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Abstract

In virtual reality (VR), hand remapping modifies the
commonly used one-to-one mapping between tracked
and virtual hand positions, which extends the interac-
tion scope of hands while also sacrificing naturalness.
To address this issue, we propose remapping techniques
that are both natural and efficient, taking hand move-
ment velocity into consideration. Our approach is based
on the insight that slow and fast hand velocities indicate
the intent for precise or rapid manipulations respec-
tively. Therefore, the hand movement should be scaled
down or up accordingly. We first estimated the detection
thresholds for remapped hands using a 2-alternative-
forced-choice (2AFC) design. Based on these thresholds,
we then designed a hand remapping function that au-
tomatically adjusts the remapping scale based on hand
movement velocity. To evaluate the effectiveness of our
proposed velocity-adaptive hand remapping technique,
we further conducted a user study in which participants
performed both rapid and precise tasks. Results showed
that our proposed velocity-adaptive hand remapping,
though imperceptible to participants, is able to signifi-
cantly outperform other techniques. Overall, our work
demonstrates the potential of velocity-guided redirec-

tion techniques for hand interactions in VR.

Keywords: Hand Remapping, Detection Thresholds,
Redirection Techniques

1. Introduction

Virtual reality (VR) aims to provide an immersive expe-
rience for users. As part of such immersive experiences in-
teraction techniques that closely follow natural physical in-
teraction are often desired. In recent years, we have seen ad-
vances in technology that now easily enable users to interact
with 3D virtual environments (VE) using their hands, heads,
and bodies. An approach that is widely used to determine
the movements in VE as in many commercial products is a
direct one-to-one mapping of the tracked body movements.
However, it is often restricted by physical constraints, such
as limited physical space around the user, inconvenience
or fatigue caused by physical movements, or body restric-
tions. For example, for seated VR, users can only rotate
their heads at most 180 degrees and their arms are only ca-
pable of reaching a small portion of space. Such predica-
ments prompt the emergence of remapping techniques, es-
pecially for hand interaction.

To improve the sense of presence and enrich ways of

1



interaction, hand input is widely used in VR applications
through controllers, gloves, or directly tracked hand move-
ments and recognized gestures. Prior work has shown that
vision has a dominant role when visual, auditory, or other
signals influx into the brain [5]. By leveraging this visual
dominance effect [7], non-isomorphic hand mappings are
explored to decouple real and virtual hand movement, en-
abling virtual hand ends into a position different from where
the real hand is. These mappings consist of adding a fixed
offset [2], gain-based movement [41], rotating the VE [1].

However, hand repositioning techniques cannot be ap-
plied without consideration of amplitude, since large devi-
ations will possibly be noticed by uses and induce a sense
of unnaturalness. An ideal hand remapping should increase
user immersion and create realistic interactions. Thus, the
estimation of detection thresholds within which remapping
is undetectable to users is important for applications that
aim to maintain a sense of realism while still leveraging
the benefits of the aforementioned techniques. While pre-
vious work has estimated the detection thresholds for con-
stant hand offsets [2], scaled hand movements [9], and hand
redirection using haptic retargeting [41], there is still no
investigation into how these thresholds might be affected
by the change of velocity. Existing research [27] has al-
ready shown that manipulation of human sensitivity towards
path curvature in redirected walking is correlated to walk-
ing speed, so it is also necessary to understand the relation-
ship between the sensitivity towards remapped hands and
hand movement velocity. Meanwhile, a significant draw-
back of using VR equipment is that we can not control our
body parts precisely, like rotating our head with an HMD
at a specific angle or speed or moving our hand with VR
controllers at a restricted distance or velocity in virtual 3D
space. There are two main reasons for this phenomenon:
first, although hardware and tracking technology for VR
have been quite robust, tracking devices continuously have
inherent jitter with the real world [15]; Second, although
our bodies are flexible, the rotational structure of human
joints makes it challenging for us to move our hands in a
straight line without any physical support in the real world
[11].

Combining the two considerations, we see a large po-
tential to implement novel remapping techniques that are
dependent on hand movement velocity. We assume that the
velocity reflects the user’s intention of movements. There-
fore remapping techniques that alter virtual hand move-
ments according to velocity could possibly be more nat-
ural and more efficient. To keep a balance between in-
teraction efficiency and naturalness, we aim to restrict the
manipulation within detection thresholds. Firstly, we de-
signed and conducted a psychophysical experiment utiliz-
ing a two-alternative forced-choice (2AFC) methodology to
test user perception of constant hand movement manipula-

tion under three levels of controlled speed and estimate de-
tection thresholds using a psychometric function. Partici-
pants were asked to follow a moving plate in front of them
with a designated physical movement speed. In contrast
manipulation of the hand movements were applied with
varying magnitudes and directions in each trial of the task.
After each trial, participants reported if their hand move-
ment was normal or not normal. These responses were
recorded and analyzed to determine the detection thresh-
olds in different velocities and directions. Secondly, we
present a velocity-sensitive hand remapping technique with
imperceptible scaled manipulation in VR according to the
determined detection thresholds mentioned above applied at
the target speed interval. Our hand remapping method esti-
mates the application context for fast or precise manipula-
tion based on real-time behavior. When the context of rapid
manipulation is detected, our enhancing remapping tech-
nique dynamically adjusts the manipulation to an increased
scale, making it more sensitive to the user’s hand move-
ment and vice versa. Lastly, we designed an experiment in
which users perform both precise and rapid tasks. Our re-
sults showed that the velocity-adaptive remapping strategy
outperformed other techniques both in terms of efficiency
and accuracy.

2. Related Work

Comfortable and natural remapping of user movements
is an important and vigorous research topic in VR. In this
section, we give a brief review of redirection techniques in
VR research, hand remapping techniques, as well as previ-
ous velocity based remapping techniques.

2.1. Redirection Techniques and Threshold Detection

As mentioned before, the most common and intuitive
way to model virtual camera motions is to directly do one-
to-one mapping of physical movements. However, users’
interactions in virtual scenes are often constrained by phys-
ical limitations. Therefore, in order to provide a better
user experience and overcome real-world limitations, prior
works have explored remapping techniques for a wide vari-
ety of VR applications, including seven league boots [16],
redirected walking [27, 32], head rotations [21, 34, 31, 35]
and hand positions [41, 30, 1]. At the same time, it is nec-
essary to also consider the negative effects introduced by
these remapping techniques, such as sickness [31, 34] or
spatial orientation [34].

