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Abstract

For 3D mesh pose transfer, the target model is ob-
tained by transferring the pose of the reference mesh
to the source mesh, where the shape and pose of the
source are usually different from that of the reference.
In this paper, pose transfer is considered as a deforma-
tion process of the source mesh, and we propose a 3D
mesh pose transfer method based on skeletal deforma-
tion. First, we design a neural network based on the
edge convolution operator to extract the skeleton of the
3D mesh and bind the rigid weights; then, we calcu-
late the bone transformations between the two skeletons
with different poses and use the diffusion equation to
smooth the rigid weights; finally, the source mesh is de-
formed according to the bone transformations and the
smooth weights to get the target mesh. Experiment re-
sults on different datasets show that the pose of the ref-
erence mesh can be effectively transferred to the source
one while maintaining the shape and high-quality geo-
metric details of the source mesh by using our method.

Keywords: Pose transfer,Deep learning,Skinning de-
formation,Skeleton extraction

1. Introduction

3D mesh is an important research object in computer
graphics, widely used in computer animation, film, video
games, and other related industries. 3D mesh deformation
and editing are one of the current research hot spots, and
new meshes can be obtained by deforming and editing ex-
isting models [44].

As example-based deformation and editing methods, de-
formation transfer and pose transfer have many research re-
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sults. Moreover, with the wide application of deep learning
in graphics, pose transfer based on deep learning has begun
to attract attention [35].

Inspired by image style transfer in computer vision, cur-
rent pose transfer methods based on deep learning [35, 39]
are mainly end-to-end networks with encoder-decoder ar-
chitecture. First, the encoder encodes the source mesh’s
shape information and the reference mesh’s pose informa-
tion into the latent space. Then the decoder generates
the detail-preserving target mesh. However, these meth-
ods have the following problems: firstly, due to the lack
of regularity constraint, there is a high degree of freedom
of encoding in the latent space [23]. As a result, the intrin-
sic connections of the original signal cannot be well rep-
resented by the generated feature space, so the network is
prone to overfitting. For example, the model testing results
of [39] show that, for datasets outside the training shape and
pose space, the prediction error metric Point-wise Mesh Eu-
clidean Distance (PMD) is much larger than the seen pose
in the training set. Second, PointNet [34] is used by these
networks for feature extraction. However, PointNet learns
each vertex feature independently, which ignores the con-
nection between vertices and cannot effectively capture the
local features information between vertices [15]. There-
fore, the predicted target mesh is distorted, even with slight
changes such as an increase in the number of vertices or a
change in the mesh connectivity.

Different from the above methods, to avoid the overfit-
ting phenomenon caused by the high degree of freedom of
encoding in the latent space of the above end-to-end neu-
ral networks, we design a neural network that encodes the
topology and shape information. The mesh skeleton and
rigid skinning weights are all obtained from the network.
We use the skeleton to present the pose of the mesh and ex-
plicitly solve the transformation from the reference skeleton
to the source one. Then, with the help of LBS deformation,
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the detail-preserving target mesh is obtained. Our method
has better generalization than the end-to-end neural network
methods.

To solve the problem that PointNet cannot effectively
capture local features, we get a new edge convolution op-
erator GKEdgeConv by slightly modifying the edge con-
volution operator of DGCNN [41], which can effectively
encode the local information of mesh vertices and skeleton
joints. We use it as the basis for designing a neural network
to extract the mesh’s skeleton joints and rigid weights.

We calculate the rigid transformation matrix of corre-
sponding joints between two pose skeletons in the skinning
deformation phase. The skinning weights are considered a
function of time variation on the mesh, and the initial state
of the function is the rigid weights bound by the neural net-
work. Next, we smooth the rigid weights using the diffu-
sion equation based on the cotangent Laplacian to gain the
weights satisfying the properties of non-negativity, linearity,
smoothness, etc. Finally, the detail-preserving target mesh
is obtained using linear blend skinning deformation.

The contributions of this paper are summarized as fol-
lows:

• We proposed a 3D mesh pose transfer method based on
skeletal deformation, and the pose transfer problem is re-
formulated to a skin deformation problem. Experiments
on the test dataset show that the target mesh predicted by
this method on the unknown pose space has better perfor-
mance in terms of accuracy and detail-preserving com-
pared with other deep learning-based pose transfer meth-
ods.

• We designed a neural network for skeleton extraction and
rigid weight binding of 3D mesh, which can effectively
encode local information of mesh vertices and skeleton
joints using the edge convolution operator proposed in
this paper.

• A rigid skinning weights deformation method based on
diffusion equation is posed, and the weights satisfying the
geometric proxy properties are obtained by smoothing the
rigid weights with cotangent Laplace. The experimental
results of LBS deformation show that the target mesh ob-
tained by deforming has satisfactory geometric details.

2. Related Work

This section briefly reviews the primary deformation
transfer and pose transfer methods and then introduces the
skinning deformation and automatic rigging methods that
are closely relevant to this work.

