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Abstract

Learning-based monocular depth estimation algo-
rithms have achieved good performance in indoor scenes
and outdoor close-up scenes. However, such algorithms
cannot distinguish the depth of distant objects from the
background in outdoor scenes. This paper proposes a
novel monocular depth estimation method to predict the
depth of distant objects in outdoor scenes. Our algo-
rithm can be divided into three parts. First, the object-
level depth is calculate through semantic information
and the perspective relationship of the scene. Subse-
quently, the object-level depth will be merged into the
depth map generated by the monocular depth estima-
tion network(MDE network). Finally, the semantic seg-
mentation results is used to conduct guided filtering on
the merged depth map, to enhance its edge information,
and smooth the depth of the object mask. The experi-
ment’s visual results and quantitative analysis show our
algorithm can recover the depth of distant objects in
outdoor scenes compared with the existing methods.

1. Introduction

Depth information and RGB information are essential
for humans to understand 3D space. Moreover, depth in-
formation plays an essential role in computer vision fields,
such as augmented reality, autonomous driving cars, and
robotics navigation. The core algorithm of such applica-
tions needs to take depth information of the scene as input.

Many devices can obtain the scene’s depth information
directly from the physical measurement. The most com-
monly used devices are lidar and RGB-D cameras. How-
ever, these devices are usually expensive and difficult to
equip. Binocular cameras can also be used for depth estima-
tion. However, the calculation complexity of the binocular
image algorithm is high, and the matching effect for low-
texture scenes is poor.

Using the monocular camera to estimate the environ-
ment’s depth is more convenient and cheaper. With these
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(a) (b)
Figure 1. The existing depth estimation method can not predict
the proper depth of distant objects in outdoor scenes. (a)The
image from top to bottom is the input RGB image, the result
of [23], and the result of our algorithm. (b)The left image is the
3D view result of our method, and the right image is the 3D view
result of the [23]. The existing methods have poor results when
estimating the depth of distant objects, but our method can solve
this problem well.

advantages, the interest in monocular depth estimation has
been significantly increased in recent years.

The existing monocular depth estimation methods show
good performances on indoor and small-range outdoor
scenes. However, these methods can only provide depth
estimates up to approximately 50 meters in outdoor envi-
ronments, which will limit its application in outdoor scenes,
as shown in figure 1. The long-range depth information is
useful for outdoor applications, such as auto-driving cars.
For example, high-speed self-driving cars rely heavily on
the data transmitted by sensors to perceive and model the
surrounding. If the depth of distant objects can be obtained,
self-driving cars will be safer.

To address this problem, we propose a novel monocu-
lar depth estimation approach that can obtain the depth of
the objects at far distances in an outdoor scene. The appar-
ent ease at which humans can roughly estimate depth moti-
vates us to extend single-view depth estimation limitation.
As shown in figure 2, the human can distinguish the depth
distribution of the scene from a sketch without any tex-
ture information. However, This is very difficult for exist-
ing deep learning depth estimation algorithms to reconstruct
such depth information. Humans learn to estimate depth by
using a variety of monocular depth cues [8], including per-



(a) (b)
Figure 2. Picture with only size information and Perspective
relationship.(a) is a simple sketch. (b) is its rough depth distribu-
tion. Humans can use the perspective information and object size
information of the scene to get the object distribution of the scene
without the texture information of the scene.

spective, absolute and relative image size of known objects,
and semantic information of the scene. Inspired by this,
semantic information, scale prior information, and perspec-
tive relationships are used to enhance depth.

Our method has three main stages: The vanishing point
and semantic depth estimation(VSDE) stage, the depth
merge stage, and the semantic filter stage.

First, the semantic segmentation network is used to ob-
tain the scene’s instance-level semantic information. At the
same time, vanishing point detection is also performed to
gain the scene’s perspective information. With the size in-
formation of the common objects, the object-level depth can
be computed through semantic information and perspective
information. The object-level depth means that the depth
value is the same in the area covered by the same object,
equal to the whole object’s distance to the camera. In this
stage, the absolute depth scale factor can also be obtained.
In the calculation process, the human body and the size of
the car in the real world are used as prior information.

Then, the object-level depth map is merged with the
monocular depth estimation(MDE) network’s result to get
the merged depth. The object-level depth measurement
range is farther, but detailed information about the scene
cannot be recovered. The results of MDE have rich details,
but the depth of distant objects cannot be obtained.