Razzaque et al. [32] proposed a new technique called
redirected walking that allows users to walk much longer
distances in virtual environments even in constrained phys-
ical spaces. It changes the real walking direction of users
by applying additional rotations proportional to their an-
gular velocity to the virtual movement. Experiments in a
CAVE [33] further demonstrated the potential of redirected



walking by showing that redirection increased the sense of
presence. Steinicke et al. [36, 37] later summarized redi-
rected walking as three different gains, including translation
gains, rotation gains and curvature gains, defined by scaling
factors applied to the movement in the virtual world. They
also established standards for the estimation of a thresh-
old within which those gains would be unnoticed by users.
Grechkin et al. [14] then concluded that curvature gains and
translation gains could be used simultaneously without a
conflict. Curvature gains can be used more effectively with
controlled velocity [27].

In seated VR scenarios, such as sitting on a couch at
home, rotation gains are also a common consideration to
enable people to explore virtual scenes both comfortably
and exhaustively. While redirected walking techniques of-
ten alter the movement of a virtual camera or view direction
according to the physical movements of the user, users can
only move their upper body and head freely when seated. In
these situations, the rotation angles of the head are captured
by VR devices, mostly VR HMDs. To allow users to view
a larger range of a virtual scene with fewer physical turns,
head rotations are often amplified through a factor called
amplification factor [31] or rotation gains [37, 21]. Sargu-
nam et al. [34] proposed guided head rotations that made
the 360 degree virtual scene available within the limitations
of physical rotations. Their method also rotated the virtual
scene back to neutral position to avoid neck twisting for a
long time. Their experiments revealed that large rotation
angles would cause more sickness. Stebbins et al. [35] ex-
panded this work to immersive narrative experiences by ro-
tating the virtual content slowly and encouraging people to
align their bodies to a more comfortable viewing direction.
The effect of amplification depends on the displays. Ragan
et al. [31] found that compared to HMDs, it was easier for
users to maintain spatial orientation in CAVE. Langbehn et
al. [21] later gave a detailed comparison between differ-
ent amplification methods regarding their linearity as well
as dynamism and they deduced that dynamic rotation gains
had higher usability and produced less sickness.

Inspired by both redirect walking and head amplification
techniques, in this paper, we remap hand movement in vir-
tual environments to provide more effective and natural ma-
nipulation and interaction for users.

2.2. Hand Remapping Techniques

Hands are an indispensable channel through which users
interact within virtual worlds when they are using VR de-
vices. Therefore, researchers have investigated many hand
remapping and repositioning techniques, including how
hands might be remapped in certain situations [30, 41], and
to which extent hands can be remapped without being no-
ticeable to users [9].

The Go-Go technique proposed by Poupyrev et al. [30]

prolonged arm reaches through a smooth and non-linear
mapping which scaled up the virtual arm after reaching a
threshold distance (set as 2/3 of arm length). However,
Poupyrev et al. did not investigate the naturalness of their
design. Dominjon et al. [8] filled in this gap, by demonstrat-
ing that the C/D ratio (the ratio between the amplitude of the
real hand and virtual hand position) influences the percep-
tion of the mass of objects that users manipulate. Frees et al.
[11] designed a dynamic C/D ratio function and proved that
a C/D ratio less than 1.0 provided more precise control. Re-
positioned hands may influence the amount of immersion as
well. Several works aim at maintaining high body owner-
ship when designing their interaction techniques, such as
slower shifting for overhead targets [10], using realistic
avatars [28], or an improved ergonomic design [26, 40].
Altered perception also makes other hand redirection tech-
niques like haptic retargeting possible. A single physical
object can provide haptic feedback for multiple virtual ob-
jects located at different places [1], even when their shapes
and sizes vary [19, 3].

Besides perception, researchers also probed into how
remapping technologies influence the performance in dif-
ferent tasks. Li et al. [22] examined four cursor offset tech-
niques (no offset, fixed-length offset, linear offset and non-
linear offset) for navigation tasks in a CAVE system. Their
results showed that the linear offset technique outperformed
other techniques. They also evaluated the same four tech-
niques on target selection when objects are beyond arm’s
reach [23]. However, their work is difficult to generalize
since it does not apply to tasks that place objects near users
and they did not take direction into consideration.

To accurately determine the range of a remapping tech-
nique that is imperceptible to the user, psychometric anal-
ysis has been employed in previous research. This often
features a two-alternative-forced-choice (2AFC) design in
which users have to choose from two opposite options.
Also, previous research has shown that directions play an
important part in the dimensions of virtual hand move-
ments. Zenner and Kruger calibrated the detection thresh-
olds for horizontal, vertical, and gain-based hand warping
in three desktop-scale VR scenarios [41]. Later, Benda et
al. [2] identified significant threshold differences across di-
mensions when applying fixed positional offsets. Whether
the offset is within the suitable range correlated heavily with
target selection. Similarly, Esmaeili et al. [9] studied scaled
hand movements by estimating 28 types of linear scale from
0.5 to 2.0 in three dimensions. They also found the detec-
tion thresholds differed significantly between different hand
movement directions.

2.3. Velocity Based Remapping

In VR, velocity has been found to be associated with
users’ sensitivity and perception of the change of virtual



scenes [27]. Neth et al. [27] found that when walking
at lower speeds, users were less sensitive to walking on
a curved path through a psychological experiment. Thus,
they proposed a velocity-dependent algorithm for redirected
walking, allowing the curvature gains to alter dynamically
according to the walking speed, which was more flexible
than previous static reorientation techniques. Similarly,
head rotation velocity has also been found to be related to
rotation gains [42, 39]. Speed can also be used as a factor
to alter the precision of manipulation. In PRISM [11], users
indicate whether they try to be precise or rapid through their
hand speed. The hand movement would be scaled down to
enable more precise control. However, it uses more of a
hand-crafted mapping and lacks the understanding of how
different levels of hand movement velocity would affect
user perception towards the scale. Adaptive pointing that
adjusts the C/D ratio according to speed has also been used
in 2D screen touch [12, 13, 20].

