked
in orange and subpatch M1 −M0 which is marked in red.

3.3.2 Similarity descriptor

To find similar patches to a given patch that contains missing
areas, we adapt the normal patch covariance to describe the
geometry of the local patch, as in paper [23].

Suppose each vertex vij ∈ N (vi) has normal nij , if
vij ∈ M1 −M0, nij = (0, 0, 0)T . Then, the normal patch
covariance (NPC) matrix can be defined as

C (vi) =
1

sp

 sp∑
j=1

(
nij − n̄i

) (
nij − n̄i

)T (1)

where n̄i is the average normal of N (vi). To make NPC
matrix independent of the coordinate choice, all the normal
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Figure 2. An overall of our algorithm.
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Figure 3. Illustrations of r-ring neighborhood and patch extraction.
(a) is the 1-ring neighborhood of HB. (b) is the 2-ring neighbor-
hood of HB. (c) shows the illustration of patch extraction in 2
dimension.

vectors in N (vi) are transformed by Ri to the local coordi-
nate system of vi. PCA is adapted to construct the local coor-
dinate system. Suppose the vertices patch covariance matrix

V(vi) is defined as 1
sp

[
sp∑
j=1

(
vij − vi

) (
vij − vi

)T]
. The

Figure 4. Different patches on the surface of mesh. The input mesh
is incomplete and the orange part is the r-ring neighbourhood of
hole. The orange part denotes existing part on mesh, the red part
denotes unknown region in hole.

eigenvectors of matrix V(vi), denoted as (ei1, e
i
2, e

i
3), form

an orthogonal frame associated with eigenvalues (λi1, λ
i
2, λ

i
3)

where (λi1 > λi2 > λi3). ei3 is the basis of the normal space
and (ei1, e

i
2) form the basis of the local tangent plane, as

shown in Fig. 5. The transformation Ri is obtained by rotat-
ing ei3 to (0,0,1) and ei1 to (1,0,0).

To calculate the distance between two covariance matri-



ces, we adopt the model in [21] defined as follows:

dNPC (vi,vj)=

√
(n̄i−n̄j)

T
(C (vi)+C (vj))

−1
(n̄i−n̄j)

(2)

The smaller dNPC (vi,vj) indicates more similarity be-
tween N (vi) and N (vj). The covariance matrix C(vi)
is always symmetric positive semi-definite. Hence,
(C (vi) + C (vj))

−1 is not singular in most cases. The sin-
gular case is both C(vi) and C(vj) are zero matrix, which
means two patches are planar. Hence, in our experiment,
when n̄i − n̄j is zero, we set dNPC (vi,vj) = 0.

Fig. 6 shows the similarity distances with the patch as
shown in Fig. 6(a). The patch in Fig. 6(b) with dNPC = 0.02
looks more similar than the ones in Fig. 6(c) and Fig. 6(d)
with dNPC = 0.41 and 0.11, respectively. Fig. 6(d)(e)(f)
are patches by rotating Fig. 6(a) clockwise through angle
π
2 , π,

3π
2 , respectively. It can be seen that our similarity

metric is insensitive to the orientation of patches.

3.3.3 Similar patches packing

Suppose we have w patches, we first put all these patches
into a global normal patch group matrix ΩM . Each column
vector corresponds to one patch. For each vij ∈ N (vi),
we extract its normal and put it into a column vector in the
form of (nijx,n

i
jy,n

i
jz). The normal of vi is put first and

then the normals of other vertices in the associated patch
are placed ring by ring counterclockwise. To capture the
orientation of local patches, we align patches using local
geometric analysis by PCA as in Section 3.3.2. As shown
in Fig. 5, for patch N (vi) with a local coordinate system
(ei1, e

i
2, e

i
3), when starting a new ring, we always choose

the vertex nearest to the principal direction line ei1 as a
starting point, such as vijk for the 1-ring, and vijl for 2-ring.
Hence, ΩM has 3 ∗ sp rows and w columns, as shown in
Fig. 7. For convenience, we denote the column as pi where
i ∈ {0, ...w − 1}.

