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Figure 1: The results of the proposed region-aware diffusion model (RDM). The texts adhere to the phrase rule “A → B”,
indicating that RDM transforms entity A into entity B.

Abstract

Image manipulation under the guidance of textual
descriptions has recently received a broad range of at-
tention. In this study, we focus on the regional edit-
ing of images with the guidance of given text prompts.
Different from current mask-based image editing meth-
ods, we propose a novel region-aware diffusion model
(RDM) for entity-level image editing, which could auto-
matically locate the region of interest and replace it fol-
lowing given text prompts. To strike a balance between

image fidelity and inference speed, we design the inten-
sive diffusion pipeline by combing latent space diffusion
and enhanced directional guidance. In addition, to pre-
serve image content in non-edited regions, we introduce
regional-aware entity editing to modify the region of in-
terest and preserve the out-of-interest region. We val-
idate the proposed RDM beyond the baseline methods
through extensive qualitative and quantitative experi-
ments. The results show that RDM outperforms the
previous approaches in terms of visual quality, overall
harmonization, non-editing region content preservation,
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and text-image semantic consistency.

Keywords: Image Manipulation, Textual Guidance,
Diffusion

1. Introduction

In the actual world, image editing is highly sought-after.
However, image content editing software is not easy to get
started with and is more suited to professionals. Present
image editing work is limited in terms of possible input im-
ages and editing operations. In recent years, great advances
in deep generative image models [13, 10, 40] and visual lan-
guage pre-training models [37] have made text-based image
generation and manipulation interfaces possible.

There are different principal branches of image genera-
tion, such as inpainting, image translation [7], style trans-
fer [18], and image manipulation [46, 35, 38, 2, 1]. Com-
putational approaches [29, 5, 8] for modifying the style and
appearance of objects in natural photographs have made re-
markable progress, allowing beginner users to accomplish
a wide range of editing effects. Nevertheless, it should be
noted that prior text-based image manipulations work either
did not allow for arbitrary text commands or image manip-
ulation [33, 5, 24] or only allowed for modifications to the
image’s appearance properties or style [29, 19]. Control-
ling the localization of modifications normally requires the
user to draw a region to specify [2, 1, 5], which adds to the
complexity of the operation. In this study, we aim to elim-
inate all of the aforementioned constraints and restrictions
to enable open image content modification with pure textual
control utilizing cutting-edge image generation techniques.

Recently, there have been tremendous advances in mul-
timodal deep learning that have opened the way for ma-
chines to achieve cross-modal communication and control.
One of the large-scale multimodal pre-training models that
have received many applications is the Contrastive Lan-
guage Image Pretraining(CLIP) [37] model, which was pre-
trained on 400 million text-image samples. In parallel, var-
ious new image synthesis methods [36, 14, 26, 24, 38, 17]
have highlighted the richness of the vast visual and linguis-
tic realm encompassed by CLIP. Nonetheless, manipulating
existing items in arbitrary, actual pictures continues to re-
main tricky. The present mainstream techniques combine
CLIP with pre-trained GANs generators, however, the in-
put picture domain is constrained. There has recently been
a tremendous amount of interest in diffusion models, which
generate high-quality, diversified pictures. Image manip-
ulation at the pixel level, on the other hand, leads to ex-
tended generation times and excessive computer resource
consumption.

After investigation, we found that applying the diffusion
process in the latent space of pre-trained autoencoders [40]
can speed up inference and reduce the consumption of com-

putational resources. Nevertheless, previous latent diffusion
models still fall short in terms of generating image real-
ism. To improve image realism and to enhance the con-
sistency of the editing results with the guide text, we in-
troduced classifier-free guidance [16] at each step of the
diffusion. Based on these, we develop an intensive high-
performance diffusion model editing (Diff-Edit) framework
for zero-shot text-driven image editing. Specifically, our
method enables the editing of image content that satisfies an
arbitrarily given text prompt (as shown in Fig. 1). For ex-
ample, given an image of the dog, and the positioning text:
”A dog”, our work can position the corresponding editing
area. Then, based on the target text: ”A cat”, a high-quality,
realistic, and varied image can finally be composed.