To the best of our knowledge, there is no previous re-
search that studies how users’ sensitivity to the scale of
remapping differs when the level of speeds changes and
controls the remapping function within the detection thresh-
olds, which is the aim of our work.

3. Experiment 1: Detection Thresholds With
Controlled Hand Movement Velocity

Before developing an immersive hand interaction tech-
nique that is imperceptible and comfortable, we first inves-
tigated the detection thresholds at different hand movement
speeds, since previous studies never control the hand move-
ment speed while measuring detection thresholds. There-
fore, we designed an experiment to apply scale values of
varying magnitudes in three directions while users follow
a moving plate that moves at designated speeds. The users
then had to respond if they feel their hand movements were
normal or not during each trial.

3.1. Experiment Design

We performed a 3 Reference Speeds (fast, medium, slow)
× 3 Directions (horizontal, vertical, depth) experiment to
the estimate detection thresholds of each group. In order to
determine the appropriate Reference Speeds to follow, we
conducted a pilot study involving 15 participants to mea-
sure the range of hand movement velocities in virtual envi-
ronments. We instructed users to move their hands between
two plates in each direction with a briefing on either per-
forming fast or slow actions in the virtual environment. The
slow mode is when people are moving slowly and carefully
towards a target, i.e. holding and moving a slider, and the
fast mode is when people move fast but still feel they are
in control of their body and sense the movement. It is im-
portant to note that we are not exploring the complete range
of potential movements, as we do not require participants

to move extremely slow or extremely fast. The default dis-
tance between the two plates was 0.4 m, slightly tuned ac-
cording to participants’ heights and we logged how much
time they spent on each movement. Through data analy-
sis, we found that in the slow conditions the average hand
movement speed is 0.15 m/s, and in the fast condition, the
average hand movement speed is 0.56 m/s, which we set as
basic range. Therefore, in the first experiment we used the
following three hand movement speeds that roughly cov-
ered the range from slow movements to fast movements:

• Fast speed mode: 0.56 m/s

• Medium speed mode: 0.32 m/s

• Slow speed mode: 0.15 m/s

Although previous work choose a scale factor of 0.5‘
(which is the slowest scale) and a scale factor of 2.0 (which
is the fastest scale) as the two most extreme scale values [9],
we found that 0.6 and 1.8 are enough to make sure partic-
ipants detected it as not normal in our pilot experiments.
In order to control the experiment time and reduce partic-
ipants’ fatigue to maintain the quality of their responses
when performing the experiment, we sampled fewer values
compared to [9] ranging from 0.60 to 1.80, listed as follows:

• Slow-scaled values (7 values): 0.60, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95

• Fast-scaled values (7 values): 1.10, 1.20, 1.30, 1.40,
1.50, 1.60, 1.80

Since we aim to control participants’ physical hand
movement speed, the plane movement speed was changed
according to the tested scale values in a trial by the follow-
ing formula:

Vp = s×R (1)

• Vp: plate movement speed

• R: reference speed

• s: scale value

For the first experiment, we followed a study design
close to the study design of Esmaeili et al. [9]. We used
a with-subjects design and each participant completed all
conditions and trials. The independent factors include scale
value, axis, and velocity level. We used 21 (3×7) scale val-
ues, consisting of 7 different values of faster hand move-
ments, 7 different values of slower hand movements, and 7
normal hand movements (scale = 1.0). We repeated all of
the scales for movements on the three different axes: hor-
izontal (X), vertical (Y), and depth (Z). In each direction,
we set the first two scale values to normal (scale = 1.0) in a
practice trial. This allows users to get used to the change of



movement direction. The two practice trials were not added
to the recorded data. We also repeated all of the scale val-
ues and all three axes for three different hand speed modes.
Each condition was tested twice to strengthen data analysis.
Therefore, every participant complete 378 trials (3 speeds
× 2 repeats × 3 axes × 21 scale values). The whole experi-
ment was divided into 6 blocks, each block contained 3 axes
× 21 scales = 63 trials for a given reference speed and the
axis in each trial was randomized. The ordering of reference
speeds was counterbalanced between participants.

During the experiment, participants used a hand-held
controller (since most VR applications require users to in-
teract with a controller) to follow a moving virtual plate.
The plate would change its color depending on how well
the user’s hand speed matched its speed. When the differ-
ence between hand velocity and plate velocity was less than
0.05 in slow speed mode or less than 0.1 in medium and fast
speed mode, the moving plate would be shown in green. For
differences between 0.05 and 0.1 in slow mode or between
0.1 and 0.2 in medium and fast speed mode, the moving
plate would be shown in yellow. In other cases, the moving
plate would be shown in red. For this purpose, we check
users’ hand speed in every frame and compare it with the
plate movement speed. In each trial, participants had to fol-
low the plate for 6 rounds (3 rounds for both left and right
directions), and then they had to answer the question ”Was
your hand movement normal or not?” as shown in Figure 1
Then the program logged their answers (normal or not nor-
mal), response time, and average hand movement speed for
further analysis.

Figure 1. The virtual environment for Experiment 1. (left) The
moving plate users followed during the task. (right) The question
presented to users after completing each trial.

3.2. Technique

Considering the purpose of our experiment was to deter-
mine the detection of thresholds for scaled hand movement,
in an isolated axis under specific hand movement velocity
control, we used the predecessor’s techniques proposed by
Esmaeili et al. to isolate scaled movements on one axis at
a time [9]. We used the following formula to calculate the
user’s hand position in the virtual scene depending on their
hand position in the previous frame and adding a scaled off-
set. Let xvir(t), yvir(t), zvir(t) denotes the virtual (display)

position of the tracked hands and xreal(t), yreal(t), zreal(t)
denotes the real (motor) position of the tracked hands. For
the sake of brevity, we report only the xvir(t) calculation in
the following which yvir(t) and zvir(t) are applied to the
same calculations.

xvir(t) = xvir(t− 1) + s× (xreal(t)− xreal(t− 1)) (2)

• xvir(t) : virtual hand position in current frame

• xvir(t− 1) : virtual hand position in previous frame

• xreal(t) : motor hand position in current frame

• xreal(t− 1) : motor hand position in previous frame

• s : current scale value

3.3. Apparatus

The experiment was conducted in our laboratory using
an HTC Vive Pro headset, tracked by two Base Station 2.0,
as well as the right-hand controller since all participants fin-
ished the experiment with their right hands. The software
was developed with Unity3D 2020.2.3f1c1 and one unit in
the virtual space represents one meter in real-world space.
The desktop computer ran on 64-bit Windows 10 using a
16GB RAM and 3.6GHz 8-Core processor with a GeForce
RTX 2060 SUPER graphics card and logged related data for
analysis.

