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Abstract

Facade parsing aims to decompose a building facade
image into semantic regions of the facade objects. Con-
sidering each architectural element on a facade as a pa-
rameterized rectangle, we formulate the facade parsing
task as object detection, allowing overlapping and nest-
ing, which will support structural 3D modeling and edit-
ing for further applications. In contrast to general ob-
ject detection, the spatial arrangement regularity and
appearance similarity between the facade elements of
the same category provide valuable context for accu-
rate element localization. In this paper, we propose to
exploit spatial arrangement regularity and appearance
similarity of facade elements in a detection framework.
Our Element-Arrangement Context Network (EACNet)
consists of two unidirectional attention branches, one
to capture the column-context and the other to capture
row-context to aggregate element-specific features from
multiple instances on the facade. We conduct exten-
sive experiments on four facade datasets. The proposed
EACNet produces more concise and structured parsing
results than existing facade segmentation methods. Both
quantitative and qualitative evaluation results demon-
strate the effectiveness of our dual unidirectional atten-
tion branches to parse facade elements.

Keywords: Facade parsing, detection, layout regularity,
spatial context.

1. Introduction

Facade parsing aims to find regions of building facade
components and annotate them with distinctive semantic
categories (e.g. window, sill, balcony, and molding) in a
given street-view facade image. This task potentially sup-
ports many real-world applications, especially for urban
street reconstruction. However, facade parsing faces many
challenges in natural urban scenes. Firstly, the facade style
varies a lot among buildings. The diversity of texture and
element structure makes it difficult to generate robust and
accurate parsing results. Moreover, parsing a facade im-
age may be more challenging due to shadows, illumination,

(a) Semantic region masks (b) Parameterized bounding boxes

Figure 1. Our method aims to produce compact parameterized
bounding boxes instead of dense pixel-wise semantic labels (a).
Based on the parameterized bounding boxes, 3D facade models
can be generated more efficiently while allowing structural over-
lapping of multiple elements (b).

perspective effect, and occlusions caused by cluttered ob-
jects. Most importantly, since the arrangement regularity of
various building facade elements is naturally existing and
widely presented, the parsing results should globally follow
regular arrangement.

Facade parsing has been attracting lots of interest over
the past few years. Traditional approaches usually combine
architectural priors with image segmentation. The facade
structural priors, such as element sizes, the spacing between
elements, and hard alignment constraints, are encoded in the
parsing procedure to introduce essential architectural infor-
mation. Some grammar-based methods [26, 35, 38, 37, 43]
perform top-down parsing procedures to model facades
with predefined primitive shapes and grammar rules. Some
other works [4, 24, 25] utilize low-level information ex-
tracted by per-pixel classification to produce facade seg-
mentation. Though these methods consider facade regu-
larities, they rely highly on hand-crafted knowledge priors.
Consequently, the global holistic structural information is
not always at work, especially for complex scenes.

Recent progress in deep learning and deep convolutional
neural networks has made it possible to extract and utilize
high-level features and global structural information of a
building facade. Several deep learning-based facade parsing
[34, 23, 22] treat facade parsing as a semantic segmentation
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Figure 2. Facade layouts present strong regularity, as the archi-
tectural elements are well-aligned both vertically and horizontally.
The spatial correlation between facade elements in the two direc-
tions provides valuable context for facade element detection.

problem and employ popular CNNs to achieve better perfor-
mance. DeepFacade [23, 22] illustrates the importance of
facade structural priors and introduces the shape symmetry
of facade elements as a constraint, aiming to produce more
regular segmentation results. Bounding boxes are consid-
ered as auxiliary data to refine the shape of segmentation
regions in their work. However, the element symmetry and
the facade layout regularity, which are crucial for obtaining
complete and reasonable facade parsing results, are ignored.

Though a pixel collection can flexibly describe freeform
object shapes in the semantic segmentation framework, we
argue that dense semantic region masks are not the most
appropriate representation for facade parsing. First, objects
on a facade usually appear as symmetrical quadrilaterals in
a rectified street-view image. However, it is non-trivial to
exploit this geometric property efficiently in pixel-wise seg-
mentation approaches. Second, facade segmentation usu-
ally results in a labeled mask image where each pixel is as-
signed a single category. However, facade components are
not always disjoint. Overlapping frequently happens among
various categories such as windows and blinds. Figure 1
shows a typical case where the balconies overlap with the
bottom region of their nearby windows. The dense single-
category assignment makes the rendering and modeling of
the overlapping regions much more complicated, even re-
sulting in the structure loss of the nesting regions. In con-
trast, we propose a detection-based framework to decom-
pose facade images while supporting overlapping facade el-
ements and involving the global layout context to generate
more regular facade arrangements.