To enable the user to specify the area and objects to be
modified and the objects to be created, simply and intu-
itively, we present a cross-modal entity calibration compo-
nent. It can locate and adjust the text-relevant picture to-
kens given the positional textual guidance t1 to correctly
identify the entities for modification. We observed that by
feeding the input image into the encoder together with the
mask, the content outside of the mask appeared to transform
unexpectedly during the diffusion process for image mod-
ification. To retain extraneous content to a greater extent,
we perform further diffusion at each diffusion step where it
blends the clip-guided diffusion result with the correspond-
ing noisy version of the input image. In addition, we build
relevant loss functions that protect non-editing domains to
constrain the generative process. We incorporated the clip
gradient into the classifier-free guidance to make the edited
results more favorable to humans and to make the content
generated in the edit area more consistent with the seman-
tic content of the target textual guidance t2. Overall, Diff-
Edit implements enhanced directional guidance in the la-
tent space to generate rapid, high-quality, realistic, and text-
compliant editing results.

Quantitative and qualitative comparisons with previous
approaches reveal that our method can better manipulate the
entities of an image through text while leaving the back-
ground region unaffected. As shown in Figs. 1, 3 and 4,
Diff-Edit is capable of producing realistic and high-quality
outcomes in terms of object content change when guided by
various image inputs and text descriptions. The main con-
tributions of this work are summarized as follows:

• We propose Diff-Edit, an entity-level zero-shot text-
driven image editing framework based on the intensive
diffusion model.

• We introduced spatial location masks into each step of
the diffusion sampling and created non-editing region-
preserving loss functions to obtain edited results with-
out stitching traces and well-preserved unedited re-
gions.



• We manipulate the diffusion step in latent space and
embed enhanced directional guidance structures to en-
hance image realism and improve the consistency of
the control text with the editing result.

• The quantitative and qualitative experimental results
show that Diff-Edit outperforms baseline methods in
terms of quality, veracity, and diversity in text-guided
image editing, and achieves superior results.

2. Related Work

In this section, we review the existing works on text-
guided image manipulation and diffusion models, which
motivates us to design and implement our application.

2.1. Text-guided Image Manipulation

Synthesizing an image based on a text description is an
ambitious problem that has advanced tremendously in re-
cent years. Initial RNN-based works [32] were surpassed
by generative adversarial approaches. There have been
seminal works based on conditional GANs in image edit-
ing [11, 27, 34]. Paint By Word [5] firstly addressed
the problem of zero-shot semantic image painting using
CLIP [37] in combination with StyleGAN2 [21] and Big-
GAN [6]. It can only alter the appearance of a picture, such
as its color and texture, but it cannot generate new enti-
ties. ManiGAN [27] semantically edits parts of an image
matching a given text that describes certain attributes and
preserving the contents irrelevant to the text. However, the
expressiveness of the text is restricted by such multimodal
GAN-based approaches. Both Paint By Word [5] and Mani-
GAN [27] are restricted to specific image domains and are
not applicable to open natural images.

SDG [30] and DiffusionCLIP [24] are proposed to utilize
a diffusion model in order to perform global text-guided im-
age manipulations. GLIDE [35] and DALL·E 2 [38] focus
on text-driven open domain image synthesis, as well as lo-
cal image editing. GLIDE fine-tunes its text-to-image syn-
thesis model for image inpainting. DALL·E 2 performs in-
painting results while lacking discussion in the paper. Both
of them are implemented with the idea of integrating image
generators and joint text-image encoders into their archi-
tectures. They all contain pre-trained models with large-
scale datasets of numerous text-image pairs, while neither
of them has released their complete models. Later, Blended
Diffusion [2] and Latent Blended Diffusion [1] were pro-
posed as the solution for local text-guided editing of real
generic images. However, these methods require the user
to draw the extra mask manually from which the image is
edited, without a precise and automatic editing area.