3.4. Participants

12 university students (7 females, 5 males) participated
in the experiment. Their age ranged from 22 to 26 with a
median of 23 years old. 4 participants reported they have
never used a VR headset before. All participants completed
the experiment with their right hand.

3.5. Procedure and Task

Before the beginning of the experiment, we obtained in-
formed consent from participants. We first explained the
purpose and procedure of our study and clarified the confus-
ing points. They would also fill in a demographic question-
naire and a Simulator Sickness Questionnaire (SSQ) [17].
Then the experimenter helped them to adjust and wear the
headset.

The main goal of this experiment is to analyze detection
thresholds for simple, axis-isolated movements depending
on velocity via completing a simple target-following task.
Once participants hit the still plate, it started to move along
one axis back and forth at a specific speed. We then ap-
plied an offset to the user’s hand representation per frame.
The plate movement speed depends on the reference speed
(0.15 m/s, 0.32 m/s, or 0.56 m/s) and the scaled values.
Participants were asked to follow the moving plate and try
their best to keep the moving plate green. After the plate



moved back and forth six times, questions would be dis-
played on top of the scene, and participants were asked
to decide whether the virtual hand movement was normal
or not normal. After completing a 21-scale session, users
would be given a 15 seconds mandatory break to relax their
hands. The moving direction of the plate then changed to
another direction. Once participants completed a block of
the experiment (3 directions × 21 scaled values), the exper-
imenter helped them take off the headset, instructed them to
fill out another SSQ form, and had a 3-minutes break. Each
block lasted about 15 minutes and the whole experiment
contained 6 blocks and took about 90 minutes. Participants
were allowed to experience three speed modes prior experi-
ment using 1.0, 0.6, and 1.8 scale factors before starting the
study.

Figure 2. Setup for the first experiment: a participant is conducting
the experiment, at the same time the virtual environment can be
monitored through a screen.

3.6. Results

The estimation of detection thresholds was conducted
from the records of participants’ responses on the normal-
ity of their hand movements for each scaled movement
value/direction pair. By aggregating the responses on nor-
mality into a total probability, we could fit a prediction func-
tion and a curve. Detection thresholds were determined by
this prediction function for a 50% probability level using 0.5
as a threshold. We used the Quickpsy [24] package in R to
compute the point of subjective equality (PSE) and the asso-
ciated standard deviation (SD). CIs are calculated with para-
metric bootstrapping using a percentile method with 95%
PSE confidence exists in the interval. We utilized it to fit 18
curves for each data point grouping aggregated probability
by direction and speed mode, generated 18 thresholds, and
used parametric bootstrapping to estimate confidence inter-
vals (CIs) for each threshold. Fitted functions are shown in
Figure 3 and precise PSE and SD values are presented in
Table 1. Quickpsy fits, by direct maximization of the likeli-
hood [18], psychometric functions of the form:

Ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) (3)

To examine whether there exist significant differences
in the thresholds across different speeds and directions, we

employed the thresholdcomparisons function of Quickpsy.
This function performs comparisons between groups for all
possible pairs of groups using the bootstrap method. A pa-
rameter is considered different between two groups if the
confidence intervals do not contain zero. The results of pair-
wise comparisons were shown in Table 2, which showed
that there are significant differences between thresholds for
each direction in the same speed. However, we could not
find a significant difference between different speeds. When
considering pairwise differences, two groupings emerge a
group of X-axis and Y-axis, a group of X-axis and Z-axis,
which means only directions along the X-axis were signif-
icantly different against each other which shows sensitivity
to horizontal-related scaled movement.

Speed
(m/s) Axis PSE SD

0.15
X 0.852 [0.820, 0.882] 0.125 [0.091, 0.156]
Y 0.803 [0.761, 0.844] 0.148 [0.107, 0.196]
Z 0.782 [0.728, 0.828] 0.160 [0.119, 0.211]

0.32
X 0.842 [0.822, 0.863] 0.109 [0.094, 0.131]
Y 0.792 [0.757, 0.822] 0.160 [0.130, 0.207]
Z 0.782 [0.751, 0.806] 0.145 [0.118, 0.183]

0.56
X 0.837 [0.813, 0.860] 0.129 [0.104, 0.153]
Y 0.806 [0.775, 0.838] 0.172 [0.139, 0.216]
Z 0.784 [0.752, 0.813] 0.153 [0.118, 0.182]

Speed
(m/s) Axis PSE SD

0.15
X 1.264 [1.309,1.199] 0.215 [0.156, 0.280]
Y 1.212 [1.246,1.187] 0.162 [0.131, 0.195]
Z 1.227 [1.256,1.193] 0.217 [0.174, 0.258]

0.32
X 1.365 [1.298, 1.442] 0.258 [0.184, 0.353]
Y 1.401 [1.349, 1.454] 0.280 [0.221, 0.329]
Z 1.347 [1.289, 1.403] 0.309 [0.255, 0.384]

0.56
X 1.302 [1.250, 1.367] 0.223 [0.152, 0.297]
Y 1.396 [1.352, 1.434] 0.245 [0.201, 0.287]
Z 1.373 [1.311, 1.431] 0.306 [0.248, 0.376]

Table 1. point of subjective equality (PSE) and the corresponding
standard deviations (SD) for both fast scales (top) and slow scales
(bottom) in each condition.

The estimation of the detection threshold is based on the
premise of hand velocity close to the desired speed, there-
fore we logged participants’ average hand speed of com-
pletion in each trial. The results show that the average
moving speeds of the hand under the three-speed modes
are 0.162m/s, 0.361m/s and 0.610m/s respectively, and the
standard deviation are 0.023m/s, 0.065m/s and 0.139m/s.
The results showed that our speed control was effective.