Then, we pack the most similar patches into a similar
normal patch group matrix. For each patch pi with missing
normals denoted as (0, 0, 0), we first put pi in the matrix and
then select the most similar k patches by using the similarity
descriptor defined in Eqn. 2 and put them into a similar
normal patch group matrix denoted as Ωpi

. The matrix Ωpi

contains 3 ∗ sp rows and k + 1 columns, as shown in Fig. 8.

3.4. Iterative patch normal recovery

After obtaining the global normal patch group matrix
ΩM and a batch of similar normal patch matrices {Ωpi

}i ,
our mesh inpainting problem becomes a matrix completion
problem. An iterative patch normal recovery algorithm is
introduced in this section.

Figure 5. For local patch N (vi) with local coordinate system
(ei

1, e
i
2, e

i
3). The dot line shows the line where the principal direc-

tion vector ei
1 lies. vi

jk is the starting vertex for 1-ring, and vi
jl is

the starting vertex for 2-ring.

(a)

(b) (c) (d)
d = 0.02 d = 0.41 d = 0.11

(e)
d = 0

(f)
d = 0

(g)
d = 0

Figure 6. Similarity distance dNPC of patches.

Figure 7. Global normal patch group matrix ΩM

3.4.1 Iterative low rank completion

The matrix Ωpi should be low rank due to the high correla-
tion among similar patches. This observation motivates us to
formulate the problem as a low rank completion problem to



Figure 8. Similar normal patch group matrix Ωpi

recover Ωpi by solving the following optimization problem:

min
Ω̂pi

rank(Ω̂pi
)

s.t. PM0(Ω̂pi
) = PM0(Ωpi

)
(3)

PM0 is the sampling operator in the observed M0, which
is defined as [PM0(Ωpi)]a,b = [Ωpi ]a,b if the normal at
position (a, b) is not missing in M0 and 0 otherwise. The
element at a-th row, b-th column in matrix Ωpi

is denoted
as [Ωpi ]a,b.

The rank minimization problem in Eqn. 3 is generally an
NP-hard problem, nuclear norm is often used to approximate
the nonconvex rank function [10]. The problem becomes the
following convex optimization problem:

min
Ω̂pi

‖Ω̂pi
‖∗

s.t. PM0

(
Ω̂pi

)
= PM0 (Ωpi)

(4)

where ‖Ω̂pi‖∗ is the nuclear norm, which is defined as the
sum of singular values of Ω̂pi . We adopt the existing singu-
lar value threshold (SVT) method proposed in [9] to solve
above Eqn. 4. A soft-thresholding operatorDτ with a thresh-
old τ is defined as Dτ (x) = max(0, x− τ).

Staring from Y = 0 ∈ R(3∗sp)×(k+1), the convex opti-
mization is solved as following{

Ω̂t
pi

= shrink(Yt−1, τ)

Yt = Yt−1 + δtPM0(Y − Ω̂t
pi

)
(5)

where τ > 0, {δt} is a sequence of scalar steps which
is used to control the convergence for matrix completion.

Figure 9. 2D illustration of iterative diffusion.

shink(Y, τ) is a nonlinear function which applies a soft-
thresholding operator to each singular value of the input
matrix Y with a threshold τ . That is, it first decomposes the
matrix Y by SVD, then applies soft-thresholding operators
to all eigenvalues and reconstructs the matrix from the new
eigenvalues. In our experiments, we set the threshold τ =
0.9, all scalar steps δt = 0.1.

3.4.2 Iterative diffusion for patch recovery

For patches located near the hole boundary, the missing nor-
mals can be estimated using the matrix completion method
described above. However, if the patch is all inside the hole,
there is no reliable information for patch recovery. To ad-
dress this problem, an iterative diffusion strategy is adapted
in our work. The key idea of iterative diffusion is to use
the output of the previous iteration as the input of the next
iteration. The processing can be described as:

1. For patch pi, select its most similar k patches from ΩM

and packing in matrix Ωpi .