2.2. Diffusion Models

Diffusion models, also known as score-based generative
models, are a strong family of generative models that have
recently evolved. This fresh idea on the subject of image
generation was proposed by Sohl-Dickstein et al. [44]. Cur-
rent works [10, 20, 45] demonstrate astonishing results in
high-fidelity image generation, often even outperforming
generative adversarial networks. Importantly, [35, 38, 42]
additionally offer strong sample diversity and faithful mode
coverage of the learned data distribution. As a result, diffu-
sion models are ideal for learning models from complicated
and varied data.

Specifically, diffusion models consist of one forward
process and one reverse process. The forward diffusion
process maps data to noise by gradually perturbing the in-
put data. The reverse process performs iterative denoising
from pure random noise. The diffusion models are used to
generate data by simply passing randomly sampled noise
through the learned denoising process. Diffusion models
have already been utilized in many successful applications,
such as image generation [10, 20, 35, 38, 42, 45], im-
age segmentation [4], image-to-image translation [7], su-
perresolution [22, 40], and image editing [1, 2, 35, 38].
Text2LIVE [3] applies the text to edit the appearance of ex-
isting objects. It concentrates on generating an edit layer
composited over the original input, rather than removing or
replacing objects of the input image, as we do.

Even though the approaches described above produce
cutting-edge outcomes for picture data generation, one dis-
advantage of diffusion models is the sluggish reverse de-
noising process. In addition, traditional diffusion models
operate in pixel space leading to consuming a lot of mem-
ory. Latent diffusion models (LDMs) [40] have been pro-
posed to expedite the sampling process and reduce com-
putational requirements compared to pixel-based diffusion
models. LDMs are trained to build latent visual represen-
tations and to perform the diffusion process across a lower-
dimensional latent space. [40] shows that it has achieved
a new state-of-the-art and highly competitive performance
on various computer vision tasks. However, there is still a
need to improve performance in terms of image fidelity and
text-image semantic consistency. Therefore, our RDM is
designed to retain the benefits of LDM speed while taking
into account image quality and text-image alignment.

3. Method

3.1. Overview

The proposed RDM is a framework for solving entity-
level zero-shot text-driven image editing tasks, as depicted
in Fig. 2. Our goal is to implement editing of the input im-
age x0 through the control by a pair of text prompts (t1, t2).
The positioning text t1 is used to position the edited entity,



Figure 2: The overall framework of our method for zero-shot text-driven image editing.

and the target text t2 is used to generate the new entity. In
Section 3.2, we illustrate the concrete composition of the
intensive diffusion model. In Section 3.3, we explain how
regional-aware entity editing can be achieved through text.

3.2. Intensive Diffusion Model

The diffusion model [44] is a generator that can be used
to generate images. The diffusion process is divided into a
forward process, which adds random noise to the input im-
age x0, and a backward process, which removes the noise
and generates the image x̂0. Unlike traditional diffusion
models [10, 15], we do not perform the diffusion process
at the pixel level. Some recent works [1, 40] have demon-
strated that performing the diffusion process in the latent
space can reduce computational consumption and speed up
the sampling process. The denoising UNet learns to remove
the noise, and after T steps of noise removal, generates the
output image x̂0. However, there is damage to image gener-
ation quality and text-image consistency by performing the
diffusion process in the latent space. To improve this issue,
we further introduce a component of enhanced directional
guidance.

Latent Representations. As mentioned above, we per-
form a diffusion step in the latent space [40] to reduce
complexity and provide efficient image processing. An au-
toencoder VAE [25] is used to accomplish perceptual pic-
ture compression. The diffusion model directly operates
on the lower-dimensional latent space, taking advantage
of image-specific inductive biases. This allows the under-
lying autoencoder to be constructed primarily from two-
dimensional convolutional layers and uses a re-weighting
bound to further focus the target on the perceptually most
important bits, which are denoted as:

LLDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t)∥22

]
. (1)

Our model’s determination ϵθ(zt, t) is implemented as a
time-conditional UNet [41]. Given that the forward pro-
cess is fixed, zt can be conveniently acquired from E dur-
ing training, and D can decode samples from p(z) to pixel
space.