We also calculated the Total Score (TS) of SSQ before
and after the experiment, which was 2.47 and 31.4 respec-
tively.



0.15m/s 0.32m/s 0.56m/s
X Y Z X Y Z X Y Z

0.15m/s
X - 0.101* 0.038 -0.052 0.137* 0.132* -0.037 0.083* 0.109*
Y -0.101* - -0.064 -0.154* 0.035 0.030 -0.139* -0.019 0.008
Z -0.038 0.064 - -0.090* -0.099 0.039 -0.075* -0.045 0.071

0.32m/s
X 0.052 0.154* 0.090* - 0.189* 0.184* 0.015 0.135* 0.161*
Y -0.137* -0.035 -0.099* -0.189* - -0.005 -0.174* -0.054 -0.028
Z -0.132* -0.030 -0.039 -0.184* 0.005 - -0.169* -0.049 -0.023

0.56m/s
X 0.037 0.139* 0.075* -0.015 0.174* 0.169* - 0.120* 0.147*
Y -0.083* 0.019 0.045 -0.135* 0.054 0.049 -0.120* - 0.027
Z -0.109* -0.008 -0.071 -0.161* 0.028 0.023 -0.147* -0.027 -

0.15m/s 0.32m/s 0.56m/s
X Y Z X Y Z X Y Z

0.15m/s
X - 0.049 0.070* 0.010 0.060* 0.070* 0.015 0.046* 0.068*
Y -0.049 - 0.020 -0.039 0.011 0.021 -0.034 -0.003 0.019
Z -0.070* -0.020 - -0.059* -0.010 0.000 -0.054 -0.024 -0.001

0.32m/s
X -0.010 0.039 0.059* - 0.050* 0.060* 0.005 0.036 0.058*
Y -0.060* -0.011 0.010 -0.050* - 0.010 -0.045 -0.014 0.008
Z -0.070* -0.021 -0.000 -0.060* -0.010 - -0.055* -0.024 -0.002

0.56m/s
X -0.015 0.034 0.054 -0.005 0.045 0.055* - 0.031 0.053*
Y -0.046* 0.003 0.024 -0.036 0.014 0.024 -0.031 - 0.022
Z -0.068* -0.019 0.001 -0.058* -0.008 0.002 -0.053* -0.022 -

Table 2. To determine the significant differences in fast and slow scales, we used a parametric bootstrap test. A parameter is considered
different between two groups if the confidence intervals do not contain zero. The results for both fast scales (top) and slow scales (bottom)
are sorted by both speed levels and directions.

3.7. Discussion

In the previous work of Esmaeili et al. [9], detection
thresholds for scaled hands were determined in two exper-
iment settings: one is completed in total freedom without
any restrictions and task, moving their hand alone along
one of the three axes using a scale factor until an an-
swer was determined by the participants (basic setting). In
the other setting, participants were required to answer the
2AFC question after completing a game that had three-
dimensional movements (complex setting). The estimated
detection thresholds ranged from 0.797 to 1.390 in the ba-
sic setting, and from 0.758 to 1.430 in the complex setting,
which is close to our results.

In the basic setting of [9], the differences between
thresholds for all the paired directions for both slow and
fast scales were significant. However, our results reveal no
significant difference between vertical and depth directions
in both slow and fast scales for all speed levels. This differ-
ence is likely due to our study’s requirement to control hand
speed, which is much more complex and difficult and users’
sensitivity would decrease with the increase of task com-
plexity. Besides, another possible reason for this difference
could be that we required participants to follow a moving
plate as closely as possible, control their hands precisely,
and obverse the color of the plate in real-time (the color of

the moving plate represents whether the relative speed be-
tween hand and plate is within an acceptable range). To
meet these requirements, participants must be able to adjust
the moving state of their hands in real-time according to the
visual information, paying more attention to visual senses
than haptic interaction, which may interfere with the sensi-
tivity of participants to hand movement scaling. Moreover,
due to the limitation of the field of view and arm extension
length, the movement length we set on the X-axis is greater
than that on the Y-axis and Z-axis, that is, the offset accumu-
lated by scaling in each frame would be more noticeable on
the X-axis. Thus, participants were more sensitive to move-
ments along the X-axis, which reasonably explains that un-
der the control of hand speed, the difference between the Y
and Z axes is not significant, while the difference between
the X-axis and other axes is significant.

4. Experiment 2: Velocity Adaptive Impercep-
tible Hand Remapping

In earlier work, Frees and Kessler presented a velocity-
based precision control technique for interactions in VR en-
vironments [11]. However, they did not determine the in-
terval of hand speed to decelerate or accelerate in their ex-
periment, which might not match users’ intention of pre-
cise or rapid manipulation well. Besides, the scale value



Figure 3. Fitted logistic functions for each speed level, paired by
the axis of movement. Dropdown lines mark the threshold point.
Error bars indicate 95% confidence intervals expressed in Table 1.

used in their work was from 0.33 to 1 in the generic mode,
much lower than the detection thresholds for scaled hands,
which might make users notice the manipulation and break
the sense of presence. With the detection thresholds esti-
mated in our first experiment, we aimed to devise an imper-
ceptible velocity-based hand remapping technique for VR
applications that supports both rapid and precise tasks. We
fitted a velocity adaptive function to adjust the scale index
based on real-time hand velocities. To evaluate the effec-
tiveness of this enhancing technique, we conducted an ex-
periment that required participants to complete tasks with
different difficulty levels. We apply different techniques in
each experiment block while the participant is completing
the task. For data analysis, we logged the completion time
and failure times for a trial as well as average movement
distances.