2. Recovered the patch pi as described in Section 3.4.1.

3. Update the matrix ΩM .

4. Repeat steps 1-3 until all the missing vertex normals
are recovered.

A 2D illustration of iterative diffusion is shown in Fig. 9.
As shown in Fig. 9(a), after recovering the blue patch pi,
it is used as known when we repair the brown patch pj .
For patch pl, which is all inside holes, obviously, there
is no reliable information in the current iteration. After a
number of iterations, the patches located in the iterator can
be incrementally restored, as shown in Fig. 9(b). After all
patches are recovered, we use Ω

′
M to denote the final global

normal patch matrix.

3.4.3 Refinement with low rank recovery model

We gradually restore the global normal patch group matrix
Ω

′
M through iterative diffusion strategy. However, it is still

a lack of overall consistency among patches and not good



enough to recover the repeated texture patterns In fact, the
final matrix should also have low rank structure due to the
high correlation among similar patches. This inspires us to
refine Ω

′
M as a low rank recovery problem and formulate

a low rank recovery model to recover ΩD from Ω
′
M as

follows:

min
ΩD

{µ
2

∥∥∥Ω′

M −ΩD

∥∥∥2
F

+ rank (ΩD)} (6)

where µ is the positive weight parameter used to balance the
two terms, ‖ ‖2F is the Frobenius norm. Suppose σ (ΩD) =
{σi (ΩD) : 1 ≤ i ≤ a} are the singular values of ΩD in non-
decreasing order and a is the total number of singular values.
In general, larger singular values are more important than the
smaller ones, since they represent the major components. In
our work, we adopt truncated γ norm [23] which is defined
as follows to approximate rank (ΩD) :

rank (ΩD) ≈ ‖ΩD‖tg =

a−1∑
i=m+1

(1 + γ)σi (ΩD)

γ + σi (ΩD)
(7)

where m is the number of eigenvalues to be excluded, γ is
a positive scalar. Then the optimization in Eqn. 6 is turned
into:

min
ΩD

µ

2

∥∥∥Ω′

M −ΩD

∥∥∥2
F

+ ‖ΩD‖γ −
m∑
i=0

(1 + γ)σi (ΩD)

γ + σi (ΩD)

(8)
where ‖ΩD‖γ =

∑a−1
i=0

(1+γ)σi(ΩD)
γ+σi(ΩD) and as proven in The-

orem 3.1 in paper [42],

m∑
i=0

σi(ΩD) ≥ Tr
(
U ∗ΩD ∗VT

)
(9)

where U ∈ Rm×(3∗sp) s.t UUT = I, and V ∈ Rm×w s.t
VVT = I. I is an m×m identity matrix.

Suppose f (x) = (1+γ)x
γ+x , f (x) is a monotoni-

cally increasing function and has the following property:
f (x1 + x2) ≤ f (x1) + f (x2). Combining Eqn. 9, we can
obtain:

m∑
i=0

f (σi(ΩD)) ≥ f

(
m∑
i=0

σi(ΩD)

)
≥ f

(
Tr
(
U ∗ΩD ∗VT

)) (10)

Hence the Eqn. 8 turn into:

min
ΩD

{‖ΩD‖γ − max
UUT=I,VVT=I

f
(
Tr
(
U ∗ΩD ∗VT

))
+
µ

2

∥∥∥Ω′

M −ΩD

∥∥∥2
F
}

(11)

With the auxiliary matrix variable W , Eqn. 11 becomes:

min
ΩD,W

{‖W‖γ − f
(
Tr
(
U ∗ΩD ∗VT

))
+
µ

2

∥∥∥Ω′

M −ΩD

∥∥∥2
F
}

s.t. W = ΩD

(12)

It can be solved by finding the saddle point of L (ΩD,W; Z)
as in paper [23, 42].