The element layout usually presents a strong regularity
and shows a grid-like element arrangement. A facade ele-
ment is usually significantly correlated with facade objects
in the same row or column. Figure 2 illustrates our moti-
vation. The window that is partially occluded by vegeta-
tion can be accurately localized based on its related hori-
zontal and vertical element groups. Based on this obser-

vation, we leverage the spatial regularity of facade lay-
out in our element detection framework. We propose an
Element-Arrangement Context Network (EACNet) to ex-
ploit the arrangement regularity among facade elements ar-
ranged in the same row or column. We conducted ex-
tensive experiments to evaluate the effectiveness of our
method. Our EACNet achieves top performance on the
Graz50 [31] and ECP [38] datasets. Even on the chal-
lenging CMP [39] dataset, our EACNet effectively captures
element-arrangement spatial context and significantly facil-
itates the facade parsing task.

2. Related Work

We discuss related work on traditional facade parsing
and CNN-based facade segmentation. We also discuss sev-
eral typical object detection approaches. In addition, we
discuss attention mechanisms and several related general
self-attention schemes.

Facade parsing and modeling have been extensively
studied in computer graphics and computer vision. There
are two mainstreams of traditional methods: utilizing
grammar-based recognition or following conventional im-
age segmentation pipeline. Grammar-based approaches
model facades according to a set of parametric grammars,
based on which the procedural modeling procedure can uti-
lize image analysis techniques to derive a hierarchical fa-
cade subdivision from an image [1, 5, 16]. Similar ideas
can be found in other methods that target general procedural
modeling for structural objects [11, 36, 45]. Another stream
of facade layout generation methods is segmenting the input
images. Several approaches incorporate traditional machine
learning to fit the procedural modeling pipeline [37, 29, 8].
Some others utilize architectural principles to optimize fa-
cade segmentation [43, 4, 3, 25, 17], aiming to produce
more regular segmentation regions.

With the rapid development of deep learning, CNN-
based semantic segmentation frameworks have been
adopted for facade parsing. Directly applying the fully-
convolutional networks for semantic segmentation into fa-
cade segmentation [34, 7] generates pixel-wise label pre-
diction. Subsequently, object symmetry is taken into ac-
count to refine the segmented region boundaries in DeepFa-
cade [23] that uses a loss function to penalize segmentation
regions that are not horizontally and vertically symmetric.
Its extension work [22] adds another loss term that forces
the window regions to match the rectangular shapes ob-
tained by a pre-trained auxiliary Mask R-CNN [12]. While
they focus on improving the regularity of single element
shapes, our approach naturally ensures the single shape reg-
ularity and exploits global layout regularity with a well-
designed attention scheme.

Object detection pipelines directly output rectangular
boxes for objects in an image. Many two-stage region de-
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Figure 3. Overview of the proposed EACNet. After extracting feature maps from the input image using an hourglass network, we aggregate
the spatial context between facade elements by the proposed element-arrangement context module. Two rectilinear context branches are
designed to capture the vertical and horizontal correlations between elements, and the contexts in two directions are aggregated to enhance
the local features. Finally, a detector head is attached to obtain the final facade parsing results from the aggregated feature maps. “©”
denotes feature concatenation, and “⊕” denotes element-wise addition.

tection networks have been proposed [10, 9]. More recently,
keypoint estimation is utilized to locate objects for one-
stage detection. CornerNet [19] detects objects by local-
izing a pair of key points and groups them by using asso-
ciative embedding [27]. CenterNet [49] treats object center
as a single shape-agnostic anchor, detecting an object by
extracting a center point, and thus needs not any keypoint
grouping steps. Based on the one-stage detection frame-
work, our EACNet is designed specifically for facade pars-
ing by incorporating spatial facade layout regularity.