4.1. Technique

Smoothed point technique [12] presented a velocity-
based precision enhancing work, which aims to eliminate
the jitter of handhold devices for remote points. The ba-
sic idea comes from Fitt’s Law, which indicated that hand
movement is slowed down for smaller target manipulating.
However, this work didn’t take detection thresholds into
consideration, and users would perceive the speed gain. Our
velocity adaptive function adopted a velocity-based C–D ra-

tio adaptation to smooth the controller movement. It uses
four-speed thresholds to determine the gain value: a mini-
mum speed (vmin) below which any motion is considered a
tracking error; a minimum scaling constant (SCmin), which
is the right extreme of the hand velocity interval in which
the hand movement is scaled down; and a maximum scaling
constant (SCmax), during which and SCmin the mapping
remains one-to-one; and a maximum speed (vmax), which is
the hand speed at which the offset recovery is automatically
triggered (see Fig 4). In fact, if a user’s movement speed is
between the scale interval, the gain scaling produces the ac-
cumulation of an offset between the device position in the
motor space and the cursor position in the display space.
This offset, the maximum value of which is limited to omax,
is recovered by setting the C–D gain to gmax. To smooth the
controller movement, in the [vmin,vmax] interval, a modu-
lated sine wave is used as the gain damping function.

We denoted the position of the virtual (displayed) hand
and the real (tracked) hand as pvir(t) and preal(t). The
move distance in the world space for each frame was de-
noted as d(t). We also computed the offset between the
virtual and real space, which is denoted as o(t). In prac-
tice, we used the inverse of the HMD’s frame rate (90Hz),
∆t = 1/(90Hz).

Next, we computed several necessary normalized values.
v̂slow(t), the fast normalized velocity, was computed by
diving the absolute value between velocity v(t) and vmin

by the [vmin, SCmin] interval. v̂fast(t),the fast normal-
ized velocity, was computed by diving the absolute value
between velocity v(t) and vmax by the [SCmax, vmax] in-
terval. ô(t), the normalized offset, was computed by divid-
ing the absolute value of the offset o(t) by the omax value.
Finally we computed m̂(t), a hybrid parameter set as the
maximum between the ô(t) and v̂(t) values.

The m̂slow and m̂fast values are then used to derive the
gain g(t), which is given by the following equation

g(t) =


gmin v(t) < vmin

gmin + 1
2 (1− gmin(sin(m̂slow(t) · π − π

2 + 1))) vmin ≤ v(t) ≤ SCmin

1 SCmin < v(t) < SCmax

1 + 1
2 (gmax − 1(sin(m̂fast(t) · π − π

2 + 1))) SCmax ≤ v(t) ≤ vmax

gmax(t) vmax < v(t)

(4)
where

gmax(t) =

{
o(t)
d(t) +

1
v̂fast(t)

(1− o(t)
d(t) ) if o(t) · d(t) > 0

1
v̂fast(t)(1+v̂(t)) otherwise

(5)
Finally, the pvir(t) value is given by

pvir(t) = pvir(t−∆t) + g(t) · dreal(t) (6)

During the process of interaction, due to the presence of
scaling, the offset between virtual and real space gradually
accumulates. So, it is essential to recover the offset when



it exceeds the threshold. The offset recovery starts when
the speed becomes larger than the vmax value. As shown
in the equation 5, the gain on each side is set to gmax in-
dependently. For a velocity v(t) ≫ vmax, pvir(t) becomes
equal to preal(t) in a short time, performing as a totally one-
to-one pointing mode. When the hand movement speed is
larger, the fraction of offset can be recovered faster. Be-
sides, the offset would be directly eliminated when the po-
sitional offset is larger than the detection thresholds for the
positional offset in [2].

Figure 4. The hand remapping function uses speed to adjust the
control-display ratio.

4.2. Experiment Design

To evaluate our remapping function in both precise and
rapid phases, we designed a user study consisting of two
phases. As proposed by reference [9], research related to
motion detection should incorporate basic movements to es-
tablish more cautious thresholds for complex motion. To
account for potential differences in cognitive load, we only
cover simple test cases that assess the detection ability. The
first phase involves a target selection and the second phase
a trajectory-based linear movement. We compared three
types of interaction methods: our velocity adaptive function
(VA) method which adjusts the scale index depending on
hand velocity, and a one-to-one (OTO) method in which the
tracked hand and virtual hand are aligned, and a constant
scale (CS) method in which the scale index was a different
constant value in different phases of the task.

In the rapid target selection phase, users were asked to
reach a virtual sphere at its initial position, pull the trig-
ger button on the HTC Vive controller to pick the sphere
up, and then use it to hit the target square piece which was
placed at 0.4 meters away as fast as possible. Our remap-
ping method was designed to scale the movement in three
directions at the same time, so our experiment was designed
to avoid moving the hand in three separate directions. The
initial position and target position were set at the diagonally
opposite corner of the cube, which would require users to
move their hands across three directions (See Fig.5). Once

the user finished, the starting sphere and target square piece
would be changed to another position and the user would
be asked to repeat the same process. As for the precise
phase, we firstly designed a tube traversal task in which
the tube was set along the diagonal of the cube (similar to
the rapid task). However, because of perspective projection
and overlap, failures in performing this task were mainly
caused by visual issues (e.g. users not being able to see
the tube clearly). In order to mitigate the visual impact, we
adopted the following measures: we transformed the visual
cue objects (the sphere to manipulate and the tube to limit
movement) from 3D to 2.5D (the sphere changed to a round
piece and the tube changed to a trajectory geometry with a
shallow depth). We also discarded the depth axis since it
was difficult for users to tell whether they were moving in
the right direction due to occlusions. Besides, we set the
angle between the plate where the round piece and trajec-
tory are located and the ground plane to 45 degrees, keep-
ing the objects completely within the field of view. In the
trajectory-based linear movement phase, users were asked
to move the round piece with a diameter of 0.295 meters
through the trajectory with a width of 0.3 meters. Once
a collision between the round piece and trajectory geom-
etry happened, the round piece would be set back to the
initial position. Since the error tolerance is only 0.005 me-
ters, users were required to move the round piece very cau-
tiously and slowly. The trajectory was positioned 30 cm
below the HMD, approximately at the position of the user’s
chest to make it comfortable for participants to operate. It
was placed at a 45 degree angle with the ground so that par-
ticipants were able to see it when they bow their heads a
little. In each trial, both the rapid target selection phase and
the trajectory-based linear movement phase would be con-
ducted twice (the movement was along a diagonal back and
forth for the rapid phase, and for the precise phase, it con-
tained an X-axis and Y-axis movement). Every participant
completed 70 trials ( 1 test × 10 trials + 3 methods × 2
repeats × 10 trials ).

Figure 5. Two different speed mode tasks for the second experi-
ment. (left) shows the diagonally opposite corner target hit in the
rapid task. (right) shows the trajectory-based linear target hit in
the slow task.