L (ΩD,W; Z) = ‖W‖γ − f
(
Tr
(
U ∗ΩD ∗VT

))
+

µ
2

∥∥∥Ω′
M −ΩD

∥∥∥2
F

+ 〈Z,ΩD −W〉+ β
2 ‖ΩD −W‖2F

(13)
where Z is the Lagrange multiplier matrix, Z ∈ R(3∗sp)×w.
β > 0 is the augmented parameter. The saddle point problem
can be solved by the following two subproblems: subprob-
lem ΩD and subproblem W and update Z alternatively.

For subproblem Ωt+1
D : a new term β

2 ‖
1
βZt‖2F is fist added

and the iteratively re-weighted least squares technique is
adopted to transfer the following equation into a set of sparse
linear equations:

min
ΩD

{−f
(
Tr
(
U ∗Ωt

D ∗VT
))

+ µ
2

∥∥∥Ω′
M −Ωt

D

∥∥∥2
F

+β
2

∥∥∥Ωt
D −Wt + 1

βZt
∥∥∥2
F
}
(14)

For subproblem Wt+1: a new term β
2 ‖

1
βZt‖2F is added

min
W
{
∥∥Wt

∥∥
γ

+
β

2

∥∥∥∥Ωt+1
D −Wt +

1

β
Zt
∥∥∥∥2
F

} (15)

Update the Lagrangian multiplier Z:

Zt+1 = Zt + β
(
Ωt+1
D −Wt+1

)
(16)

The filtered normal vectors in ΩD for vertex computa-
tion will be transformed from the local coordinate system
back to the original system by multiplication with the asso-
ciated R−1

i for each vertex vi. Since a vertex normal may
be included in multiple patches, we compute the final vertex
normal by averaging the normals. With the initial base struc-
ture and obtained vertex normals, vertex positions can be
obtained by the efficient iterative vertex normal updating al-
gorithm in [41] to obtain the final output. In our experiments,
we set the positive scalar γ as 0.01 and m as 5.

Fig. 10 shows the comparisons between the inpainting
results with and without refinement. We also adopt the
normal map to visualize the difference among initial normals,
normals recovered by low rank completion and normals
refined by low rank approximation. The groundtruth model
is showed in Fig. 11(a). The damaged model is showed
in Fig. 11(b). The results before and after refinement are
showed in Fig. 11(c) and (d). Both of these two examples



(a) (b) (c)

Figure 10. Comparison results with missing normal, recovery nor-
mal and refinement normal. From left to right is: (a) The result with
missing normal. (b) The result after normal completion without
refinement. (c) The result after normal refinement.

(a) (b) (c) (d)

Figure 11. Comparison results by normal map visualization. From
left to right is: (a) The groundtruth model. (b) The result with
missing normal. (c) The result after normal completion without
refinement. (d) The result after normal refinement.

demonstrate the effectiveness of our low rank completion
model and refinement model.

The whole algorithm is illustrated in Algorithm 1.

Algorithm 1 Patch based mesh inpainting via low rank
recovery

Input: Incomplete meshM0, patch size sp, the ring number
of HB r, maximum iteration number Siter

Output: Complete mesh M
1: // Stage 1: Mesh base structure construction
2: Initialization M0 with B-spline method
3: M1←M0

4: // Stage 2: Patch extraction
5: NBr ← r-ring neighborhood of HB
6: for all vi ∈ NBr do
7: Search the neighbor of vi ring by ring counter-

clockwise until it achieves sp vertices
8: N (vi)← patch of vi contains sp points
9: end for

10: // Stage 3: Similar patches packing
11: for all vij ∈ N (vi) do
12: Extract vertex normals as a column vector pi in form

of (nijx,n
i
jy,n

i
jz)