2.1. Deformation transfer and pose transfer

For deformation transfer, the geometric transformation
between two different poses is applied to another source

model to produce similar deformations. The source model
and the reference one are not required to have the same
number of vertices or triangles [37], but the correspond-
ing vertex pairs between the models should be specified as
constraints to find the geometric correspondence. Baran et
al. [4] proposed a semantical deformation transfer method,
and deformation is transferred by establishing two semanti-
cally matched shape spaces. However, the user also needs
to provide the corresponding semantic relationship of the
models. Gao et al. [14] proposed a method based on gen-
erative adversarial networks. They combined cyclic con-
sistency loss and visual similarity metric to achieve auto-
matic deformation transfer between two non-corresponding
shapes. However, recollecting data and retraining are
needed whenever dealing with unseen models. More intro-
duction to deformation transfer can be found in [14].

For pose transfer, there is only one reference pose and
a source model. The final goal is to obtain a target model
that keeps the source model’s geometric details and a sim-
ilar pose to the reference. Lévy [28] projected the vertices
of two meshes to the Laplacian matrix harmonic basis and
exchanged the low-frequency coefficients of two meshes
with the same connectivity to realize pose transfer. How-
ever, for non-isometric meshes, there are serious distortions.
Kovnatsky et al. [24] constructed coupled quasi-harmonic
bases, which are compatible eigen basis for non-isometric
meshes based on functional maps. Nonetheless, directly
exchanging the low-frequency coefficients results in details
loss. Yin et al. [43] proposed a detail-preserving hierarchi-
cal spectral pose transfer method, which is low efficiency
due to the need for the user to interactively specify and par-
tition the local meshes to be subjected to secondary pose
transfer. To reduce the interaction, an automatic method to
detect and segment the local meshes is proposed by Zou et
al. [46]. However, during the low-frequency transfer, if the
deformation of the local meshes is too small, that will lead
to automatic detection failure, and manual operation should
be introduced.

Deep learning methods have brought new ideas to de-
artificialize pose transfer. There are [5, 12, 35, 39] and other
methods have been proposed. For human pose transfer, an
end-to-end neural network Neural Pose Transfer (NPT) is
designed by Wang et al. [39]. They combined the Point-
Net [34] with the spatially adaptive instance normalization
layer in image style transfer [17]. The encoder encodes both
local details and global contexts of the reference mesh to
obtain the pose feature, and then the pose feature is fed into
the decoder to decode the output under the guidance of the
source mesh. They achieve fully automated pose transfer.
However, their method requires that the source mesh and the
reference mesh have the same number of vertices because
they simply concatenate the features without considering
the correspondence between the meshes. Song et al. [35] es-



tablished the correspondence between the source mesh and
the reference mesh by solving an optimal transport prob-
lem. They warp the reference mesh according to the dense
correspondence and obtain a coarse warped mesh refined
with elastic instance normalization layer. Since the above
methods all treat vertex independently to maintain permu-
tation invariance and the geometric properties of the mesh
are ignored, it is difficult for the network to capture the lo-
cal features of the mesh. In this paper, we design a network
based on the edge convolution operator of DGCNN [41].
Our network can better encode the global and local features
of the mesh, and the isomorphic skeleton of the source mesh
and reference mesh can be constructed without the mesh
correspondence. Instead of constructing the pose transfer
results directly, we finally obtain better pose transfer results
by skinning deformation.

2.2. Skinning deformation and Automatic rigging

Skinning deformation is usually a skeleton-based mesh
deformation technique. LBS [31], SBS [21] and DQS [20]
are common skinning deformation methods. LBS is widely
used in computer animation, video games, and other fields
because of its easy implementation and fast computation.
However, serious problems such as elbow collapse and
candy paper would be brought from the LBS deformation
process. Each vertex’s transformation is represented as a
nonlinear function of skeletal transformations [20, 21, 26],
which achieves a better trade-off between deformation qual-
ity and computation speed. However, these methods, like
LBS, require a more fine-grained weight binding between
the geometric proxy and the model. In recent years, Le and
Lewis [27] proposed Direct Delta Mush (DDM) based on
Delta Mush (DM) [32]. Laplace smoothing [13] is applied
to the mesh before and after LBS deformation, and the ar-
tifacts caused by using rigid skin weights are eliminated in
DM. Furthermore, the direct computational form of DM is
derived, and the computational and storage costs are opti-
mized in DDM. In this paper, we use fast LBS to deform
the source mesh.

In skinning deformation, professional people build the
underlying skeleton of the mesh and bind skinning weights.
The automatic generation of the skeleton and the skinning
weights are challenging in computer graphics [29]. The pi-
oneering work was presented by Baran and Popović [3].
They do skinning by solving a heat equilibrium equation,
yet a predefined skeleton template is required to fit the input
model. Skeletons are extracted by analyzing the geometric
features of the input model in [6, 11], but there is a lack of
precise control over the output skeleton topology.

Wang and Solomon [40] divided skinning weight cal-
culation into geometry-based methods and sample-based
methods. For geometry-based methods, Baran and
Popović [3] solved the heat equilibrium equation, and a har-

monic equation is solved in [19, 45], resulting in the har-
monic weights related to the mesh resolution. Biharmonic
equations can also be used for skinning weight computa-
tion [9]. Jacobson et al. [18] obtained bounded biharmonic
weights by minimizing the biharmonic energy with con-
straints. In recent years, Bang and Lee [2] edited weights
through interactive spline curves; Wang and Solomon [40]
regarded the weight calculation as the inverse problem of
recovering the best anisotropy tensor and got the quasi-
harmonic weights by solving the second-order parametric
elliptic partial differential equation. Although geometry-
based methods can yield high-quality skinning weight,
manual interaction or more complex calculations are usu-
ally required.