Finally, the semantic segmentation results are used to
conduct guided filtering on the merged depth to enhance its
edge information and smooth the internal depth of the ob-
ject. The experiment’s visual results and quantitative anal-
ysis show that our method can achieve good results in out-
door long-distance depth estimation.

In summary, the main contributions of our paper are:

• We propose a new method to compute the object-level
depth with semantic information, scale prior informa-
tion, and perspective relationship for single vanishing
point and double vanishing point cases.

• We propose a new method to enhance the depth map by
using the semantic segmentation result with the guide

filter algorithm.

2. Related Works

2.1. Monocular Depth Estimation

Monocular depth estimation can be divided into super-
vised depth estimation and unsupervised depth estimation
according to whether it uses supervised information for
training. Next, we will introduce these two methods sep-
arately.

Supervised depth estimation takes RGB images as input
and predicts the depth information of the scene based on the
prior knowledge in the neural network. Because the training
data includes ground-truth depth information, the model can
learn absolute depth information, but due to internal camera
parameters and other reasons, the model cannot be general-
ized to different source images and different scenes.

In [6], the author uses two network stacks for depth es-
timation, and the two networks are responsible for estimat-
ing global depth information and local depth information.
In [12], the author proposes to use the ubiquitous planar
structure in the indoor environment as a guide for depth es-
timation. The model assumes a linear correlation between
pixels in the same plane and uses plane parameterization
for training to model the relative position relationship of the
scene for depth estimation. In [22], the author proposes to
use three-dimensional geometric consistency constraints to
train the depth estimation network. The model uses surface
normal constraints and virtual normal constraints to model
three-dimensional geometric consistency information.

In order to overcome the lack of depth annotation in
monocular camera data, many recent works have proposed
a variety of unsupervised methods to extract differences and
depth cues from image pairs or monocular videos to predict
depth.

Garg et al. [7] proposed an unsupervised framework
based on auto-encoders for single-view depth prediction.
The author considers a pair of images, the source image
and the target image, and the relatively small motion be-
tween the two images during the training time. Guizilini
et al. [9] proposed a self-supervised method to estimate the
depth map by combining the geometry of PackNet.

None of these methods considers the problem of out-
door long-distance depth estimation. Their estimated depth
range is very limited, and it is impossible to obtain the depth
information of objects at a long distance. For depth es-
timation algorithms based on supervised learning, ground
truth data are difficult to obtain, especially depth informa-
tion at long distances. For unsupervised learning methods,
epipolar constraints are often used as training constraints
during training, and distant objects are often regarded as
backgrounds because of their little position change. These
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Figure 3. System Overview.Our algorithm can be divided into three main steps. First, calculate the object-level depth, and restore the
absolute depth factor of the scene. Then we fuse the obtained distance information and the depth information estimated by the MDE
network to obtain the depth estimation result enhanced by the perspective information. Finally, we perform guided filter on the merged
depth map to enhance its expression of scene details. The VSDE means Vanishing point and semantic depth estimation. The MDE means
monocular depth estimation.

problems limit the practical application of depth estimation
algorithms.

2.2. Image-based Measurement

In [10] they proposed a method that models the 3D im-
age by specifying the vanishing point in the 2D image. The
background in the scene model then consists of at most
five rectangles, whereas hierarchical polygons are used as
a model for each foreground object. In [14], they propose a
new modeling scheme based on a single vanishing line in-
stead of a vanishing point, and this method can be naturally
extended to a panoramic image. [16] formulate a non-linear
optimization problem to find the 3D scene parameters with
respect to the camera position, to automatically construct a
reasonable 3D scene model, provided with a set of points
and their corresponding points on the water surface.

In [5], They used a known reference plane, a vanishing
line on the known reference plane, and a vanishing point
perpendicular to the reference plane to measure image in-
formation. In [17] describe how 3D metric measurements
can be determined from a single uncalibrated image when
only minimal geometric information is available in the im-
age. The minimal information just is orthogonal vanishing
points.

These methods do not use the relative relationship be-
tween the actual object size and the object size on the im-
age and do not make full use of the semantic information
existing in the scene. And this method can’t get detailed
information of scene depth.

3. Method

We propose a new depth estimation method to solve
the outdoor long-distance depth estimation problem. Our
method can be easily integrated into existing depth estima-
tion algorithms.