4.3. Participants

Voluntary participants were recruited from our campus
and a total of 15 students including 11 males and 4 females



participated in Experiment 2. Their age ranged from 22
to 29 with a median of 24.3 years. The majority of par-
ticipants reported having used VR technology only a few
times before or never at all and were only somewhat fa-
miliar with VR. Participants were physically and mentally
healthy to perform the study. All participants completed the
study with their right hand and reported they were comfort-
able with right-handed. The apparatus was the same as in
the first experiment.

4.4. Procedure

Upon their arrival, participants read and signed informed
consent. Afterward, we explained the goal and the whole
process of the experiment. They would also fill in a de-
mographic questionnaire and an SSQ [17] questionnaire.
Then, the experimenter helped them to adjust and put on
the HMD, as well as make sure the display was clear. Then,
we instructed participants to move their heads around to ex-
plore the virtual environment and get familiar with the vir-
tual hand movements using the controllers.

After the experimenter calibrated the distance between
plates to ensure it was within arm’s reach, participants pro-
ceeded to the first mode, determined by which counterbal-
anced group they were in. Before starting any trial, they
would take a test block to practice which is the same as
the formal block. In each block, participants were asked to
complete a rapid target hit task and the other a trajectory-
based linear movement task. The process was repeated un-
til all trials for the method were finished. The other method
would start following the same procedure. Participants were
free to take a break between two trials and they were also
reminded frequently to rest to reduce the effect of cyber
sickness. At the end of the experiment, participants filled
out another SSQ questionnaire and a 5-question post-study
questionnaire designed by ourselves. The entire procedure
took about 30 minutes.

4.5. Results

4.5.1 Completion Time and Failure Time

The central question we aimed to address was whether our
velocity adaptive function was more effective than direct
manipulation for both precision linear movement task and
rapid target acquisition task. We listed the completion time
in both phases and failure time for a precise phase in Ta-
ble 3. We can see that velocity adaptive function technique
was higher than the mean performance of direct manip-
ulation. RM-ANOVA indicated significant differences of
completion time for both rapid (F = 38.53, p < 0.01)
and precise (F = 11.5, p < 0.01) tasks. There is also
a significant difference in failure time in the precise task
(F = 5.977, p < 0.01). We performed TukeyHSD multiple
comparisons for post-hoc tests and the results are shown in
Table 4.

OTO VA CS
Completion Time
in Fast Phase (s) 0.446 0.401 0.296

Completion Time
in Slow Phase (s) 3.878 2.746 4.590

Failure Times
in Slow Phase 1.581 1.176 1.498

Table 3. Mean performance statistics for three methods.

4.5.2 Subjective Rating

During the 5-question post questionnaire, the participants
were asked to give their subjective rating on a 5-point Lik-
ert scale, as a score between 1 (strongly disagree) and 5
(strongly agree), in each block. Thus, the subjective rating
analysis design is: 15 participants × 3 methods × 2 repeats
× 5 questions = 450 data points. The results have been fur-
ther analyzed with the Friedman test. These 5 questions are
designed by us considering System Usability Scale (SUS)
[4] as a reference. SUS is the most widely used standard-
ized questionnaire to evaluate perceived usability. However,
users spend too much time filling out the SUS question-
naire, which may affect user experience and the reliability
of the questionnaire. We selected and adapted five ques-
tions from SUS, including five aspects (learnability, sta-
bility, accuracy, fatigue, and applicability) to measure the
performance of the system. We design questions that can
clearly and accurately express the issues we want to under-
stand, capture all dimensions we are concerned about, and
avoid repetition or confusion.

The 5 questions are as follows:

Q1: I would imagine that most people would learn to use
this interaction technique very quickly.

Q2: I thought the interaction was relatively robust.

Q3: I thought I could accurately achieve my operation
purpose when using this interaction technique.

Q4: I thought it made me very tired when I used this
interaction technique.

Q5: I thought that I would like to use this interaction
technique in other systems frequently.

The results show that participants have a high agreement
with most of these questions for all three interaction tech-
niques, except for Q3 related to fatigue (Figure 6). The re-
sults of the Friedman test show no significant differences
between interaction techniques (with p-values 0.305, 0.108,
0.212, 0.122, and 0.584 for Q1, Q2, Q3, Q4, and Q5). In the
follow-up interview, participants mentioned that they did
not feel any obvious differences in each block while com-
pleting the task, which confirms that our method was indeed
imperceptible to users.



Figure 6. Overall scores of the velocity adaptive function method,
the one-to-one method and the constant amplification method. Er-
ror bars show the standard deviation.

VA OTO CS

Completion Time
in Fast Phase

VA - 0.007** 0.000***
OTO -0.007** - 0.000***
CS -0.000*** -0.000*** -

Completion Time
in Slow Phase

VA - 0.028* 0.067
OTO -0.028* - 0.000***
CS -0.067 -0.000*** -

Failure Times
in Slow Phase

VA - 0.817 0.003**
OTO -0.817 - 0.022*
CS -0.003** -0.022* -

Table 4. Tukey multiple comparisons of completion time in the
rapid task (top), completion time in the precise task (middle), and
failure times in the precise task (bottom). If the confidence interval
of the mean difference between two groups does not include zero,
then it can be concluded that the means of these two groups are
significantly different.

Method < 0.08 [0.08, 0.15) [0.15, 0.20) [0.20, 0.80) ≥ 0.80
OTO 0.720 0.161 0.046 0.067 0.002
VA 0.696 0.180 0.051 0.069 0.002
CS 0.675 0.176 0.057 0.085 0.005

Method < 0.08 [0.08, 0.15) [0.15, 0.20) [0.20, 0.80) ≥ 0.80
OTO 0.115 0.085 0.060 0.618 0.118
VA 0.120 0.090 0.062 0.613 0.094
CS 0.108 0.084 0.056 0.609 0.140

Table 5. Hand velocity percentage for precise (top) and rapid (bot-
tom) phase in each method in 5 intervals according to Fig 4.