For sample-based methods, the spatial consistency
among the samples can be used for fitting the samples to
skinning models such as LBS to obtain high-quality skele-
tons and weights. [25, 38] are the classical methods. How-
ever, it is necessary to provide a set of deformation samples
of the model for these methods, which is difficult to satisfy
in practical applications. With the development of neural
networks, methods whose input is only a single model are
proposed. RigNet posed by Xu et al. [42] is an end-to-end
model based on a graph neural network. Mesh shrinkage
and an attention-based clustering method are applied to pre-
dict the skeleton. The user can control the sparsity of the
nodes of the generated skeleton by adjusting the parame-
ters but cannot directly control the topology of the gener-
ated skeleton. The prediction network of skinning weight
is similar to that of the skeleton, besides the vertex-to-bone
volumetric geodesic distance as the input feature is needed.
Li et al. [29] considered the desired skeleton hierarchy in
the network architecture and proposed the Neural blend
shape (NBS). They used the edge convolution operators of
MeshCNN [16] to build the network. A graph convolution
operator with skeleton-aware features and a pooling opera-
tor based on mask weights are applied to predict the offset
of child joints relative to the parent joint. The method as-
sumes that the input is a T-pose, which limits the application
of this method in pose transfer. Compared with these deep
learning-based methods, our skeleton extraction network is
free from the constraints of the T-pose or symmetric models.
We predict the rigid skinning weights of the mesh bound to
the skeleton and smooth the rigid weights by the diffusion
equation based on the cotangent Laplacian operator. Then,
high-quality LBS deformation results can be obtained.

3. Method

Given two meshes, one is the source mesh S = <V,F>,
and the other is the reference mesh R = <Q,F r>, where
V ∈ R3×n and Q ∈ R3×nr are the vertex set of the source
mesh and the reference mesh; F and F r are the correspond-
ing faces. The result of pose transfer is the target mesh



Figure 1. Method overview. Our neural network extracts the skele-
tons and binds the rigid weights of the source model and the ref-
erence model separately. The rigid weights are used to obtain the
smooth weights by solving a diffusion equation, the skeleton is
used to calculate the transformation matrix of pose deformation.
Finally, the pose transfer is accomplished by deforming the source
model into the target model.

T = <U,F>,U ∈ R3×n. The pose of the target mesh
should be similar to the reference mesh, and the shape de-
tails should be the same as the source mesh.

The overview of our pose transfer method is depicted
in Fig. 1. First, the source mesh and the reference mesh
are fed to the neural network respectively to obtain the rigid
weights W ∈ Rn×m, W r ∈ Rnr×m and the extracted joints
C ∈ R3×m, Cr ∈ R3×m. For convenience, this phase is
called rigid weights skinning and joints regression (see the
blue dotted box in Fig. 1).

Second, we construct the skeleton S = <C,E> of the
source mesh and the skeleton Sr = <Cr, E> of the refer-
ence mesh. Pose transfer between the skeletons is simpli-
fied as the orientation consistency problem between bone
vectors of the source model and the reference model. Then,
we traverse the skeleton from the root joint and solve the
global transformation matrix T1, T2, . . . , Tm ∈ R4×4 of
each joint. These global transformation matrices deform the
source mesh skeleton so that each bone vector is oriented in
the same direction as the bone vector of the reference mesh
skeleton. This phase is called skeleton pose transfer (see the
green dotted box in Fig. 1).

Finally, we smooth the rigid weights W of the source
mesh S by solving the diffusion equation. It can obtain
appropriate smooth weights Wsmooth ∈ Rn×m by adjust-
ing the parameters of the diffusion equation. With the
global transformation matrix T1, T2, . . . , Tm and the skin-
ning weight matrix Wsmooth ∈ Rn×m, we deform the
source mesh S via LBS (Linear Blend Skinning) to obtain
target mesh T . This phase is called LBS based on diffusion
equation (see the orange dotted box in Fig. 1).

Each phase is described in detail below.

3.1. Rigid weights skinning and joints regression

We design a neural network based on a topology-aware
edge convolution operator to bind rigid weights and ex-

Figure 2. The overall architecture of network. The rigid weight
confidence module fC output the confidence of vertex bound to
each joint. The joints regression module fJ predict the skeleton
joints to construct skeleton.

tract skeleton joints. As shown in Fig. 2, the neural net-
work consists of a rigid weight confidence module fC and a
joints regression module fJ . For a mesh, M = <V,F>,
the output of the rigid weight confidence module fC is
the confidence of vertex bound to each joint, and the rigid
weights W ∈ Rn×m is calculated by the argmax operator.
Then, the rigid weights W and the mesh M are inputted
to the joints regression module fJ to predict the skele-
ton joints C ∈ R3×m, and the skeleton S = <C,E> is
constructed according to the predefined skeletal hierarchy.
The following subsections describe the details of the rigid
weights confidence module fC , the joints regression mod-
ule fJ , and the topology-aware edge convolution operator
GKEdgeConv.