As shown in figure 3 Our method can be divided into
three main parts: The depth estimation using vanishing
point and semantic information(VSDE), the depth merge
stage, and the semantic filter stage.

First, the object scale information and computational
photography is used to compute the object-level depth. Our
method can calculate the distant object’s depth in long-
distance. The existing methods can obtain the vanishing
point and the instance level semantic segmentation infor-
mation used in our method. Furthermore, in the calculation
process, the size of the human body and car in the real world
is used as the prior information. Using the prior informa-
tion, the absolute depth scale factor can be obtained.

Then we merge the object-level depth map with the result
of MDE networks. The depth scale information is used to
align the scale of the result of MDE networks. Then the
object-level depth is used to adjust the relevant regions in
the aligned depth map.

Finally, the semantic segmentation result is used as the
guided image to conduct guided filtering on the adjusted
depth map, enhance its edge information, and smooth the
internal depth of each object.
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Figure 4. Outdoor Scene model.The outdoor pavement can be re-
garded as the supporting plane of the outdoor 3D model, and other
objects are arranged on the pavement according to the perspective
relationship.

3.1. Vanishing Point and Semantics Depth Estimation

First, we perform instance-level semantic segmentation
on the input image. The vanishing point detecting is also
performed to gain the scene’s perspective information at the
same time. Because the camera’s internal parameters can
easily be obtained through calibration or camera parame-
ter estimation algorithms, here, we directly use the camera
parameters provided by the data set. In addition, since the
camera orientation in most autonomous driving technolo-
gies is horizontal forward, we also directly use the assump-
tion that the camera orientation is perpendicular to the im-
age plane. Moreover, we assume that the objects are verti-
cally distributed on the ground, which is the general situa-
tion of outdoor scenes.

3.1.1 Vanishing Point-Based Measurement

The vanishing point can provide structural information
and direction information for scene analysis. Theoretically,
the outdoor objects lying on the same ray originating from
the vanishing points are perceptively ordered in distance.
Here, the detection result of the vanishing point and the
Bertozzi formula [1] is used to perform the inverse perspec-
tive transformation on the image to measure the distance
from the object to the camera plane.

The perspective model of the camera can be simplified
as shown in figure 4. In practical applications, We will ad-
just the position of the world coordinate system to ensure
the origin of the camera coordinate system in the world co-
ordinate system is (0, 0, h). h is the camera’s height, here
we use the parameters provided by the data set. Under this
model, the inverse perspective transformation can be de-

fined by the following formula.
rFactor =

(
1− 2u

M−1

)
× tan (αr)

cFactor =
(
1− 2v

N−1

)
× tan (αu)

X0(u, v) = h× 1+rFactor×tan(θ)
tan(θ)−rFactor +Cx

Y0(u, v) = h× cFactor/ cos(θ)
tan(θ)−rFactor +Cy

(1)

Where X0(u, v) and Y0(u, v) Represents the road sur-
face coordinates in the world coordinate system; u and v re-
spectively represent the abscissa and ordinate values of the
world coordinate system mapped to the image coordinate
system; M and N represent the width and height of the im-
age respectively; Cx,Cy represents the coordinate position
of the camera in the world coordinate system. αr indicates
the range of the camera’s vertical field of view; αu indi-
cates the range of the camera’s horizontal field of view. θ
represents the vertical pitch angle of the camera.

αr and αu can be calculated with the following equation:
the L is the camera focal length.{

αr = arctan( N
2L )

αu = arctan(M
2L )

(2)

Suppose the coordinate of vanishing point is (xc, yc)The
camera’s vertical pitch angle can be calculated using the in-
formation of the vanishing point,

θ = arctan(tan(αr)× (1− 2(N − yc)

N
)) (3)

Through the result of semantic segmentation, the posi-
tion of the ground in the image coordinate system can be
obtained. Outdoor objects are often arranged from near
to far around the vanishing point. Therefore, we can per-
form the inverse perspective transformation on the line of
intersection between the object and the ground to obtain the
distance of each point on the line of intersection with the
ground relative to the camera coordinate system. Average
these distances as the distance from the object to the cam-
era.

3.1.2 Scences With Tow Vanishing Points

In daily life, there are often two vanishing points in the
pictures of outdoor scenes. For example, at intersections,
two different vanishing points are formed. As shown in 5,
in this case, there are two distinct vanishing points in the
image. The depth of the object on the other side cannot be
accurately calculated from only one vanishing point. When
only the right vanishing point is used, the depth information
of the left object cannot be accurately calculated, and vice
versa.