Self-attention was first introduced in the pioneering
work [40] to enhance the representation capability of neural
networks and now is widely used for various tasks. How-
ever, self-attention suffers from quadratic computation and
memory cost, which is particularly challenging for images.
Recently, many efforts have been made to investigate sparse
and memory-efficient forms, including hierarchical atten-
tion [44], clustering-based sparse attention [32], attention
to sparse keypoints only [33], attention to image patches in-
stead of pixels [6] and attention with linear complexity [41].
These methods can greatly reduce additional computation
and memory costs and make self-attention more efficient.
For computer vision tasks, SENet [14] models channel-
wise relationships in an attention mechanism. PSANet [48]
learns two global attention maps to aggregate contextual
information for each position in the feature maps adap-
tively. The non-local Network [42] generates a huge at-
tention map by calculating the correlation matrix between
each spatial point in the feature maps. However, the com-
putation and memory costs for obtaining the attention maps
in these methods are significantly high. CCNet [15] devel-
ops a criss-cross attention module that captures contextual
information in criss-cross paths instead of the whole image
and then employs a recurrent operation to harvest full-image
dependencies. Inspired by CCNet [15], we further decom-
pose the criss-cross correlation into two independent uni-
directional attention branches that only capture long-range

dependence between elements aligned in the same row and
column separately, considering the spatial regularity of fa-
cade elements. This separation explicitly brings structural
priors for the spatial correlation between pixels and makes
our network more efficient and precise by considering the
column-wise and row-wise distinction.

3. Our Approach

In this section, we first introduce the framework of our
Element-Arrangement Context Network (EACNet). Then
we describe the proposed Element-Arrangement Context
Module (EACM) in detail, including the row and column
context branches that capture spatial context to enforce the
arrangement regularity of the facade elements.

3.1. Network Architecture

Figure 3 shows the overview of the proposed EACNet.
Given an input facade image, an hourglass convolutional
neural network [28] is employed as the backbone that down-
samples the input image by 4 times and extracts feature
maps F with spatial size H×W from the input image. The
feature maps F ∈ RC×H×W are then fed into an element-
arrangement context module that learns the correlations be-
tween a position on the facade and all different positions
in the same row and the same column. The long-range de-
pendencies in the two axis-aligned directions are crucial for
localizing facade objects because they show strong repet-
itiveness and alignment regularity in structure. The two
branches in EACM produce feature maps Scol ∈ RC×H×W

and Srow ∈ RC×H×W that collect spatial context in a sin-
gle column and row, respectively. The feature maps Scol

and Srow are concatenated and fed to a convolutional layer
that acts as feature adaptation. The produced feature maps
M are added to the image features F to enhance the rep-
resentation of each position. The enhanced features F ′ are
fed into a detector head to predict the bounding boxes that
represent the parsing results.
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Figure 4. The column-context branch and row-context branch of
the proposed element-arrangement context module. They both
take feature maps produced by the backbone network to harvest
spatial contextual information with shared weights of convolu-
tional layers.“⊗” denotes matrix multiplication.

3.2. Element-Arrangement Context Module

In the facade parsing task, it is crucial to exploit the
priors of facade structure to promote the parsing quality.
To incorporate man-made rules into an end-to-end CNN,
existing CNN-based facade parsing methods either restrict
the object shape by using symmetric constraint [23, 22]
or using atrous convolution [2] to capture nonlocal con-
text. But they seldom take advantage of the holistic
facade structure efficiently. In contrast, we propose a
novel element-arrangement context module to exploit the
element-arrangement regularity and appearance similarity.

It is a fact that the facade elements share strong repeti-
tiveness and alignments in structure. To explicitly leverage
the arrangement regularity of the facade elements, we pro-
pose an EACM that guides the network focus on the facade
elements aligned in the same row and the same column.
As shown in Figure 3, the proposed EACM contains two
branches, the column-context branch and the row-context
branch, which collect element-arrangement spatial context
in two directions. They are similar in structure but corre-
spond to different element arrangement directions. To the
best of our knowledge, this is the first attempt to employ
self-attention to incorporate the facade layout structural reg-
ularity into a facade parsing network. Next, we introduce
the details of these two context branches.