3.1.1 Rigid weight confidence module

Figure 3. The structure of fC . The task is similar to mesh seg-
mentation, and GKEdgeConv layer can effectively encode local
information of mesh vertices(It will be introduced in detail in sub-
section 3.1.3).

The structure of the rigid weight confidence module fC
is shown in Fig. 3. First, the mesh is fed to three-layer
GKEdgeConv. Next, the global shape features of the mesh
are encoded by the MLP layer and the pooling layer. Fi-
nally, combining local vertex features and global shape fea-
tures, the rigid weight confidence matrix A ∈ Rn×m is out-
putted by the last MLP layer.

A = (Aij) = fC (M ;wa) ,



where the learnable parameters of module fC are denoted as
wa, and Aij is the probability of vertex i bound to the joint
j. According to matrix A, the rigid weight matrix W =
(Wij) can be computed as follows:

Wij =

{
1, arg max

∀x∈C
Ai (x) = j

0, others
. (1)

Unlike the smooth weights, the value of the rigid weight
is either 0 or 1, and any vertex vi would be bound to
the most relevant joint. As shown in Fig. 3, we visual-
ize the rigid weights. In section 3.3, we will smooth the
rigid weights based on the diffusion equation to obtain the
smooth weights that can be used for LBS deformation.

3.1.2 Joints regression module

Figure 4. The structure of fJ . The skinning-based pooling is in-
spired by NBS [29]. The difference with NBS is that we use rigid
weights instead of smooth weights to collapse vertices features
into the joints’ features set C′.

Fig. 4 displays the structure of the joints regression mod-
ule fJ . Through the first three-layer GKEdgeConv convo-
lution layer, the deep vertex representation matrix V ′ ∈
Rn×k with k channels is obtained. The jth joint’s high-
dimensional features C ′

j ∈ Rk is computed as follows:

C ′
j =

∑n
i=1 WijV

′
i∑n

i=1 Wij
.

In this way, only the vertices associated with each joint
are involved in the computation of its deep features so that
the network can better learn the joint positions. More details
can be found in [29].

We apply the edge convolution operator GEdgeConv that
only retains the topology-aware part to reduce the dimen-
sion of the deep joints features to get the 3D joints coordi-
nate matrix C:

C = fJ (M,W ;wc) ,

where wc are learnable parameters. According to the output
of fJ and the fixed skeletal topology, we can construct the
skeleton tree S = <C,E>.

3.1.3 Topology-aware edge convolution operator

To make the network better learn the local information
of mesh or skeleton, we use the edge convolution in
DGCNN [41] to extract the local features of the vertices
and joints. For vertex v, the edge convolution x′

v encodes
the global features xv and the local features xu − xv with a
multilayer perceptron:

x′
v = max

u∈N(v)
MLP (xv, xu − xv;wmlp),

where wmlp are learnable parameters of the MLP . N (v)
is the neighborhood of the vertex v. The key to the edge
convolution operator is the construction of the neighbor-
hood N (v). DGCNN uses the k-nearest neighbor strategy
to search the neighborhood N (v), which means a pairwise
distance matrix in feature space will be calculated, and the
closest k vertices are taken as the vertex neighbors.

Figure 5. GKEdgeConv Layer. The edge convolution is inspired
by RigNet [42], we use the k-nearest neighborhood instead of the
geodesic neighborhood in RigNet.

As shown in Fig. 5, Our vertex neighborhoods are con-
structed by two strategies, one is the mesh topology one-
ring neighborhood Ng (v), and the other is the k-nearest
neighborhood Nk (v). We call the edge convolution opera-
tor GKEdgeConv with such two type neighborhoods. The
one-ring neighborhood Ng (v) is static, determined by the
mesh’s topology, and not affected by feature space changes.
On the other hand, the k-nearest neighborhood Nk (v) is a
dynamic neighborhood. The vertex features encoded by the
one-ring strategy are denoted as x′

v,g , the vertex features
encoded by the k-nearest strategy are denoted as x′

v,k, the
output features of the edge convolution operator are denoted
as x′

v , then GKEdgeConv can be expressed as:

x′
v,k = max

u∈Nk(v)
MLP (xv, xu − xv;wk), (2)

x′
v,g = max

u∈Ng(v)
MLP (xv, xu − xv;wg), (3)

x′
v = MLP

(
concat

(
x′
v,k, x

′
v,g

)
;wconcat

)
, (4)

where wk, wg and wconcat are the learnable parameters.
Eq. 2 and Eq. 3 represent the edge convolution operation
for encoding dynamic k-nearest neighbor features and static



topology one-ring features, respectively. Eq. 4 is the MLP
operation after concatenate x′

v,k and x′
v,g . The parameters

wconcat of the MLP layer trade off the importance of the
topology-aware feature x′

v,k and the geometry-aware fea-
ture x′

v,g .
In the joints regression module, since the number of

joints is small, only the one-ring features are sufficient to
get good results. We use the topology one-ring edge convo-
lution operation expressed in Eq. 3 (that is GEdgeConv in
Fig. 4) to learn the features of the joints.

