
GBGVD: Growth-based Geodesic Voronoi Diagrams

Yunjia Qi
Shandong University

Qingdao, China
qiyunjia.ya@gmail.com

Chen Zong
Shandong University

Qingdao, China
zongchen@mail.sdu.edu.cn

Yunxiao Zhang
Shandong University

Qingdao, China
zhangyunxiaox@gmail.com

Shuangmin Chen
Qingdao University of

Science and Technology
Qingdao, China
csmqq@163.com

Minfeng Xu
Shandong University of
Finance and Economics,

Jinan, China
mfxu sdu@163.com

Lingqiang Ran
Shandong University of
Finance and Economics,

Jinan, China
ranlingqiang@sdufe.edu.cn

Jian Xu
Dalian University

of Technology
Dalian, China

xujian1028@dlut.edu.cn

Shiqing Xin
Shandong University

Qingdao, China
xinshiqing@sdu.edu.cn

Ying He
Nanyang Technological University

Singapore
yhe@ntu.edu.sg

Abstract

Given a set of generators, the geodesic Voronoi di-
agram (GVD) defines how the base surface is decom-
posed into separate regions such that each generator
dominates a region in terms of geodesic distance to the
generators. Generally speaking, each ordinary bisector
point of the GVD is determined by two adjacent gener-
ators while each branching point of the GVD is given
by at least three generators. When there are sufficiently
many generators, straight-line distance serves as an ef-
fective alternative of geodesic distance for computing
GVDs. However, for a set of sparse generators, one has
to use exact or approximate geodesic distance instead,
which requires a high computational cost to trace the
bisectors and the branching points. We observe that it
is easier to infer the branching points by stretching the
ordinary segments than competing between wavefronts
from different directions. Based on the observation, we
develop an unfolding technique to compute the ordinary
points of the GVD, as well as a growth-based technique
to stretch the traced bisector segments such that they
finally grow into a complete GVD. Experimental results
show that our algorithm runs 3 times as fast as the state-
of-the-art method at the same accuracy level.

Keywords: Voronoi diagram, geodesic distances, fast
marching method, triangle mesh, computational geometry

1. Introduction

Given a 2-manifold surface as well as a set of gener-
ators on the surface, the problem of computing a geodesic
Voronoi diagram (GVD) is to find a way of dividing the
surface into regions such that each generator owns a corre-
sponding region consisting of all points that are closer to the
generator than the others.

The GVD is much like the Voronoi diagram in a finite-
dimensional Euclidean space except that the GVD is de-
fined on a curved surface, driven by geodesic distance. It
has a variety of applications such as remeshing [13], shape
segmentation [15], point pattern analysis [14], and surface
reconstruction [20].

The task of finding the Euclidean Voronoi diagrams is
to compute the Voronoi vertices as well as the combinatorial
structure that connects the Voronoi vertices. However, com-
puting Voronoi diagrams on a 2-manifold surface is much
different from the Euclidean situation since each Voronoi
edge is constrained to a curved surface. The difficulties are
two-fold. On one hand, it is time-consuming to infer the
geodesic distances on a polygonal surface that consists of
a large number of triangles. On the other hand, it is non-
trivial to predict how the GVD structure passes through tri-
angles based on the competition between wavefronts from
different directions.

Leibon and Letscher [12] proved that when the gener-
ators are sufficiently dense, the local part of the GVD on a
2-manifold surface is conformal to the Voronoi diagram in

1

Figure 1. The GVD produced by our algorithm on the 20K-face
Lucy model. Our algorithm requires just 0.2 seconds for this ex-
ample. Note that 58.1% of the triangles have a small angle (less
than π

6
).

a 2D Euclidean plane. This makes the restricted Voronoi
diagram (RVD) [29] become a popular tool for computing
the surface constrained Voronoi diagram, where the region
dominated by a generator is the intersection between the
surface and the corresponding 3D Voronoi cell. However,
only when the local feature size (LFS) sampling condition is
satisfied, the RVD can serve as the alternative of the GVD.
And for a sparse collection of generators, RVD cannot be
taken as an alternative of GVD any more. When the surface
is highly curved or the sites are very spare, the resulting
RVD may produce many flawed regions due to the inconsis-
tency between straight-line distance and geodesic distance,
as pointed out in [28, 24]. In this situation, one has to use
exact or approximate geodesic distance instead, and infer
the GVD based on the competition between geodesic wave-
fronts from different generators.