Following the self-attention mechanism, as illustrated in

Figure 4, we first apply three parallel convolutional lay-
ers with 1 × 1 filters on features F to obtain query fea-
tures Q, key features K, and value features V , with shape
C×H×W . The two branches of EACM both useQ,K, and
V to generate contextual features (i.e. they share the weights
of the convolutional layers). For a point p = (i, j), the col-
umn branch calculates the correlations between p and other
positions in the j-th column, and the row branch calculates
the correlations between p and positions in the i-th row. For
a query vector Qp ∈ RC×1 in features Q, we extract key
vectors from features K along the i-th row and j-th column
separately, which gives two sets of feature vectors:

Xp =
{
K(i,1),K(i,2), . . . ,K(i,j), . . . ,K(i,W )

}
Yp =

{
K(1,j),K(2,j), . . . ,K(i,j), . . . ,K(H,j)

} (1)

The cardinal number of the obtained vector sets Xp and
Yp are W and H respectively. In the column branch, the
correlations between p and its corresponding column-path
positions can be calculated and collected in a vector cAp ∈
RH×1 located in attention maps Acol, which is defined as

cA(k)
p =

exp
(
QT

pY
(k)
p

)∑|Yp|
t=1 exp

(
QT

pY
(t)
p

) , (2)

where cA
(k)
p is the k-th element of vector cAp, and Y

(k)
p is

the k-th feature vector of set Yp.
In the row branch, similar to the calculation of Acol, we

calculate the attention maps Arow, where the vector located
at point p is defined as

rA(k)
p =

exp
(
QT

pX
(k)
p

)∑|Xp|
t=1 exp

(
QT

pX
(t)
p

) , (3)

where rA
(k)
p is the k-th element of the vector rAp ∈ RW×1,

and X
(k)
p is the k-th feature vector of set Xp.

After obtaining attention maps Arow and Acol that mea-
sure correlations in row and column paths, the module ex-
tracts values in row-column paths from features V over the
spatial dimension for further context aggregation. For a
point p = (i, j), two sets Λp and Ωp can be obtained, both
of which consist of C vectors. The c-th element of Λp and
Ωp are defined as

Λ(c)
p = (Vci0, Vci1, . . . , VciW )T ,

Ω(c)
p = (Vc0j , Vc1j . . . , VcHj)

T ,
(4)

where Vcij denotes the value located at (i, j) of the c-th
channel of the feature maps V .

The elements of correlation vectors cAp and rAp are sep-
arately used as the weights of vectors Ω(c)

p and Λ(c)
p for
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Figure 5. Facade elements typically have highly symmetric rect-
angular shapes. We encoder a facade object by a center point and
its size parameters and predict heatmaps for the center point.

conducting spatial context aggregation at position p, which
generates cSp ∈ RC×1 and rSp ∈ RC×1 as follows:

cS(c)
p = cAT

pΩ(c)
p ,

rS(c)
p = rAT

pΛ(c)
p .

(5)

Collecting spatial context at different positions finally
gives contextual features Srow and Scol, both with shape
C ×H ×W . Then, they are used to enhance the local fea-
ture maps. To exploit the element-arrangement regularity
and appearance similarity of both row and column as a guid-
ance, Scol and Srow are concatenated and fused together
to produce integrated contextual features M ∈ RC×H×W .
The contextual information is then added to features F to
produce updated feature maps F ′ as

F ′ = ω(S) + F, (6)

where ω is a projection function implemented by a convo-
lutional layer with 1 × 1 kernel size. S ∈ R2C×H×W is
produced by concatenating Scol and Srow together.

3.3. Detector Head

The enhanced feature maps F ′ are fed into a detector
head to obtain the final facade parsing results. As shown
in Figure 5, it is effective to represent a symmetric facade
element by a center and its width and height. We employ
CenterNet [49] which models an object bounding box with
a center point and object size in our EACNet. The detec-
tor head consists of three branches. Each branch applies
convolutional layers on F ′ to generate a set of heatmaps
for center location prediction for each element category,
local offset prediction, and object size prediction, respec-
tively. The center location prediction branch generates Ê ∈
RC′×H×W , where C ′ is the number of categories of the fa-
cade elements. The value of Êcij at location p = (i, j) is
the score for class c in the predicted heatmaps. The local
offset prediction branch generates Ô ∈ R2×H×W , which is
used as a slight adjustment of the center location. The ob-
ject size prediction branch generates Û ∈ R2×H×W , which
gives the height and width of an object. To obtain the coor-
dinates of center points, a 3×3 max-pooling layer is applied
on Ê for peak extraction.