Enhanced Directional Guidance. To reinforce the edit-
ing direction of the source region to follow the target text,



Figure 3: More manipulation results by RDM.

we attempt to modify a classifier-free guidance [16] to
strengthen cross-modal guidance. It is a strategy for guid-
ing diffusion models without necessitating the training of
a separate classifier model. Generally, classifier-free guid-
ance offers two benefits. For starters, rather than relying
on the knowledge of a separate (and perhaps smaller) cat-
egorization model, it allows a single model to leverage its
experience while guiding. Second, it simplifies directing
when conditioned on information that is difficult to predict
using a classifier.

In order to provide classifier-free guidance, the tag y in
a class-conditional diffusion model ϵθ (xt | y) is replaced
with a null tag ∅ throughout the training process. The out-
put of the model is further extended in the direction of
ϵθ (xt | y) and away from ϵθ (xt | ∅) during sampling:

ϵ̂θ (xt | y) = ϵθ (xt | ∅) + s · (ϵθ (xt | y)− ϵθ (xt | ∅)) .
(2)

The recommended guidance scale is s = 5. This equation
was inspired by the classifier.

pi (y | xt) ∝
p (xt | y)
p (xt)

, (3)

where the function of the true scores is used to represent the
gradient ϵ∗,

∇xt
log pi (xt | y) ∝ ∇xt

log p (xt | y)−∇xt
log p (xt) ,

∝ ϵ∗ (xt | y)− ϵ∗ (xt) .
(4)

The modified prediction ϵ̂ is subsequently employed to
guide us toward the target text prompts t2, as demonstrated
in Algorithm 1:

ϵ̂θ (xt | t2) = ϵθ (xt | ∅) + s · (ϵθ (xt | t2)− ϵθ (xt | ∅)) .
(5)



Figure 4: More manipulation results by RDM.



3.3. Regional-aware Entity Editing

Cross-modal Entity-level Calibration. To generate a bi-
nary segmentation mask m based on the localized text t1,
we design a cross-modal entity-level calibration module,
consisting of a pre-trained CLIP model and a thin condi-
tional segmentation layer (decoder). First, the positioning
text t1 is fed into the CLIP text transformer to obtain the
conditional vector. Motivated by feature-wise transforma-
tions [12, 31], the conditional vector is used to modulate
the input activation of the decoder. This enables the decoder
to associate the activation within CLIP with the output seg-
mentation and to inform the decoder about the segmenta-
tion’s target. The input image x0 is passed through the
CLIP visual transformer to get RW×H×3. Afterward, the
activations extracted at layers S = [3, 7, 9] are added to the
decoder internal activations at the embedding size F = 64
before each transformer block. Besides, CLIP ViT-B/16 is
used with token patch size: P = 16. The decoder generates
the binary segmentation by applying a linear projection on
the tokens of its transformer (last layer):

R(1+
W
P ×H

P )×F 7→ RW×H . (6)

To associate CLIP’s capabilities with segmentation results,
a generic binary prediction setting is employed. We thresh-
old the binary segmentation for spatial mask m, with a
threshold K ranging from 0 to 255, which we usually take
as 150.

Region of Interest Synthesizing. To make the region of
interest could be edited according to the text prompt, we
leverage a pre-trained ViT-L/14 CLIP [37] model for text-
driven image content manipulation. The cosine distance be-
tween the CLIP embedding of the denoised image x̂t dur-
ing diffusion and the CLIP embedding of the text prompt
t2 may be used to specify the CLIP-based loss, or LCLIP .
Target textual prompt t2 is embedded into the embedding
space, which is defined as EL. And a time-dependent im-
age encoder for noisy images is referred to as EI . We define
the language guidance function using the cosine distance,
which measures how similar the embeddings EI and EL

are to one another. The text guidance function can be de-
fined as:

LCLIP (x̂t, t2,m) = EI (x̂t ⊙m) · EL(t2). (7)

The aforementioned process is not subject to any extra
non-editing region restrictions. Despite being assessed in-
side the region that is being edited, LCLIP also affects non-
editing regions. We provide the equivalent approach below
to deal with this problem.