In the presence of two vanishing points, to address the
above problem, a new computational strategy is preformed.



Figure 5. A scene with two vanishing points. At intersec-
tions,two different vanishing points are formed. In this case, use
only one vanishing point cannot calculate the depth information of
the objects accurately.

After calculating the coordinates of the vanishing point, the
distance from each mask in the semantic segmentation re-
sult to the vanishing point can be calculated. This distance
refers to the image distance from the centroid of each mask
to the vanishing point. For each mask, the vanishing point
closest to it is used as the vanishing point used to compute
the inverse perspective transform.

The geometric moments of the image is used to calculate
the centroid coordinates of each mask region. The formula
for calculating the geometric moment is as follows.

Mij =
∑
x,y

I(x, y) ∗ xj ∗ yi (4)

where I(x, y) is the pixel value at pixel (x, y). When both
i and j take the value 0, it is called the zeroth moment, and
the zeroth moment can be used to calculate the centroid of a
shape. When x and y take the value 0 and 1 respectively, it is
called the first moment, and so on. The calculation formula
of the image centroid is as follows:

x =
M10

M00
, y =

M01

M00
(5)

After obtaining the centroid of each mask, the distance from
each mask to the vanishing point is obtained by calculating
the Euclidean distance from the vanishing point.

3.1.3 Convert Size to Depth

Size information is useful in the depth estima-
tion [2] [20]. In this step, we use the scale information of
common objects as a priori information to adjust the object-
level depth and compute the absolute depth scale. The prior
information of the object scale can be obtained through the
statistics website. We select people and cars as reference
objects in the experiment.

Because our camera model is a small hole imaging
model, for the objects on the image, the following relation-
ship holds:

d = kL
Aws

Ais
(6)

d is the distance of the object from the camera
plane,Aws,Ais respectively represent the size of the object
in the world coordinate system and the image coordinate
system. k is the depth factor,L is the camera focal length.

For each object, the relationship is established. For the
human body and cars, height is used as the scale informa-
tion for judging its depth. In real life, we can assume that
cars and people are distributed perpendicular to the ground,
so the height of these objects in the image coordinate sys-
tem can be calculated by calculating the pixel distance in
the vertical direction on the image.

Each set of actual size and image size are satisfied with
equation 6. From each equation, the scale factor k of the
image can be solved . Due to the existence of measurement
noise, the value of k may not be consistent.The final scale
factor kn can be calculated from the least-squares solution
of these equations.

3.2. Depth Merge

In the depth map merging stage, object-level depth calcu-
lated in the previous step is merged with the depth estimated
by the monocular depth estimation network.

Similar to humans’ understanding of the scene’s depth,
the first thing to judge is the distance of a single object,
rather than calculating the distance of each point on the ob-
ject. After the previous calculation stage, the depth inside
the object is the same, representing the distribution of the
entire object in the scene. However, the depth inside the
object obtained by the depth estimation network is different
and has richer depth information.

In the deep merging stage, the object-level depth calcu-
lated in the previous step is merged with the result of the
depth estimation network.

3.2.1 Depth Align

Due to the different calculation methods, the two types
of depth information scales are also different. Before these
two depth maps be merged, them need to be normalized
to the same scale. Let Ci be the area enclosed by the
i-th contour in the segmentation results. The area’s dis-
tance can be generate through the previous step, donated as
distance(Ci). Then calculate the average depth covered by
the contour on the depth map, donate as depth(Ci). Note
that the depth estimated by the depth estimation network of-
ten has a significant deviation at a long distance, which can
be observed from figure 6. Here the area in which the depth
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Figure 6. The relationship between using pixel range and ab-
solute error.The depth estimated by the depth estimation network
often has a significant deviation at a long distance.

value is small than the top 70% is used to estimate the scale
factor. Then object-level scale factor can be calculated from
the equation as follows:

factori =
distance(Ci)

depth(Ci)
(7)

By calculating the value of each mask that meets the stan-
dard, a factor sequence factori ∈ F can be calculated and
then the weighted average of the sequence can be obtained
from follow equation:

factor =

∑
(wifi)∑
wi

, for factori ∈ F (8)

Among them, wi = 1/depthi. Because as the distance in-
creases, the error of depth estimation will gradually become
larger, the weight of the scale factor calculated at a far dis-
tance is relatively small. Then this factor is used to normal-
ize the depth map generate from the MDE network.