During training, we use a pixel-wise logistic regression
with focal loss [20] for center location prediction:

Lp = − 1
N

∑
c,i,j

{
(1− Êcij)

α log(Êcij), if Ecij=1

(1− Ecij)
β(Êcij)

α log(1− Êcij), otherwise
(7)

where E is the ground truth and N is the number of facade
objects. Both α and β are hyper-parameters that control the
contribution of each point. We set α = 2 and β = 4 in
all experiments. The local offset and object size are both
trained with L1 distance as loss function. The total loss
function is

L = Lp +
λ

N

∑
k

L1(Ôk, Ok) +
µ

N

∑
k

L1(Ûk, Uk), (8)

where Ok and Uk are the location offset and the object size
of the k-th element, respectively. The scale factors λ and µ
are used for weight adjustment.

4. Experiment Results and Discussions

In this section, we first introduce four facade datasets and
present the corresponding evaluation metrics and the train-
ing details. Then, we compare our facade parsing method
with existing segmentation-based facade parsing works. A
series of ablation experiments are also conducted to demon-
strate the effectiveness of the proposed EACM.

4.1. Datasets and Evaluation Metrics

Four public facade datasets are used in our experi-
ments, including ECP [38], CMP [39], Graz50 [31], and
eTRIMS [22]. The first three contain rectified facade
images with their semantic label masks. Images in the
eTRIMS dataset are not rectified.

The ECP facade dataset [38] consists of 104 well-
rectified building facade images. All the images contain fa-
cades from Paris and share similar architectural styles. The
pixel annotations contain eight classes, including window,
wall, balcony, door, shop, sky, chimney, and roof. Since
there are some categories not belonging to facade elements,
we choose window, balcony,door, and shop for evaluation.
Since the ECP dataset does not have bounding box annota-
tion, we perform contour fitting on the provided semantic
masks to generate the bounding box for each element. For
overlapping elements, we adjust their bounding box sizes to
match the corresponding regions. We follow [22] to divide
the dataset, using 80 images for training and 24 for testing.

The Graz50 facade dataset [31] contains 50 facade im-
ages with multiple building styles. Similar to the ECP
dataset, the Graz50 dataset only contains rectangular ar-
eas labeled as ground truth semantic masks. Contour fitting
is also applied to obtain suitable bounding box annotation.
The provided data contains two facade element classes, win-
dow, and door, which are both used in our experiments. We



Method Pixel Accuracy (%) IoU (%)

Window Door Avg. Window Door

Koziński et al. [18] 82 50 66.0 – –
Koziński et al. [17] 84 60 72.0 – –
Cohen et al. [3] 85 64 74.5 – –
Rahmani et al. [29] 79.3 79.1 79.2 – –
DeepFacade-V1 [23] 87.7 88.2 87.9 – –
Rahmani et al. [30] 83.7 93.8 88.8 – –
DeepFacade-V2 [22] 88.8 89.1 88.9 71.3 56.5
Ours 89.9 87.8 88.9 80.9 73.8

Table 1. Quantitative comparison with state-of-the-art facade pars-
ing methods on the Graz50 dataset.

follow the dataset division strategy used in [22], using 30
images for training and 20 images for testing.

The CMP facade dataset [39] contains 606 rectified im-
ages of facades with diverse architectural styles. The dataset
is split into two parts that consist of 378 and 228 images.
The latter part contains more irregular and non-planar fa-
cades that often have substantial occlusion from vegetation,
making the CMP dataset very challenging. The annotation
of this dataset is a set of rectangles with class labels and
allows overlapping and nesting. The dataset includes 12
specified classes. In our experiment, we use six categories
that belong to facade elements, including sill, balcony, door,
molding, window, and cornice. We use 484 images that are
randomly selected from two subsets for training. The re-
maining 122 facade images are used for testing.

4.2. Training Settings

The Hourglass backbone [28] used in our EACNet is
initialized using the weights of a model pre-trained on
the COCO dataset [21]. The remaining part of the net-
work is initialized randomly. In all experiments, the net-
work is trained on a single GPU, using an Adam opti-
mizer with β1 = 0.9, β2 = 0.999, and the initial learning
rate as 0.0001, 0.0002, 0.0002, and 0.0004 for CMP, ECP,
eTRIMS, and Graz50 datasets, respectively. The scale fac-
tors λ and µ in Eq. 8 are set to 1 and 0.1 respectively. We
use batch size 4 for all three datasets. For ECP, eTRIMS,
and Graz50, the network is trained for 120, 100, and 80
epochs respectively. For CMP, the network is trained for
200 epochs, and we drop the learning rate by 90% at epochs
140. We use random horizontal flipping, random scaling
in the range of [0.6, 1.3], and color jittering for data aug-
mentation. We randomly crop large images or pad small
images into a fixed size for training. For the ECP, CMP,
and eTRIMS dataset, we train on an input resolution of
512×512. Because the images in Graz50 have lower resolu-
tions, which vary between 200 and 500 pixels in height and
width, we use 256× 256 input resolution for this dataset.