Region out of Interest Preserving. Non-editing region
preserving (NERP) is not present in the aforementioned

procedure, which starts with isotropic Gaussian noise. As
a result, even though LCLIP is assessed inside the masked
zone, it still has an impact on the whole image. To ame-
liorate this problem, we encode the mask m into the latent
space to get mlatent, and blend it into the diffusion process
as follows. The latent for the subsequent latent diffusion
step is produced by blending the two results using the re-
sized mask, i.e. ẑ′′t ⊙mlatent + zt ⊙ (1−mlatent). As shown
in Fig. 2, where z′′ represents the result generated by a la-
tent diffusion followed by enhanced directional guidance in
the reverse process. And znd is the result of superimposing
the corresponding noise on the input image in the forward
process. At each denoising step, the entire latent is modi-
fied, but the subsequent blending enforces the parts outside
mlatent to remain the same. In this stage, the backdrop is
tightly preserved by replacing the whole area outside the
mask with the comparable region from the input image. The
subsequent latent denoising process ensures coherence even
though the resultant blended latent is not always coherent.
Following the completion of the latent diffusion process, we
decode the resulting latent to the output image using the de-
coder D(z), as demonstrated in Algorithm 1.

Besides, a non-editing region preserving loss LNERP is
applied to direct the diffusion outside the mask to direct the
surrounding area towards the input image:

LNERP (x0, x̂t,m) = d (x0 ⊙ (1−m), x̂t ⊙ (1−m)) ,
(8)

d (a, b) = λ1 (LPIPS (a, b)) + λ2 (MSE (a, b)) , (9)
a = x0 ⊙ (1−m), b = x̂t ⊙ (1−m). (10)

where LPIPS is the learned perceptual image patch simi-
larity measure and MSE is the L2 norm of the pixel-wise
difference between the images. λ1 and λ1 are all set to 0.5.

4. Experiments

4.1. Implementation Details

For the diffusion model, we used a pre-trained latent
diffusion model [40] of resolution 256 × 256, which has
1.45 billion parameters trained on the LAION-400M [43]
database. For the CLIP model, we used ViT-L/14 released
by OpenAI for the Vision Transformer [37]. The output size
of RDM is 256× 256. For sampling, we set λ1, λ2 and clip
guidance scale to 0.5, 0.5 and 150, respectively. To ensure
the quality of the results and to maintain the consistency of
the parameters, the diffusion step and the time step used for
the experiments in this work are both set to 100. It takes
three seconds to generate a 256 × 256 image on a single
GeForce RTX 3090 GPU by RDM, which is comparable
to latent diffusion (three seconds) and surpassing most dif-
fusion models (15 seconds, 27 seconds, and 3 minutes re-
spectively for GLIDE, blended diffusion, and clip-guided
diffusion).



Figure 5: Comparison with SOTAs including latent diffusion, GLIDE, blended diffusion, and CLIP-guided diffusion.



Figure 6: Impact of mask threshold on the manipulation results.

Algorithm 1 Text guided hybrid diffusion sampling, given
a latent diffusion model (µθ(zt),Σθ(zt))

Input: The input image x0, text guidance t2, gradient scale
s, diffusion steps T .

Output: generated image x0 according to text guidance t2.

1: t = T
2: z0 = E(x0)
3: zt ← sample from N (0, I)
4: ẑT = zT
5: repeat
6: t− 1← t
7: µ,Σ← µθ(ẑt),Σθ(ẑt)
8: ẑ′t−1 = denoise (ẑt, t2, t)
9: x̂′

t−1 = D(ẑ′t−1)
10: ϵ̂θ(x̂t−1 | t2)← (1− s) · ϵθ(x̂t−1 | ∅)+ s · ϵθ(x̂′

t−1 |
t2)

11: L ← LCLIP (x̂
′
t−1, t2,m) + LNERP (x0, x̂

′
t−1,m)

12: ẑ′′t−1 ← sample from N (µ+ sΣ∇x̂t−1
L)

13: ẑt−1 = ẑ′′t−1 ⊙mlatent + zt−1 ⊙ (1−mlatent)
14: until t < 0
15: x̂0 = D(ẑ0)