4.5.3 Velocity Distribution

We logged the hand velocity of each frame along three di-
rections and corresponding scale values for further analysis.
According to the velocity adaptive function we proposed,
we calculated the percentage of hand speed in 5 intervals
according to Fig 4. As shown in Table 5, the distributions

in each task and method were almost indistinguishable. Re-
sults show that in the precise task, participants’ hand ve-
locity was mostly below the interval [0.15,0.20), while in
the rapid task, the velocity was mostly above the interval
[0.15,0.20). Since our proposed method (VA) up-scaled
hand movements for speeds larger than 0.20 and down-
scaled them for speeds less than 0.15, meaning that most
of the time the hand movements were under effective con-
trol. Also, there were significant differences in failure times
between each method, meaning that VA could effectively
reduce the number of errors people made and improve the
manipulation accuracy. However, no significant difference
was found in completion time between our method and the
OTO method in the precise task. A possible reason for this
is that if users move their hands completely free without set-
ting any error conditions, it would take more time to move
the same distance using our VA technique because the scale
is less than one. However, for tasks that may cause errors,
using a scale factor of less than 1 can reduce failures caused
by accidental hand shaking, thereby reducing the time to
complete the entire process as a whole and improving the
efficiency of completing the task. In our experiment, the
tolerance of failure for precise operation is set to a small
value. Using our proposed scaling method can greatly re-
duce the participants’ failure cases caused by hand shaking,
so as to reduce the number of failures when completing pre-
cise tasks and speed up the whole operation process. Even
with close completion time, reducing failure times would al-
leviate the frustration caused by a failure in the precise task
and improve user experience. For the rapid task, almost
all the time scale factors were large than 1, which means
that the time required to move the hand over the same dis-
tance would be shorter. Besides, the significant differences
between our method and constant amplification method re-
vealed that dynamic adjustment of scaled movement could
improve interaction efficiency.

5. Discussion

We determined the interval of scale applied to virtual
hand movement for which users can not detect the differ-
ence between the actual physical hand movement and the
mapped virtual hand movement. The thresholds in each di-
rection and under control of each level of velocity we esti-
mated are shown in Table 6.

The results of our research provide new insights into hu-
man perception of scaled hand movements in VR when the
hand movement speed is controlled. We detected significant
differences between the detection thresholds of horizontal
directions and the two other directions (vertical and depth),
both for slow and fast scales. The range was narrower for
the detecting hand movement scaling in the horizontal plane
compared to the other two. This may be due to the visual
factor as the visual field of view of the horizontal plane cov-



Speed(m/s) Axis Scale Range

0.15
X [0.852, 1.264]
Y [0.803, 1.212]
Z [0.782, 1.227]

0.32
X [0.842, 1.365]
Y [0.792, 1.401]
Z [0.782, 1.347]

0.56
X [0.837, 1.302]
Y [0.806, 1.396]
Z [0.784, 1.373]

Table 6. The threshold range in each direction and each level of
velocity.

ers a larger range than the vertical [38], which means that
motion in the horizontal direction provides a clearer view
of object position. Due to the perspective of the human eye,
it was more challenging to distinguish depth changes with
cues of vergence and relative size. These factors mean that
users are more sensitive to horizontal motion change, re-
flected in significant differences between detection thresh-
olds of horizontal directions and two other directions.

In our second experiment, we used these estimated scale
ranges and designed a modified interaction technique while
aiming to provide a realistic, natural, and immersive experi-
ence for users in VR. It is beneficial to use slow-scaled hand
motion situations to enhance the accuracy of the interac-
tion. Therefore, slow-scaled hand movements can be used
in such applications to provide more controlled hand move-
ments in VR. On the other hand, fast-scaled hand move-
ments could be useful in VR applications that require faster
hand interactions or a far distant hand reaching. By ap-
plying fast-scaled hand movements, VR users could move
their physical hands to reach objects at a larger range. How-
ever, constantly using fast-scaled or slow-scaled remapping
would accumulate an offset. Once beyond the detection
threshold of a constant offset, users would notice the in-
consistency. Besides, another problem was that it was dif-
ficult to find a suitable usage scenario for consistently fast
or slow scale, even in professional or specific applications
(e.g., using VR for hand rehabilitation training [6], or med-
ical training VR applications [29]) there were many situ-
ations where user do not need the slow downscale all the
time. A real-time adjusting, context determined, impercep-
tible, and enhanced hand interaction technique was desired
in the VR environment. Therefore, we proposed an inter-
action technique that inferred the application context ac-
cording to the moving speed of the user’s hand [25]: when
users move their hand at a relatively low velocity, we de-
termine they have a precise goal and applied a slow-scaled
hand movement to enhance accuracy; conversely, at a some-
what higher velocity, we determine they have the rapid ma-
nipulation and accelerated their manipulation using a fast-
scaled hand movement. By applying scales within the de-

tected thresholds, we proved that the displacement of virtual
hands would not distract users and was almost completely
imperceptible. Thanks to the above characteristics of our
proposed interaction technique, we can envision it can be
applied in any situation in VR that either requires dedicated
operation and favors accuracy, or that requires efficiency or
a combination of the two.

6. Conclusion and Future Work

In this paper, we presented a velocity-adaptive and im-
perceptible hand remapping technique. Firstly, we esti-
mated the detection thresholds along three axes at three
speed levels. We did not find that speeds significantly in-
fluence the detection thresholds. Secondly, we designed a
velocity-adaptive hand remapping function and compared it
to other remapping techniques in tasks that included both
precise and rapid movements. Results showed that our pro-
posed technique significantly outperformed the other ones
both in terms of efficiency and accuracy while remaining
imperceptible.

Limitations in our work include that we only tested the
detection thresholds at three different velocities and did
not cover very fast velocities in order to control experi-
ment time. Future work could focus on estimating detection
thresholds for fast movements and adopting related remap-
ping techniques. The limited range of test velocities may
also be the reason why the detection thresholds were not
significantly different between speed levels. Additionally,
since our experiment only includes simple axis movements,
thresholds for compound motion also need further investi-
gation when considering velocity as a component. A per-
sonalized version of velocity-adaptive mapping could also
provide a better user experience. Another limitation of our
work is that we recruited a limited number of people to par-
ticipate in experiment 1. Determining the detection thresh-
old is a quantitative study. Testing with more users can offer
a more reasonably tight confidence interval.
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