Method Window Balcony Door Shop Avg.
Pixel Accuracy (%)

Cohen et al. [4] 85 91 79 94 87.3
ATLAS [25] 78 87 71 95 82.8
Cohen et al. [3] 87 92 79 96 88.5
Rahmani et al. [29] 80.4 86.4 79.5 95.2 85.4
DeepFacade-V1 [23] 93.0 95.0 90.9 95.6 93.6
Rahmani et al. [30] 78.6 89.2 89.2 96.3 88.3
DeepFacade-V2 [22] 97.6 96.2 92.3 96.0 95.5
Ours 94.4 95.9 95.3 92.0 94.4

IoU (%)
DeepFacade-V2 [22] 80.3 85.2 63.1 80.3 77.2
Ours 89.8 88.0 64.3 86.1 82.1
∆ 9.5 2.8 1.2 5.8 4.9

Table 2. Quantitative comparison with state-of-the-art facade pars-
ing methods on the ECP dataset.

4.3. Quantitative Evaluation

We quantitatively evaluate our method by comparing
it with state-of-the-art facade parsing approaches on the
Graz50 and ECP datasets. As stated in the recent work
DeepFacade-V2 [22], most of the existing works merely
use simple pixel accuracy metric for evaluation. However,
high pixel accuracy does not always imply superior perfor-
mance because of the class imbalance. Following the previ-
ous work [22], we mainly use IoU metric for evaluation and
also report pixel accuracy results as a reference.

Table 1 shows the performance of our method and other
state-of-the-art methods on the Graz50 dataset. As it shows,
our method achieves the highest average pixel accuracy.
Compared with the state-of-the-art method DeepFacade-
V2 [22], our method gives better IoU results by a large
margin. In Table 2, we provide the quantitative comparison
on the ECP dataset. It shows that our method outperforms
the state-of-the-art method in IoU of all classes and pro-
vides comparable pixel accuracy results with DeepFacade-
V2 [22]. The “∆” in the last row denotes the performance
gain brought by our EACNet compared with DeepFacade-
V2, showing the superiority of our approach.

Table 1 and Table 2 show that our method provides much
higher IoU on each facade element category, especially
those highly aligned and repetitive in structure. In partic-
ular, for the ‘window’ category which is the most frequent
element on facades, compared with the best result of the
previous method, our method improves the IoU by about
10% on both Graz50 and ECP datasets. It demonstrates that
our EACNet effectively leverages the layout regularity of
building facades and exploits long-range dependencies be-
tween facade elements.

4.4. Qualitative Evaluation

To better demonstrate the superiority of our facade
parsing framework, we show some facade parsing results



Figure 6. Qualitative comparisons of our method and state-of-the-art facade parsing methods DeepFacade-V1 [23] and DeepFacade-V2 [22]
on the ECP dataset. The last three columns are the results parsed by the proposed EACNet, from left to right are the sample images with
labeled bounding boxes, the visualization of parameterized rectangular regions, and the rendered semantic maps, respectively.

in Figure 6 of our method and state-of-the-art methods
DeepFacade-V1/V2 on the ECP dataset. DeepFacade-V1
tends to produce rough region boundaries for facade ele-
ments. DeepFacade-V2 produces more rectangular regions
but mistakenly classifies the door as a window in the first
row. In contrast, our method produces more regular regions
for various facade element categories. Moreover, the pa-
rameterized parsing results allow overlapping and nesting,
which is more applicable than dense pixel-wise masks to
applications such as facade modeling. In particular, though
the area where windows and balconies overlap has a com-
plex texture, our parsing framework is able to produce com-
plete regions for ‘window’ and ‘balcony’ objects.