3.2.2 Depth Merge

After the depth alignment, the object-level depth and
depth from MDE will be merged. The following two situa-
tions will be encountered when performing deep merging:

• The distance information of the object is calculated
above, but there is no such information in the estimated
depth map. This situation often occurs at the far posi-
tion of the depth map.

• The depth information of the object exists in both the
object-level depth map and MDE’s result. This situa-
tion often occurs in nearby objects or objects with ap-
parent structures.

We adopt different strategies to deal with these two situ-
ations. First, the edge detection operator is used to perform
edge detection on the depth map. If there is no edge near the
object, it belongs to case 1. Otherwise, it belongs to case 2.

(a) (b)

(c) (d)Figure 7. Visual comparison of two filtering methods.(a) is the
input image,(b) is the result of the guided filter using semantic
result,(c) is the result of the guided filter using the RGB image,(d)
is the compare.

If the object belongs to case 1, the MDE network cannot
obtain the object’s depth here. In this case, the object level
depth of the area is directly used to fill it. This depth value
represents the position of the entire object in the scene.

If the object belongs to case 2, the MDE network also
gives an estimate to this object. So the following formula is
used to adjust the object’s depth in this area while retaining
the position information of the object and its internal depth
distribution.

depthm(Ci) = depth(Ci) + offset (9)
offset = distance(Ci)− avg(depth(Ci) (10)

depthm(Ci) is the depth of the object after merge. It is
equivalent to the original depth of the area plus the offset
between the depth value of the area and the object level.

3.3. Depth Filter

After the depth merging stage, the object-level depth in-
formation calculated by the vanishing point and the depth
obtained from the MDE network are merged. Then the
guided filter that uses the semantic segmentation map as the
guidance is used to enhance the result.

The object’s depth should be as different as possible
from the depth of the surrounding environment, and the
depth inside the object should be as consistent as possible.
This is the effect we expect to obtain after filtering. The
nature of guided filtering can satisfy this need well. The
guided filtering can be formulated as follows :

qi = akIi + bk,∀i ∈ ωk (11)
qi = pi− ni (12)

In these equations, q is the output image, I is the guided im-
age, and P is the output image. The meaning of this formula
is that the pixels on the output image can be regarded as
the linear transformation of neighboring pixels on the guide
map. The local linear model ensures that the edge of the
result is consistent with the edge of the guided image.



Cityscape SYNTHIA
LeReS Midas OursMidas OursLeReS LeReS Midas OursMidas OursLeReS

ORD 0.1761 0.2087 0.1988 0.1246 0.1073 0.0865 0.0862 0.1057
D3R 0.3047 0.2220 0.2124 0.2839 0.2397 0.1375 0.1364 0.2357

RMSE 0.3791 0.3849 0.3829 0.3565 0.2819 0.6890 0.6776 0.2616
SQ REL 0.3367 0.2901 0.2899 0.2898 0.3179 0.3691 0.3686 0.3077
δ1.25 0.9872 0.9574 0.9733 0.9910 0.9985 0.9957 0.9964 0.9996

Table 1. Quantitative Results

The next is to solve such coefficients so that the differ-
ence between p and q is as small as possible, and the local
linear model can also be maintained. Linear ridge regres-
sion with the standard term is used as follows:

E(ak, bk) =
∑
i∈ωk

((akIi + bk − pi)
2 + ϵa2k) (13)

Through the above definition, it can be seen that the choice
of the guide image is essential. [11] directly use the RGB
image of the input depth map for depth filtering, but there is
a lot of redundant edge information in the RGB image. This
will cause artifacts on the filter result.

Here, the results obtained by segmentation is used as
the guided image. The edges on the semantic segmenta-
tion results represent the boundaries between different ob-
jects. After filtering, the depths between different objects
will be distinguished according to the boundaries of the ob-
jects. The depth inside the same object will be smoothed.
Using segmentation results as the guided image can achieve
the goal mentioned above.

The visible result of using semantic segmentation result
and RGB image is shown in figure 7. From the result, we
can observe that direct use of the RGB images as the guided
image will cause a lot of artifacts on the depth map, but
using segmentation results does not have such problems.