4.2. Qualitative Evaluation

We tested our approach on a variety of real-world images
and edited texts. The images were sourced from the web
and contained a variety of object categories, including ani-
mals, food, landscapes, and others. Fig. 3 shows the results
by using different images and text prompts as inputs. The
results of our method were successful in editing arbitrary
images. As shown in the images of the flower, the petals
are generated with a very fine and natural texture. For food
manipulation, it is possible to see each piece of food. In
the editing of animals, RDM can compose the new animal
very well even though the animal being edited has multiple
complex poses. For the vehicle samples, the edits are posi-
tioned precisely, even if the bodywork is partially obscured.
As shown in Fig. 4, RDM can obtain a variety of different
results for the same image and text input. In a nutshell, our

Figure 7: Qualitative comparison of our RMD with or with-
out non-editing region preserving component.

method successfully applies text control to the editing of
image entity content in high quality and diversity.

4.3. Comparison with the State-of-the-arts

In this section, we compare RDM with SOTA text-driven
image editing methods including Latent diffusion [39],
GLIDE [35], blended diffusion [2] and CLIP-guided dif-
fusion [9]. Fig. 5 shows comparisons to baselines of real-
world images. The main differences between our approach
and these methods are as follows. Latent diffusion [39],
GLIDE [35], and blended diffusion [2] require the user to
provide a mask for the area to be edited. Their out-of-
interest regions are not involved in diffusion, so there are no
content-preserving issues. CLIP-guided diffusion [9] can-
not be modified for local areas of the image.

In this comparison, the masks required for these methods
are provided by masks generated by RDM’s cross-modal
entity-level calibration component. As can be seen from



the results (in column (d) of Fig. 5) of latent diffusion [40],
even though a strict edit mask is provided, the new content
generated does not match the area of the mask and always
generates new content that is smaller than the masked area.
The results of GLIDE [35] (in column (e) of Fig. 5) lack
details; for example, the petals of the sunflower are very
smooth; the skin of the horse has no texture, and the hair
on the horse’s back is lacking; the “grass plains” genera-
tion fails and GLIDE does not understand the content of
this text prompt well. The images (in column (f) of Fig. 5)
produced by blended diffusion [2] lack realism and are arti-
ficial. The results (in column (g) of Fig. 5) of CLIP-guided
diffusion [9] do not preserve the content of the unmodified
areas of the image and tend to over-vignette.

4.4. Quantitative Evaluation

CLIP score. To assess the semantic alignment of the text
descriptions and modified images, we compute the CLIP
score, which is the cosine similarity between their embed-
dings derived with CLIP encoders. Because we utilize the
ViT-B/14 CLIP model during the inference process, for a
fair comparison, we compute the CLIP score using the ViT-
B/32 CLIP [37] model. A higher CLIP score suggests that
the input texts and altered images are semantically aligned.
The results (the 1st row of Table 1) show that RDM outper-
forms baseline models, which indicates a superior in terms
of text image consistency.

SFID. To assess the quality of manipulated images, we
employ the SFID [23], a simplified FID that avoids the nu-
merical instability associated with a limited number of sam-
ple feature distributions. We calculated the SFID score be-
tween the different methods to obtain the 2nd row of Ta-
ble 1. Intuitively, the lower the SFID scores, the higher
quality of the manipulated images on the COCO [28]
dataset. The findings reveal that GLIDE has the highest
SFID score and RDM is the second-best.

Harmonization score. To evaluate the degree of harmo-
nization between the edited and unedited parts, we used
DoveNet [47] as a quantitative evaluation method. We uti-
lize DoveNet to generate harmonized images and calcu-
late the PSNR values between the harmonized images and
manipulated images. Image harmonization (IH) scores are
shown in the 3rd row of Table 1. The lower the IH score,
the more synchronized the edited and unedited parts are.
Our approach outperforms the baseline model by a margin,
achieving the highest harmonization score. Our incorpora-
tion of the mask into the diffusion process resulted in bet-
ter performance in terms of consistency between edited and
unedited regions.