4.5. Results on Unrectified Facade Images

While the results on the ECP, CMP, and Graz50 datasets
well demonstrate the effectiveness of our EACNet, we also
show the flexibility of our EACNet on parsing unrecti-
fied facade images. On unrectified facade images, ele-
ments are not perfectly rectangular, for which our EACNet
is not applicable directly. However, there are many well-
established rectification approaches for facade images. We
take the TILT approach [47] which estimates the homog-
raphy matrix for image rectification based on low-rank tex-
ture features. Given an image region that contains windows,
TILT [47] estimates a homography matrix and applies the
projection transformation on the entire image to produce a
rectified facade image.

Method Window Door Avg.

DeepFacade-V2 [22] 71.1 77.9 74.5
Ours-Unrectified 65.2 68.8 67.0
Ours-Rectified 85.2 79.4 82.3

Table 3. Comparison of IoU on the eTRIMS Dataset [22]

We conduct evaluations on the 8-class eTRIMS
datasets [22], which contain 60 facade images from differ-
ent perspectives. We use 48 images for training and 12 im-
ages for testing. The eTRIMS dataset consists of 8 classes
including window, wall, door, sky, pavement, vegetation,
car, and road. Putting aside the categories not belonging
to facade elements, we choose the ‘window’ and ‘door’ cat-
egories for evaluation. Since only semantic masks on the
unrectified views are provided in the eTRIMS dataset, we
manually label the bounding boxes for evaluation.

We train two models of our EACNet on the rectified
images and unrectified images respectively and compare
the results with DeepFacade-V2 [22] in Table 3. ‘Ours-
Unrectified’ model is directly trained with the 2D bounding
boxes of facade elements on unrectified perspectives. It is
reasonable that this model can not achieve a higher IoU with
the ground-truth segmentation masks that are not rectangu-
lar. ‘Ours-Rectified’ is the model trained with 2D bounding
boxes that are well-fitted to the element regions on the rec-



Figure 7. Qualitative comparison for unrectified facade images. From left to right are the input image, ground truth mask, semantic
segmentation result of DeepFacade-V1 [23], our detection results without rectification, our detection result on the rectified image, and the
semantic mask obtained by transforming the detection results on the rectified image to the original view.

tified images. We test our model on the testing set of the
rectified images and obtain the bounding boxes detected on
the rectified images. Then we apply the inverse projection
transformation on the bounding boxes to produce the se-
mantic mask on the unrectified images. We calculate the
IoU with the ground truth. As Table 3 shows, our method
outperforms the segmentation-based method DeepFacade-
V2 [22] by a large margin with image rectification.

Figure 7 shows an example of facade parsing for un-
rectified images using different methods. Though the
segmentation-based method is flexible to represent non-
rectangular regions under perspective projection, it fails to
generate accurate and regular region boundaries for facade
elements. Due to the restriction of rectangular shapes of
the detection framework, directly applying our EACNet on
the unrectified images successfully detects all elements but
fails to generate well-fitted region boundaries. In compari-
son, with a well-established rectification step, our EACNet
can produce accurate and structured region boundaries for
facade elements.

4.6. Ablation Study

4.6.1 Different Attention Mechanisms

As described in Sec. 3.2, our EACM is designed to collect
row-column spatial contextual information and leverage the
arrangement regularity of the facade elements. The recur-
rent criss-cross attention (RCCA) module of CCNet [15]
collects spatial context in criss-cross paths, which is simi-
lar but different from our EACM. We compare our EACM
with RCCA on Graz50, ECP, and CMP datasets. We re-
place EACM with RCCA in our framework and use the
same training settings for comparison. We test two mod-
els, RCCA1 and RCCA2 which employ one-loop and two-
loops of RCCAs, respectively. As Table 4 shows, our
EACM brings performance gain on all three datasets, while
the RCCA only achieves slight improvement on the CMP
dataset. RCCA even performs worse than the baseline net-
work on Graz50 and ECP. One reason is that RCCA collects

Dataset Method AP AP50 AP75

Graz50

Baseline 65.8 94.1 85.2
+ RCCA1 62.3 94.1 79.7
+ RCCA2 63.8 94.7 83.1
+ EACM 68.2 96.8 84.2

ECP

Baseline 79.3 99.4 93.6
+ RCCA1 78.1 99.4 93.0
+ RCCA2 78.4 99.4 94.1
+ EACM 80.1 99.4 95.2

CMP

Baseline 39.7 67.9 41.0
+ RCCA1 39.7 68.4 40.7
+ RCCA2 39.8 68.3 41.2
+ EACM 40.2 68.4 42.3