4. Experiments and Results

4.1. Dataset and Evaluation Criteria

We evaluate our algorithm on the Cityscape [4] and
SYNTHIA [13] datasets. The Cityscape dataset con-
tains a large number of RGB images of outdoor scenes
and provides corresponding ground truth depth informa-
tion.SYNTHIA consists of a collection of frames rendered
from a virtual city and comes with depth information.

A set of standard depth evaluation metrics are used
as suggested in recent work [18, 21] to evaluate our
method’s performance. The metrics root mean squared
error in disparity space (RMSE), square relative error(SQ
REL),percentage of pixels with δ1.25, and ordinal error
(ORD) from [21] in depth space. Additionally, the depth
discontinuity disagreement ratio (D3R) in [15] is used to
evaluate the quality of high frequencies in depth estimates.

4.2. Results And Analysis

We evaluate how much our method can improve upon
pre-trained monocular depth estimation models using Mi-
das [18], and LeRes [24]. Furthermore, the whole experi-
ment is running on one Nvidia 3080 GPU, and we use the
default size of the pretrain model as the input size. The
guided filter uses a radius of 12 and an accuracy of 0.001 in
our experiments, and the depth map is scaled to one-half the
original size before performing the guided filtering process.

The quantitative results are listed in Table 1, and the vi-
sualization result is shown in figure 8. From the quantita-
tive results, we can see that our method has a significant
improvement in ORD and D3R, and the RMSE, SQ REL
also have improved. This shows that our method can well
recover the high-frequency information on the image. Our
method can retain more detailed information that exists in
the original image. At the same time, the error of depth
estimation is also lower than the original algorithm.

The performance improvement provided by our method
is more significant in qualitative comparisons shown in Fig-
ure 8. It can be seen from the figure that our method can
recover the edge and detail information of the image very
well. Especially at the area in the far distance, the origi-
nal algorithm does not recover the details of the image very
well. However, our method can recover the depth informa-
tion of objects in these areas, which is very valuable for
outdoor applications.

It can be seen from the above experimental results that
our algorithm can achieve good results in both evaluation
indicators and visualization results. It can handle the out-
door long-distance depth estimation problem that the tra-
ditional depth estimation algorithm cannot handle and get
a more hierarchical outdoor depth distribution. This fea-
ture can well meet application scenarios that require out-
door long-distance depth, such as autonomous driving.

4.3. Ablation Study

We conduct ablation studies to investigate the individual
contribution of our method’s component. We use LeReS as
the MDE network and test on the CityScape dataset. For the
“+GR”, we use the RGB image as our input guided image.
For the “+GS”, we use the semantic segmentation results as
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Figure 8. Visualization results

Cityscape SYNTHIA
OursLeReS+GR OursMidas+GR OursMidas+GS OursLeReS+GS OursLeReS+GR OursMidas+GR OursMidas+GS OursLeReS+GS

ORD 0.1373 0.1246 0.2013 0.1988 0.1073 0.1057 0.0825 0.0862
D3R 0.3186 0.2185 0.2124 0.2839 0.2397 0.1368 0.1364 0.2357

RMSE 0.3905 0.3844 0.3829 0.3565 0.2819 0.6897 0.6776 0.2616
SQ REL 0.2987 0.2902 0.2899 0.2898 0.3179 0.3686 0.3686 0.3077
δ1.25 0.9881 0.9602 0.9733 0.9910 0.9985 0.9959 0.9964 0.9996

Table 2. Ablation Study

our input guide image. When using RGB as the guide im-
age for our depth filtering, the effect is not obvious. This is
because the direct use of RGB images as the input for filter-
ing will introduce too much depth information that should
not exist in the depth map, resulting in the algorithm not
obtaining the expected performance.

5. Conclusion and Limitation

We propose a new depth estimation algorithm to esti-
mate the depth information of objects at a long distance out-
doors. Our algorithm combines semantic sizes and perspec-
tive information and is able to recover absolute object-level
depth in a far distance in outdoor scenes. A guided filter-
ing method using semantic information is also proposed to
refine the final result. Experimental results show that com-
pared to existing methods, our results have a better prefer-

ence in visual effect, and ORD,D3R,δ1.25, RMSE are also
improved.

We directly apply[19] in vanishing point detection, [3] in
instance-level semantic segmentation , which possibly con-
tain systematic errors. Development in vanishing point de-
tection and semantic segmentation will reduce such errors.
In addition, using the size of the object as a priori informa-
tion will also bring errors in the calculation process of the
algorithm. In the next work, the depth network can be used
to measure the size of the object in the picture.
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