3.1.4 Training detail

We first pre-train modules fC and fJ separately. Then two
modules are trained simultaneously to finetune the parame-
ters wa and wc. More detailed information about the dataset
will be introduced in section 4.

The binding of rigid skinning weights is similar to the
mesh segmentation problem, so we train the module fC un-
der the supervision of classical softmax cross-entropy loss.
First, denote the ground truth of rigid skinning weights as
Ŵ ∈ Rn×m. The probability matrix A ∈ Rn×m is the out-
put of the module fC and is transformed into a probability
distribution by the softmax operator. The loss function La

is the cross-entropy loss as follows:

La =
1

n

n∑
i

m∑
j

Ŵij log (softmax (Aij)). (5)

For the joints regression module fJ , the pre-training loss
is the mean square error Lc:

Lc =
∥∥∥Ĉ − C

∥∥∥2 , (6)

where Ĉ ∈ R3×m is the ground truth joints matrix. Since
the quality of the rigid weights used for skinning-based
pooling would greatly influence the prediction accuracy of
the module fJ , we pre-train the joints regression module
with ground truth weights Ŵ .

After pre-training, the rigid weight matrix W obtained
from the module fC is fed to the module fJ , and the two
modules fC and fJ are trained at the same time to finetune
the parameters learned in the pre-training phase. Eq. 5 and
Eq. 6 are the supervision of the network.

3.2. Skeleton pose transfer

After predicting the source joints C and the reference
joints Cr from the network, we construct the source skele-
ton tree S and the reference skeleton tree Sr according to
the predefined skeletal topology. In this way, the pose of the
mesh is represented by the corresponding skeleton. Finally,
pose transfer is converted into solving the global transfor-
mation matrices T1, T2, . . . , Tm. These transformation ma-
trices transform the source skeleton S to the target skeleton;

Algorithm 1 skeleton pose transfer
Input: S, Sr,W,W r, V,Q
Output: T1, T2, . . . , Tm

1: Calculate the rotation matrix R1, R2, . . . , Rm accord-
ing to the number of child joints by SVD or Rodriguez
formula.

2: Initialize the global transformation matrix of the root

joint as
[
Rroot 0
0 1

]
3: Traverse the skeleton according to its topology and cal-

culate the translation vectors t1, t2, . . . , tm by Eq. 9
4: Construct the transformation matrixes T1, T2, . . . , Tm

of each joint.
5: return T1, T2, . . . , Tm;

meanwhile, the orientation of each bone in the target skele-
ton should be the same as the skeleton Sr.

The global transformation matrix Ti ∈ R4×4, corre-
sponding to the joint Ci, includes a rotation matrix Ri ∈
R3×3 and a translation vector ti ∈ R3×1. The rotation ma-
trix guarantees that the orientation of each bone is consistent
with the reference bone, and the translation vector guaran-
tees that the starting joint of each bone is the end joint of its
parent bone after deformation.

We first solve the rotation matrix Ri. The rotation matrix
can be obtained by computing the rotation of the bone vec-
tors between the source and reference skeletons. The bone
vector points from joint Ci to its child. Let the child(i)
denote the number of children of Ci, and there are the fol-
lowing cases in our predefined skeletal topology:

(1) When Ci is a root joint or chest joint, child(i) = 3.
There are three bone vectors in both source and reference,
so we apply SVD to solve the rotation. The details of SVD
can be found in [36].

(2) When Ci is a general joint, child (i) = 1. We solve
the rotation between two vectors according to the Rodriguez
formula.

(3) When Ci is a leaf joint, child(i) = 0. Since no child
can form a vector with Ci, we add a virtual child Cvirtual ∈
R3×1 additionally. The virtual child joint is calculated by
the vertices bound to Ci as follows:

Cvirtual =
VWi

n(i)
, (7)

where Wi ∈ Rn×1 is the rigid weights of all vertices bound
to Ci, which can be obtained from the rigid weight matrix
W directly. The denominator n(i) is the number of vertices
bound to Ci. The next step is as same as case (2).

Then we can solve the translation vector ti. First, the



transformed joint C ′
i is computed:[
C ′

i

1

]
= Tp(i)

[
Ci

1

]
, (8)

where p (i) is the parent of the joint Ci. Starting from the
root joint, according to the hierarchy of the skeleton, the
translation vector of each joint is:

ti = C ′
i −RiCi. (9)

In particular, the translation vector of the root joint is 0,
which represents the model as a whole is not translated.

The whole process of skeleton pose transfer is shown in
Alg. 1.