Table 4. The performance of our method on Graz50, ECP, and
CMP datasets. We show comparison of the proposed EACM
and the most related method, recurrent criss-cross attention mod-
ule [15]. RCCA1 and RCCA2 correspond to RCCAs with the
number of recurrent 1 and 2 separately.

contextual information from all the pixels on the criss-cross
paths and applies softmax on them, subsequently cannot ef-
ficiently utilize the element-arrangement regularity on each
direction separately. As a result, for the Graz50 and ECP
datasets that contain facades with neatly arranged facade
elements, RCCA does not work well. For facades with
complex layouts and more categories in CMP, the dense
full-image contextual information harvested by RCCA can
be helpful. In contrast, our EACM effectively exploits the
layout regularity in horizontal and vertical directions sepa-
rately and outperforms RCCA on various scenarios.

4.6.2 Effect of EACM

In Table 5, we show the quantitative performance of our
method with different configurations on the CMP dataset.
‘+ EACM’ means adding an EACM between the hourglass
backbone and the detector head. ‘Flip Test’ means combin-
ing horizontally flipped images during inference, which is



+ EACM Flip Test AP AP50 AP75 Sill Balcony Door Molding Window Cornice

38.6 67.1 38.9 38.6 33.9 33.8 25.3 59.2 40.8
X 39.7 67.9 41.0 40.3 34.9 34.5 25.5 60.8 42.2

X
39.2 67.5 40.1 39.9 35.0 34.4 24.9 60.4 40.6

X 40.2 68.4 42.3 40.9 35.8 34.6 26.0 62.0 41.6

Table 5. The effect of our element-arrangement context module. The last six columns are per-class AP results of facade element categories
of the CMP dataset. We show results with/without flip test-time augmentation.

widely used in recent detection networks [19, 49]. The re-
sults show that our EACM consistently improves the three
AP metrics and per-class AP of important facade element
classes. In particular, our EACM significantly improves the
parsing accuracy of the window category (from 59.2 to 60.4
without flip-test and from 60.8 to 62.0 with flip-test). It is
mainly because that windows show strong regularity and
repetitiveness and our EACM effectively exploits the ar-
rangement regularity and appearance similarity among win-
dow elements. Doors do not strictly follow the arrangement
regularity with other elements. Nevertheless, the slight im-
provement for the ‘door’ category also indicates that our
EACM is also helpful for shape regularity since it collects
local spatial context for each position on a door.

To validate the effectiveness of the proposed EACM on
leveraging the layout regularity, we visualize the attention
maps in Figure 8. We can see that EACM focuses on el-
ement regions aligned in the same row or column, which
proves that our method effectively exploits the spatial ar-
rangement regularity and appearance similarity. In addi-
tion, we further investigate the effect of EACM by explor-
ing two different strategies for fusing the contextual features
produced by two context branches. Besides concatenating
features Srow and Scol to produce S, another possible fu-
sion strategy is element-wise addition. The precision-recall
curves under different IoU thresholds are shown in Figure 9.
The results indicate that the two configurations of EACM
both make a performance improvement and concatenation
fusion achieves the best performance.

4.6.3 Different Backbones

To further demonstrate the effectiveness of our EACM
on various networks, we combine our EACM with differ-
ent backbone networks, including ResNet-101 [13], DLA-
34 [46], and Hourglass [28]. Table 6 shows our quantitative
results on the CMP dataset. We report the average preci-
sion over all the IoU thresholds (AP), AP at IoU threshold
0.5 (AP50), and 0.75 (AP75). One can see that adding our
EACM brings performance gains on all the three backbone
networks, demonstrating that our EACM facilitates the fa-
cade parsing task by exploiting the spatial arrangement reg-
ularity and appearance similarity of facade elements.

5. Conclusion

In this paper, we presented an Element-Arrangement
Context Network (EACNet) for facade parsing. Our EAC-
Net parses a facade image into axis-aligned element re-
gions as parameterized bounding boxes. The proposed
Element-Arrangement Context Module (EACM) collects
spatial column-context and row-context simultaneously, ef-
fectively leveraging the spatial arrangement regularity and
appearance similarity. Experiments on four public datasets
show that our facade parsing framework outperforms the ex-
isting facade parsing methods. The significant performance
improvements demonstrate that the proposed EACM guides
the network focus on facade elements aligned in the same
row and column to utilize layout regularity.
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