13: Put pi into global normal patch group matrix ΩM

14: for all pi ∈ ΩM do
15: Select k most similar column vectors from ΩM .
16: Put the similar patch normal column vector in sim-

ilar normal patch matrix Ωpi

17: end for
18: end for
19: // Stage 4: Iterative patch normal recovery
20: for all Ωpi do
21: Ω̂pi

←Ωpi
with iterative low rank matrix completion

22: Update the column vector pi ∈ ΩM

23: if Ω̂pi has missing normals then
24: repeat Stage 3 and Stage 4
25: else
26: continue
27: end if
28: end for
29: // Stage 5: Refinement with low rank recovery
30: Ω

′
M ← ΩM by Stage 4

31: ΩD ←Ω
′
M using the energy function Eqn. 11 to refine

the recover normal patch matrix Ω
′
M

32: Update vertex positions
33: // Stage 6: Iterative algorithm execution
34: if iterations of algorithm < Siter then
35: repeat Stage 2 to Stage 5
36: else
37: continue
38: end if
39: M ← the final inpainting mesh by Stage 1 to Stage 6

4. Experimental results and discussions

In this section, we report our experimental results with a
variety of models and compare them with other methods qual-
itatively and quantitatively. The experiments are conducted
on a Windows 10 operating system, Intel(R) Core(TM) 2.5
GHz dual-core CPU, and 8 GB of RAM. We implement the
algorithm by C++ and use Eigen Library for matrix manip-
ulation. SVT is solved by the reference code1 in our paper.

4.1. Qualitative comparison with other methods

To verify the effectiveness of the proposed approach in
recovering incomplete meshes with geometric features, par-
ticularly for models with repeated patterns, we test our algo-
rithm in different models.

Fig. 12 shows the comparison results on model of ar-
madillo’s leg whose surface has small bumps. Fig. 12(a) is
the ground truth model. Fig. 12(b) is the model with hole.
Fig. 12(c-h) shows the experimental results by algorithms
introduced in Pernot et al. [32], Brunton et al. [8], Attene [2],

1https: //people.eecs.berkeley.edu/∼yima/matrix-
rank/sample code.html



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. The repair results of armadillo’s leg. From left to right is (a) ground truth model, (b) model with holes, (c) result produced by [32],
(d) result produced by [8], (e) result produced by [2], (f) result produced by [45], (g) result produced by [4], (h) our result.

Zou et al. [45], Awang et al. [4] and our approach. As we
can see, other methods only recover the hole smoothly while
our approach can restore the bumps of the surface to make
the repair result look more consistent with the adjacent area.
Since our inpainting method repairs the hole by finding the
most similar patches around the hole, it can better preserve
the geometric details of the model.

Figs. 13 and 14 show the comparison results on mod-
els with repeated geometric features: child’s hair and mer-
lion’s scale. Our method repairs repeated textures by finding
surrounding similar patches through patch-based similarity
analysis. As shown in Figs. 13 and 14, our method can re-
cover the repeated pattern more naturally while the other five
methods only smoothly blend with boundaries.

Fig. 15 shows the comparison results on model with large
holes. The other five methods cannot recover the geometric
details for large holes. The repair effect of our method is
relatively better. We can restore the geometric features in
the hole area since our algorithm gradually recovers the hole
by analyzing the similarity of the r-ring neighborhood.

4.2. Parameter setting

Similar to most previous methods, our method needs to
set parameters properly to produce the best results. It mainly
contains three parameters: the patch size sp, the boundary
ring number r and the maximal iteration number Siter as
described in Algorithm 1.
sp is the number of vertices in each patch. It can not be

too small since a small patch cannot capture repeated geo-

metric patterns. It also cannot be too large. A large sp would
not only make the algorithm slower, but also decrease the
similarity of patches. In our experience, the patch contain-
ing one complete repeated block produces the best results.
We set sp = 100 for the models in Fig. 12, 13 and 15, and
sp = 20 for the model in Fig. 14 in our experiments.