User study. Next, we conducted a user perception eval-
uation. Participants were asked to choose: which image
produced a higher quality image, which image turned out
to be more harmonious and had less visible editing marks
(seams), and which image editing turned out to be more
in line with the text content. The judgments of 70 partici-
pants were collected across 36 image-text combinations and
gathered 2520 votes. Each comparison was made without
revealing which image was by which method. We have in-
cluded Table. 2 report the percentage of votes in favor of the
RDM model. It follows that our method is capable of gen-
erating the kind of image editing results that humans prefer.

4.5. Ablation Study

Effects of cross-modal entity-level calibration compo-
nent. To investigate the impact of the cross-modal entity-
level calibration component on the quality and semantic
content of the generated images, we tested image editing at
different thresholds K. Fig. 6 shows that when the value of
K is set small, the segmented editable scene is also smaller
than the area occupied by the vehicles in the input image to
varying degrees. The orientation of the generated vehicles
does not match the orientation of the vehicles in the input
image, i.e., there is a deviation in semantic consistency. As
the value of K increases, the editable area increases, and
the orientation of the vehicles tends to be the same, but af-
ter a certain point, the image editing results do not change
significantly.

Effects of the non-editing region preserving component.
Fig. 7 illustrates the effect without the non-editing region
preserving (NERP) component. As can be seen, this com-
ponent allows us to achieve the retention of image content
in out-of-interest areas of the input image. We qualitatively
compare the editing results with and without the compo-
nent. The results are shown in Fig. 7. As is visible, with-
out the original image with the corresponding noise and
the editing component together with the diffusion inference
process (w/o NERP), the buildings in the image produce a
large deformation with abnormal artifacts and textures, re-
sulting in a loss of overall image quality. Thus, the out-
of-interest region preserving component significantly im-
proves the abnormal deformation and damage to the image
content outside the edited area.

4.6. Failed case.

We have observed through some experiments that CLIP
has a significant preference for particular solutions for var-
ious editors. As shown in Fig. 8, given a picture of a cup
with coffee, we wanted to implement a “coffee” to “water”
image edit. The result shows that the liquid in the cup is
successfully turned into water. However, the text “water” is
closely associated with a transparent cup, so it is possible



Table 1: Quantitative comparisons for image manipulation. We compute the average CLIP score, SFID score and image har-
monization (IH) score to measure visual quality, text consistency, and image harmonization. The best results are highlighted
in bold while the second best results are marked with an underline

RDM Latent diffusion GLIDE Blended diffusion CLIP guided diffusion

CLIP score ↑ 0.849 0.824 0.845 0.822 0.843
SFID score ↓ 6.54 9.29 5.88 17.37 23.42

IH score ↓ 20.7 22.0 21.8 23.1 /

Table 2: User study results. Each number represents the percentage of votes received by the other models’ outcomes as
compared to our results.

Latent diffusion GLIDE Blended diffusion CLIP guided diffusion

Visual quality 5.71% 19.05% 6.67% 15.71%
Preference rate Invisible seams 6.67% 20.95% 10.00% 16.67%

Text consistency 10.48% 24.29% 21.43% 11.90%

Figure 8: Examples of failure cases are given source im-
ages.

that the cup could also be turned into a glass. As shown in
the second column of Fig. 8 the coffee that is in the air being
injected into the cup fails to successfully turn into water. In
addition, liquids that were in the air and not in the cup were
not successfully edited. In summary, our method is more
suited to generating a new entity rather than modifying the
properties of the original entity.

5. Conclusion and Future Work

This paper investigates for the first time a new problem
setting - the editing of the content of specified entities in
images, guided by arbitrary text. Solving this task requires
control over the positioning of the edits, the quality, and fi-
delity of the edited and unedited content, the consistency of

text guidance and image manipulation, etc. To address these
issues, we propose a new framework, a region-aware diffu-
sion model with semantic alignment and generation capa-
bilities, for manipulating images at the entity level. We pro-
vide a new tool for users to modify images by simply pre-
senting their requirements in text. In the future, we hope to
expand the applications of RDM, such as more flexible con-
trol of the position, shape, and size of the generated area.
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