3.3. LBS based on diffusion equation

Given the skinning weight matrix W and the transforma-
tion matrixes T1, T2, . . . , Tm, we deform the source model
S to obtain the target model T by LBS:[

ui

1

]
=

m∑
j=1

WijTj

[
vi
1

]
, i = 1, . . . , n (10)

The deformed mesh will be torn if LBS with rigid
weights is directly applied. So, we smooth the rigid weights
by solving the diffusion equation. The diffusion equation, a
second-order linear partial differential equation, can smooth
the time-dependent process for a given signal value [10].
Desbrun et al. [13] gave the representation of the diffusion
equation based on the backward Euler method:

(I− dtλL) f (t+ dt) = f (t) ,

where L is the Laplace-Beltrami operator, λ is the diffu-
sion coefficient, and f (t) is the function about time t to be
smoothed. The rigid weights W are regarded as a function
to be smoothed over time on the mesh, and the smoothed
weights Wsmooth can be expressed as:

Wsmooth = (I− λL)
−1

W.

Wsmooth can be seen as the blending of the weights W
according to the heat diffusion principle [3], and the blend-
ing coefficients depend on the discrete Laplace operator L.
The cotangent Laplace operator is an approximation of the
mean curvature normal to the mesh vertices, which can bet-
ter reflect the mesh geometry [13]. In this paper, we use the
cotangent Laplace operator.

The diffusion coefficient λ determines the degree of
weight smoothing. As shown in the first row of Fig. 6. The
first column of the second row shows the result of LBS de-
formation using rigid weights, and there is a noticeable tear
at the elbow. We replace the rigid weight in Eq. 10 with the
smoothed weights Wsmooth. For λ = 5, there are still some

Figure 6. Qualitative evaluation of LBS deformation under differ-
ent λ smooth skin weights. Red indicates the weight is 1, blue
indicates the weight is 0, and the GT skinning weights are the
standard weights of the SMPL [30] model. The skinning weights
at the boundary gradually become smooth as λ increases

Figure 7. Quantitative evaluation of LBS deformation under dif-
ferent λ smooth skin weights. The evaluation metrics are Point-
wise Mesh Euclidean Distance (PMD) and the Edges Length Ra-
dio (ELR), see subsection 4.1.

artifacts compared with GT at the elbow. For λ = 20, the
deformation of the elbow is more similar to GT. The volume
of the elbow is shrunken significantly for λ = 35.

The hyper-parameter λ is unfixed. There are different
optimal values for the different poses of the LBS deforma-
tion process. Fig. 7 shows the quantitative evaluation of
Fig. 6. It can be seen that the error between the deforma-
tion and GT is minimum when λ is between 10 and 20. For
convenience, the value of λ is set as 20 in all experiments.

4. Experiments

In this section, we first introduce the implementation
details, such as the experimental environment and dataset.
Then, the results of skinning weight binding, skeleton ex-
traction, and pose transfer on SMPL and non-SMPL mesh
are evaluated. Finally, the effectiveness of each module is
demonstrated through an ablation study.

4.1. Implementation details

Environment: The experiments are conducted on
NVIDIA Geforce RTX 3090 GPU(24 GB) and Intel Core
i7-11700K/3.6GHz, CPU(32GB RAM). We implemented
our network model with Pytorch, Numpy and other li-
braries.



Dataset: The currently popular SMPL models [30] are
used to construct the training and testing datasets. Specif-
ically, for the training phase, 5000 pairs of pose and shape
parameters of SMPL are randomly generated in each epoch.
The vertices coordinates, skeletons, and skinning weights
are taken as ground truth. The order of vertices is randomly
shuffled (correspondingly, the skinning weights and the face
indexes are reconstructed). In particular, since the skin-
ning weights of SMPL are smooth, we convert the smooth
weights into rigid weights using Eq. 1. The same method is
applied for the test dataset to generate 50,000 pairs of refer-
ence and source meshes randomly. The ground truth of pose
transfer is generated through the source shape parameters
and the reference pose parameters. In addition to SMPL,
we also tested our method in SMAL [47], FAUST [8],
DYNA [33], and MG-dataset [7].

Training: For the pre-training, the batch size is set to 8,
the learning rate is 1e-4, and the epochs are 100. In the fine-
tuning phase, the batch size is 4, the learning rate is reduced
to 5e-5, and the epochs are set to 50. The cosine annealing
learning rate updates the learning rates of both phases, and
the network parameters are updated using Adam [22].

Metrics: We use PMD and ELR for evaluation. Let the
predicted mesh be M = (V, F ) and GT is M̂ =

(
V̂ , F

)
:

PMD =
1

|V |
∑
i

∥∥∥Vi − V̂i

∥∥∥2
2
,

ELR =
1

|V |
∑
i

∑
j∈N(i)

∣∣∣∣∣∣∣1−
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∥∥∥2
2

∣∣∣∣∣∣∣ ,
where PMD measures the corresponding vertex coordinates
difference between the predicted mesh and the GT, and ELR
measures local details. If PMD is small and ELR is large,
it indicates that the global pose of the mesh is sufficiently
learned but without enough details.

4.2. Experimental results

This section shows the results of skeleton extraction and
skinning weight binding, pose transfer, ablation study, and
time efficiency. The experiments of skeleton extraction and
skinning weight binding mainly compared with NBS [29].
We compare our pose transfer results with that of NPT [39]
and 3D-CoreNet [35]. For NPT and 3D-CoreNet, we use
the methods provided by the authors for training.