r is the ring number of HB, and our algorithm analyzes
the similarity of vertex patches for all vi ∈ NBr. For small
r, there are not enough geometric features to analyze, and it
is not easy for us to obtain the similarity without complete
patches. For large r, first, it will increase the cost of our
approach. Second, when NBr contains a large proportion of
the surface that is not similar to the corresponding hole fea-
tures, it cannot produce the best results. In our experiments,
we set r = 8 for the armadillo’s leg model in Figs. 12 and
15, r = 6 for model of child’s hair in Fig. 13, and r = 2 for
model of Merlion model in Fig. 14.

Siter is the maximal iteration number of stages 2-6 in
Algorithm 1. We set it heuristically. For models with small
holes, Siter = 1 can already produce nice results, as shown
in Fig. 12, Fig. 13 and Fig. 14. For larger hole, we set
Siter = 7 for armadillo’s leg model shown in Fig. 15.

Fig. 16 shows the experimental results for different r and
sp. The first row shows the results produced with different
sp values while setting r = 6. It produces best result for
sp = 100. The second row shows the results produced for
different r while setting sp = 100. It produces relatively
better result when r = 6.
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Figure 13. The repair results of child’s hair. From left to right is (a) ground truth model, (b) model with holes, (c) result produced by [32],
(d) result produced by [8], (e) result produced by [2], (f) result produced by [45], (g) result produced by [4], (h) our result.

4.3. Quantitative evaluation

In this section, a quantitative evaluation is given to further
evaluate the performance of our approach.

The Hausdorff distances between the ground truth mod-
els and the restored models without refinement and with
refinement are listed in Table 1 to measure our approach
quantitatively. Obviously, our method produces lower dis-
tance.

5. Conclusions and future work

In this paper, we propose a patch-based mesh inpainting
method by using low rank matrix recovery. An iterative al-
gorithm has been proposed by dividing patches, recovering
vertex normals and updating vertex positions. A patch simi-
larity descriptor is proposed in the form of a vertex normals

to measure the similarity between patches. By grouping
the most similar patches in the damaged mesh, many low
rank matrices are constructed. The missing vertex normals
can be restored and refined by low rank prior knowledge.
Experimental results show that our approach works well in
repairing holes with self-similarity geometric features.

There are also limitations for our work. First, our method
outperforms the existing methods for large holes. Error accu-
mulates since we gradually recover the hole inwards. It still
has room for improvement. Second, as discussed above, we
focus only on recovering 3D surfaces with geometric details,
particularly for models with repeated patterns. Therefore,
our methods might not work well for real range scan data. As
the future work, we will recover the mesh with large holes
by applying deep learning techniques. Another interesting
direction is to develop an inpainting approach for real-data,
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Figure 14. The repair results of merlion’s scale. From left to right is (a) ground truth model, (b) model with holes, (c) result produced by [32],
(d) result produced by [8], (e) result produced by [2], (f) result produced by [45], (g) result produced by [4], (h) our result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. The repair results of armadillo’s leg. From left to right is (a) ground truth model, (b) model with holes, (c) result produced by [32],
(d) result produced by [8], (e) result produced by [2], (f) result produced by [45], (g) result produced by [4], (h) our result.

such as partial range scans.
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Figure 16. Parameter discussion. Experimental results produced with different sp and r.

Model Vertices
Bruton

et al. [8]
Pernot

et al. [32]
Attene

[2]
Zou

et al. [45]
Awang

et al. [4]
Ours

(without refinement)
Ours

(with refinement)
Armadillo’s leg 172974 4.4× 10−5 4.6× 10−5 6.8× 10−5 1.9× 10−5 2.2× 10−5 5.7× 10−6 2.9× 10−6

Child’s hair 50002 1.62× 10−4 1.2× 10−4 1.01× 10−4 7.2× 10−5 9.2× 10−5 4.5× 10−5 1.45× 10−5

Merlion’s scale 35002 3.4× 10−5 1.3× 10−5 1.9× 10−5 2.6× 10−5 2.3× 10−5 6.2× 10−6 1.7× 10−6

Armadillo’s leg
(big hole) 172974 2.8× 10−5 5.3× 10−5 4.2× 10−5 2.1× 10−5 1.9× 10−5 5.5× 10−6 2.3× 10−6

Table 1. Quantitative difference with the ground truth model.