Liu et al. [14] pointed out that an exact GVD may con-
sist of straight-line segments and hyperbolic curve segments
on a given polygonal surface. Therefore, computing an ex-
act GVD is very time-consuming yet unnecessary in real
computer graphics scenarios. There are several research
works on computing approximate GVDs. Xu et al. [27]
used an exact geodesic algorithm and suggested keeping
the windows enclosing each triangle and computing an ad-
ditively weighted Voronoi diagram, which can obtain an
accurate GVD and run relatively fast. Herholz et al. [8]
suggested estimating the diffusion distances as approximate
geodesic distances for each generator to cover its dominat-
ing region, followed by tracing GVD segments based on

an assumption that the distance change given by a genera-
tor is linear in the mesh edge. It can be seen that most of
the existing algorithms include two stages: 1) propagating
geodesic wavefronts from generators simultaneously until
every mesh vertex finds the nearest generator, and 2) com-
peting between different geodesic wavefronts to predict the
GVD structure.

However, both the two stages require a lot of computa-
tion. In this paper, we invent two techniques to speed up the
computation. For the first stage, we adapt the fast marching
method (FMM) [22] to drive the computation of geodesic
distances, and allow the geodesic wavefronts, for each gen-
erator, to cover an as-small-as-possible range. For the sec-
ond stage, we first compute the ordinary GVD segments and
then predict the branching points, which is inspired by an
interesting observation that the branching structure can be
inferred by stretching the ordinary GVD segments until they
converge. Figure 1 demonstrates the result of our method on
Lucy model.

The proposed algorithm workflow distinguishes itself
from the existing GVD algorithms. Firstly, it decouples
the computation of the GVD from the usage of a specific
geodesic algorithm. Secondly, as it is time consuming to
deduce the structure around a branching point, we use a
growth-based technique to stretch the traced ordinary GVD
segments, rather than compute the GVD branching struc-
tures directly based on the geodesic distances. Last but not
least, the GVD generally passes through only a small por-
tion of triangles, which motivates us to adapt the FMM such
that each vertex in the GVD band receives the “signal” from
the first two nearest generators. Experimental results show
that our algorithm runs on average of 3 times as fast as the
state-of-the-art method while keeping a small accuracy dif-
ference.

2. Related Work

This section mainly reviews two kinds of related
research works, i.e., geodesic distance computation and
GVDs.

2.1. Geodesic Distance Computation

The problem of computing geodesic distances on
a triangular mesh is often referred to as the discrete
geodesic problem [16]. Methods for calculating discrete
geodesics can be roughly divided into partial differential
equation (PDE) methods [22, 7, 10, 25] and computational
geometry methods [5, 23, 26, 1]. The former methods solve
the Eikonal equation with boundary condition, while the
latter methods propagate a discrete wavefront in a sweep-
ing fashion. Generally speaking, PDE methods run fast but
cannot achieve high accuracy, whereas propagation-based
methods vary in their ability to maintain the balance be-
tween accuracy and speed. To our best knowledge, the

2

VTP algorithm [21] is the most efficient exact geodesic al-
gorithm. We refer the readers to [6] for a comprehensive
survey.

2.2. Voronoi Diagrams

Voronoi diagrams in Euclidean spaces have been ex-
tensively studied [4, 9]. However, Voronoi diagrams
in non-Euclidean spaces are much different. There are
some research works that construct differential forms on
spheres [2, 17], hyperbolic spaces [19], regular parametric
surfaces [11], and Riemannian manifolds [18, 3].

In the field of computer graphics, the typical represen-
tation of a 3D object is a polygonal triangle mesh. The com-
putation of GVDs needs to overcome two challenges. The
first is to quickly infer the geodesic distance, and the second
is to trace how the GVD structure passes through the trian-
gles. Existing GVD algorithms can be roughly divided into
three groups. The first group is to trace the GVD by con-
sidering how a geodesic algorithm sweeps the surface. For
example, Liu et al. [14] consider the propagation process of
the MMP algorithm [16] and identify the locus where two
windows from different generators compete. Later, Xu et
al. [27] improved the computation process. The algorithm
suggests keeping the windows enclosing each triangle and
computing an additively weighted Voronoi diagram. For
the GVD algorithms in this group, the computational cost
consists of propagating wavefronts from generators simul-
taneously and inferring geodesic bisectors by competition
between different generators, where the latter operation is
the computational bottleneck, especially deducing the struc-
ture around a branching point. The second group is to trace
the GVD structure simply from the multi-source diffusion
field. For example, Herholz et al. [8] calculated heat dif-
fusion field for each generator and computed approximate
bisector under the linear field assumption. Algorithms in
this group cannot produce accurate GVD results. The last
uses RVD to produce GVDs. RVD works well for suffi-
ciently dense generators, but is weak to deal with a sparse
set of generators. For example, RVD may fail for a thin-
plate structure. Localized RVD [28, 24], as an extension of
RVD, aims at tackling this issue but it may produce signif-
icant errors due to the inconsistency between straight-line
distance and geodesic distance.