4.2.1 Skeleton extraction and skinning weight binding

The latest automatic rigging and skinning methods are
RigNet [42] and NBS [29]. However, RigNet cannot guar-
antee the generation of the same skeleton hierarchy for dif-
ferent meshes, so we mainly compare our results with NBS.

Figure 8. Comparison of rigging and skinning weights under dif-
ferent pose. We visualized the predicted rigging and skinning
weights, the first row is T-pose model, the second row is non-T-
pose model.

Avg Length Max Std Avg Std

0.2008 0.0106 0.0061

Table 1. Evaluation of bone length under different poses of the
same model. The average length of the bone can be seen as a
baseline. The maximum and average standard deviation of bone
length, much smaller than the baseline, indicates that our method
obtained stable bones.

Fig. 8 shows the skeleton extraction and weight-binding
results of NBS and our method. The different colors on the
mesh indicate the binding weights of different joints. The
pose in the first row is a common T-pose in mesh skinning,
and the results of our method and NBS are both satisfying.
The pose of the second row, which is an uncertain pose in
the pose transfer problem, is irregular. It can be seen that
there is an apparent difference between the result of NBS
and the GT. The first of the second row is the result that we
add the random pose meshes to re-train, and it is not better
than that of the pre-trained model(the second of the second
row). The network of NBS is trained by indirect supervi-
sion of the LBS deformation results, and LBS is usually
deformed from T-pose. When the initial pose is unfixed,
it is difficult for the model to converge. By comparison,
our result is more similar to the GT. We train the skeleton
extraction and rigid skin weight network by direct supervi-
sion and smooth the rigid weights by the diffusion equation.
The results of our method are both satisfying for T-pose and
non-T-pose.

Besides, we extract the skeletons of the meshes that are
the same shape with different poses and compare the length
changes of the same bone. As shown in Table 1, when the
average length of the bone is 0.2008, the maximum stan-
dard deviation is 0.0106 among all bones, and the average
standard deviation is only 0.0061, which indicates that the
bones obtained by our method are almost the same for the
meshes with different poses and the same shape. It is also



Figure 9. Qualitative comparison of pose transfer results on the SMPL dataset. We add zoomed wrist figures in the first and third rows.
Note the orientation of the hand.

consistent with the property that the mesh pose does not af-
fect the length of the bones.

4.2.2 Pose transfer results of SMPL meshes

Fig. 9 displays the pose transfer results of NPT, 3D-
CoreNet, and our method. There are distorted results of
NPT, such as the abdomen in the first two rows and the left
leg in the third row. The details of 3D-CoreNet’s results are
better than that of NPT, but some poses are insufficient, such
as the wrist in the first and third rows, and in the third row,
there are adhesions between the left leg and the abdomen.

The quantitative results are shown in Table 2. One can
see that our method’s similarity metrics PMD and CD are
better than that of NPT and 3D-CoreNet, which means the
pose of our target mesh is more accurate. Our method’s lo-
cal detail metrics ELR and Max Dist are also much smaller
than other methods, which indicates that the mesh details
can be kept better, and there are almost no unnatural bumps
or depressions on the mesh surface.

4.2.3 Pose transfer results of non-SMPL meshes

In this section, we test our model in different 3D model
datasets DYNA, SMAL, FAUST, and MG-dataset, to evalu-
ate the robustness of our method.

The human body meshes in DYNA and FAUST are ob-
tained by matching 3D scan sequences with templates. The
number of mesh vertices in these two datasets is the same
as that of the SMPL model, which is 6890. The MG-dataset

PMD(10−4) ↓ ELR(10−1) ↓ CD(10−1) ↓ Max Dist(10−1) ↓
NPT 5.41 3.62 2.36 9.94

3D-CoreNet 5.86 2.68 1.73 4.42
Ours 4.58 1.40 0.17 0.93

Table 2. Quantitative comparison of pose transfer results on the
SMPL dataset. PMD and ELR were defined previously. The small
Chamfer Distance (CD) indicates that the two point sets are sim-
ilar. Max Dist is the maximum value of the distance between the
corresponding vertices, which reflects whether there are unnatural
bumps or depressions on the mesh surface.

is a dressing model based on SMPL. The number of MG-
dataset standard model vertices is 27554, and the topologi-
cal relationship of the first 6890 vertices is the same as that
of the SMPL model. The skinning weights of the SMPL
model are mapped to the remaining vertices by a weight
mapping matrix. We take only the first 6890 vertices to pre-
dict joints and rigid weights for MG-dataset and map them
to the remaining vertices using the same method.

The pose transfer results on DYNA and FAUST are
shown in Fig. 10. The source mesh and the reference mesh
are both natural human poses. Though the pose and the
shape of these models are quite different from that of the
SMPL model, the results are still satisfying.

Fig. 11 shows the results of pose transfer on MG-dataset.
It can be seen that the details of the clothing are kept well.
Moreover, in the fourth column, the source mesh’s hands
and legs overlap, but our result is still good.

SMAL is a parametric animal model with 3889 vertices



Figure 10. Pose transfer results on the DYNA and FAUST.