References

[1] G. Arvanitis, K. Moustakas, N. Fakotakis, and A. S. Lalos. 3D
Mesh Inpainting Using Matrix Completion via Augmented
Lagrange Multiplier Method. In 2018 IEEE 13th Image,
Video, and Multidimensional Signal Processing Workshop,
Greece, 2018. IEEE. 3

[2] M. Attene. A lightweight approach to repairing digitized
polygon meshes. Visual Computer, 26(11):1393–1406, 2010.
2, 8, 9, 10, 11, 12

[3] M. Attene, M. Campen, and L. Kobbelt. Polygon Mesh
Repairing: An Application Perspective. ACM Computing
Surveys, 45(2):1–33, 2013. 2

[4] N. Awang, R. W. Rahmat, N. S. Beng, A. Jaafar, and P. S.
Sulaiman. Filling simple holes by using enhanced advancing
front mesh method (EAFM): Application to a real object.
Civil Engineering and Architecture, 7(5):251–261, 2019. 2,
9, 10, 11, 12

[5] N. Bonneel, D. Coeurjolly, P. Gueth, and J. O. Lachaud.
Mumford-Shah Mesh Processing using the Ambrosio-
Tortorelli Functional. Computer Graphics Forum, 37(7):75–
85, 2018. 2

[6] J. Branch, F. Prieto, and P. Boulanger. Automatic Hole-Filling
of Triangular Meshes Using Local Radial Basis Function.
In Third International Symposium on 3D Data Processing,
Visualization, and Transmission, pages 727–734, Chapel Hill,
2006. IEEE. 2

[7] T. P. Breckon and R. B. Fisher. Three-Dimensional Surface
Relief Completion via Nonparametric Techniques. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(12):2249–2255, 2008. 2

[8] A. Brunton, S. Wuhrer, C. Shu, P. Bose, and E. Demaine.
Filling Holes in Triangular Meshes Using Digital Images by
Curve Unfolding. International Journal of Shape Modeling,
16(1-2):151–171, 2010. 2, 8, 9, 10, 11, 12

[9] J. F. Cai, E. J. Candès, and Z. Shen. A Singular Value Thresh-
olding Algorithm for Matrix Completion. SIAM Journal on
Optimization, 20(4):1956–1982, 2010. 6

[10] E. J. Candes and B. Recht. Exact Matrix Completion via
Convex Optimization. Foundations of Computational Mathe-
matics, 9(6):717–772, 2009. 6

[11] J. Davis, S. R. Marschner, M. Garr, and M. Levoy. Filling
Holes in Complex Surfaces Using Volumetric Diffusion. In
1st International Symposium on 3D Data Processing Visual-



ization and Transmission, pages 428–441, Padua, 2002. IEEE.
2

[12] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compres-
sive Sensing via Nonlocal Low-Rank Regularization. IEEE
Transactions on Image Processing, 23(8):3618–3632, 2014.
2

[13] R. Gal, A. Shamir, T. Hassner, M. Pauly, and D. Cohen-Or.
Surface Reconstruction Using Local Shape Priors. In E. As-
sociation, editor, Proceedings of the fifth Eurographics sym-
posium on Geometry processing, pages 253–262, Barcelona,
2007. Eurographics Association. 2

[14] Q. Guo, S. Gao, X. Zhang, Y. Yin, and C. Zhang. Patch-Based
Image Inpainting via Two-Stage Low Rank Approximation.
IEEE Transactions on Visualization and Computer Graphics,
24(6):2023–2036, 2018. 1, 2