Figure 11. Pose transfer results on MG-dataset.

and 33 joints. It includes five major animal classes: cat, dog,
horse, cow, and hippopotamus. We use the same method to
generate SMAL meshes for training and testing. The results
of 3D-CoreNet are obtained from the pre-trained model pro-
vided by the authors, as shown in the third row of Fig. 12.
One can see that the poses of the tails are incorrect from the
second to the fourth, and there is an unnatural stretch at the
root of the right front leg in the first. The models obtained
by our method are better than that of 3D-CoreNet.

To test the robustness to noise, we add random noise to
the vertices of the reference model, as shown in the fourth
column of Fig. 13. In the third and fifth columns, we can
see whether there is noise or not, and the generated target
meshes obtained by our method are mostly the same.

Figure 12. Pose transfer results on SMAL dataset.

In summary, although our model is trained on the SMPL
dataset, we can also get the target mesh with accurate pose
and detail on the non-SMPL human dataset. In addition,
the model can be extended to non-human meshes if there is
a suitable dataset like SMAL.

4.2.4 Ablation study

To demonstrate the effectiveness of the several compo-
nents of our pose transfer method, we tested the perfor-
mance without the network topology-aware module (one-
ring neighbor features extraction module) and the per-
formance without the diffusion equation smoothing rigid



Figure 13. Robustness to noise.

weights separately. Table 3 displays the experiment results.
Full and w/o denote the results with all modules and the re-
sults without some modules, respectively. Ng (v) and diff
denote the one-ring neighbor features extraction module
and the smoothing rigid weight module based on the diffu-
sion equation. From Table 3, the missing one-ring neighbor
features extraction module impacts the PMD loss obviously.
On the other hand, ELR loss would increase spectacularly
if the smoothing rigid weights module is missed.

PMD(10−4) ↓ ELR(10−1) ↓
w/o Ng (v) 4.92 1.54

w/o diff 4.88 2.81
Full 4.58 1.40

Table 3. Ablation experiments.

4.2.5 Time efficiency

Table 4 shows the time efficiencies of different methods.
The source and reference meshes used for testing are SMPL
models with 6890 vertices. Our method is not based on an
end-to-end neural network model, and we give the time of
the neural network part (network only) for extracting the
skeleton and the rigid weights and the time of the whole
pose transfer process (full). Including the source mesh and
the reference mesh, the time of the neural network part
(network only) is 589.9ms, which accounts for about 52%
of the full time, and the inference time of the individual
mesh is about 294.95ms. The main time-consuming is that
GKEdgeConv dynamically computes the k-nearest neigh-
bors of each vertex at each layer. In addition, we use a
dense matrix in our experiments to solve the large sparse
linear diffusion equation, which is also time-consuming.

Compared with NPT and 3D-CoreNet, our method sacri-
fices some efficiency. However, it improves the quality of
the pose transfer results, and the number of trainable param-
eters of the network is much smaller than the former two.

Parameters(M)↓ Time(ms)↓
NPT 6.06 42.02

3D-CoreNet 24.46 128.18
Our(network only) 3.38 589.90

Our(full) 3.38 1130.26

Table 4. Time efficiency.

4.2.6 Generalization extension

Although the number of mesh vertices is not limited in our
network, our performance would be significantly affected
if there is too much difference from the number of vertices
in the training dataset. This’s because the number of ver-
tices affects the computation of the k-nearest neighborhood
in DGCNN [41]. The use of neighborhood information pro-
duces better performance in our method, but it is also influ-
enced by the number of vertices and vertex density.

To reduce the effect of vertex number and vertex den-
sity, we simplify the vertices of SMPL to 2048 points to
construct a dataset and retrain the network. The map-
ping between the simplified mesh and the original mesh is
recorded, and the network output will be mapped back to
the original mesh for subsequent processing. The process is
similar to normalizing the input data.

Figure 14. Pose transfer on meshes with large difference in the
number of vertices.

Fig. 14 displays the results. The reference poses are
from the SMPL dataset. The source mesh in the first row



is from the Mixamo dataset [1] (18453 vertices), an artist-
made mesh of a monster that differs dramatically from the
meshes of SMPL. Our result is satisfying, and the reference
pose is transferred to the source. The model in the second
row is from MG-dataset (27554 vertices). This result is also
satisfying.

5. Conclusion

In this paper, we propose a 3D mesh pose transfer
method based on skeletal deformation. We predict the
source and reference mesh’s rigid weights and skeleton
joints through GKEdgeConv-based neural network. Then,
pose transfer is reformulated as a deformation problem of
the source mesh. We further smooth the rigid weights by
the diffusion equation to obtain high-quality LBS results,
and fully automatic pose transfer without human interac-
tion is achieved. Compared with the existing deep learning-
based pose transfer methods, the details and the poses of
our experiment results on different datasets are better.

However, the neural network requires many datasets with
skeletons and weights for training. We have trained only on
the human dataset SMPL and the tetrapod dataset SMAL,
respectively. The lack of suitable training data may limit
the use of the method. In addition, only the corresponding
bones of the source and reference models are used as two
vectors to calculate the rotation, resulting in the twisted ro-
tation along the skeleton axis being lost, which may lead to
insufficient pose transfer. As shown in Fig. 15, the poses of
the heads and the left hand are not exactly the same as the
reference meshes.

Figure 15. The results with limitations.
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