[15] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or.
Point2Mesh: A Self-Prior for Deformable Meshes. ACM
Transactions on Graphics, 39(4):126–1, 2020. 3

[16] G. Harary, A. Tal, and E. Grinspun. Feature-preserving sur-
face completion using four points. Eurographics Symposium
on Geometry Processing, 33(5):45–54, 2014. 2

[17] G. A. T. Harary and A. Tal. Context-Based Coherent Surface
Completion. ACM Transactions on Graphics, 33(1):1–12,
2014. 1

[18] W. He, H. Zhang, L. Zhang, and H. Shen. Hyperspectral Im-
age Denoising via Noise-Adjusted Iterative Low-Rank Matrix
Approximation. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 8(6):3050–3061,
2015. 2

[19] J. Huang, H. Wang, T. Birdal, M. Sung, F. Arrigoni, S. M. Hu,
and L. Guibas. MultiBodySync: Multi-Body Segmentation
and Motion Estimation via 3D Scan Synchronization. In
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 7108–7118,
Online, 2021. IEEE. 3

[20] K. H. Jin and J. C. Ye. Annihilating Filter-Based Low-Rank
Hankel Matrix Approach for Image Inpainting. IEEE Trans-
actions on Image Processing, 24(11):3498–3511, 2015. 2

[21] L. Karacan, E. Erdem, and A. Erdem. Structure-preserving
image smoothing via region covariances. ACM Transactions
on Graphics, 32(6):1–11, 2013. 5

[22] V. Kraevoy and A. Sheffer. Template-Based Mesh Comple-
tion. In Symposium on Geometry Processing, volume 385,
pages 13–22, Graz, 2005. Citeseer. 1, 2

[23] X. Li, L. Zhu, C. W. Fu, and P. A. Heng. Non-Local Low-
Rank Normal Filtering for Mesh Denoising. Computer Graph-
ics Forum, 37(7):155–166, 2018. 1, 2, 3, 7

[24] Z. Li, D. S. Meek, and D. J. Walton. Polynomial Blending in
A Mesh Hole-Filling Application. Computer Aided Design,
42(4):340–349, 2010. 2

[25] P. Liepa. Filling Holes in Meshes. In Eurographics, pages
200– 205, Granada, 2003. The Eurographics Association and
Blackwell Publishing Ltd. 2

[26] Q. Liu, S. Li, J. Xiao, and M. Zhang. Multi-Filters Guided
Low-Rank Tensor Coding for Image Inpainting. Signal Pro-
cessing: Image Communication, 73(9):70–83, 2019. 2

[27] H. Lu, Q. Liu, M. Zhang, Y. Wang, and X. Deng. Gradient-
Based Low Rank Method and Its Application in Image In-
painting. Multimedia Tools and Applications, 77(5):5969–
5993, 2018. 2

[28] H. Lu, J. Wei, L. Wang, P. Liu, Q. Liu, Y. Wang, and X. Deng.
Reference Information Based Remote Sensing Image Recon-
struction with Generalized Nonconvex Low-Rank Approxi-
mation. Remote Sensing, 8(6):499–519, 2016. 1

[29] X. Lu, S. Schaefer, J. Luo, L. Ma, and Y. He. Low Rank Ma-
trix Approximation for 3D Geometry Filtering. IEEE Trans-
actions on Visualization and Computer Graphics, 28(4):1835–
1847, 2020. 1

[30] J. Ma. Three-Dimensional Irregular Seismic Data Recon-
struction via Low-Rank Matrix Completion. GEOPHYSICS,
78(5):181–192, sep 2013. 3

[31] D. Martinec and T. Pajdla. 3D Reconstruction by Fitting Low-
Rank Matrices with Missing Data. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pages 198–205, San Diego, 2005. IEEE. 3

[32] J. P. Pernot, G. Moraru, and P. Véron. Filling Holes in Meshes
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