In this paper, we consider the GVD problem assuming
that there is a sparse set of generators. In this situation,
one has to use geodesic distance to drive the computation of
GVDs. In our implementation, we use the FMM [22, 10] to
estimate geodesic distances.

3. Insight

The computation of GVDs. The GVD can be viewed as
an extension of the traditional Voronoi diagram from Eu-
clidean spaces to curved surfaces. It has to use geodesic

distances to measure the proximity between points, result-
ing a partitioning scheme of the surface. A point q is said to
be on the GVD if and only if q is equally distant to its two
nearest generators. All such points define the GVD. The
computation consists of two parts. The first part is to prop-
agate distances from each generator outward and infer how
a mesh vertex gets the geodesic distance from the nearest
generator. The second part is to create competition among
the generators such that all surface points with two equally-
distant nearest generators can be identified.

Why the multi-source distance field doesn’t work. A
natural idea for keeping track of the distances from vertices
to generators is to run a geodesic algorithm to compute the
multi-source distance field where each generator servers as
a source point. However, when the distance propagation ter-
minates, each vertex can only get the first nearest generator,
lacking the clue about the second nearest generator or even
the third nearest generator. The GVD contains the two types
of points:

• Ordinary GVD points: there are two generators
equally distant to the GVD point, giving the smallest
distance.

• Branching GVD points: there are at least three gen-
erators equally distant to the GVD point, giving the
smallest distance.

As in a triangle f , each vertex maintains only its contribut-
ing generator, it does not suffice to infer how the contribut-
ing generators compete in f .

(a) (b) (c)

Figure 2. We can divide the triangles into three groups, depending
on the number of contributing generators. (a) Trivial triangle. (b)
Ordinary triangle. (c) Branching triangle.

Allowing two geodesic distance fields to overlap. For
the triangles past through by the GVD, one has to keep track
of the two or three nearest generators. For this purpose, we
assume the generator s1 provides three distance values to
the triangle f = △ABC, i.e.,

d(A; s1), d(B; s1), d(C; s1).

Similarly, the generator s2 also provides three distance val-
ues, i.e.,

d(A; s2), d(B; s2), d(C; s2).

3

We say s1 defeats s2 if

d(A; s1) < d(A; s2), d(B; s1) < d(B; s2), d(C; s1) < d(C; s2).

Obviously, it is possible that none of s1 and s2 is the over-
comer. Therefore, in a triangle-wise propagation style, it
is likely that two or more generators survive at a triangle
when the propagation process terminates. To this end, a tri-
angle may receive one generator or two generators (three
vertices share two contributing generators) or three gener-
ators (different vertices own different contributing gener-
ators). We thus divide the triangles into three groups, as
Figure 2 shows:

• Trivial triangles: three vertices share just one con-
tributing generator.

• Ordinary triangles: three vertices share two con-
tributing generators.

• Branching triangles: different vertices own different
contributing generators.

As long as the triangulation quality is not too bad, it is
reasonable to assume that the ordinary triangles and the
branching triangles accommodate the whole GVD struc-
ture. To better infer how a generator contributes to the dis-
tance field constrained in a triangle, we add edge midpoints
as auxiliary points to record more distance values during the
propagation process.

(a) (b)

Figure 3. In 2D, the Voronoi diagram can grow from an incomplete
configuration to a complete configuration. (a) The ordinary seg-
ments are known but the branching structures are missing. (b) The
branching structures can be completely inferred from the incom-
plete ordinary segments.

Why the GVD has the growth ability. The GVD can be
computed based on the multi-source wavefronts from dif-
ferent generators. Generally speaking, for an Ordinary-type
triangle, the wavefronts come from two different directions,
which is manageable. But for the Branching-type trian-
gles, three or more wavefronts arrive at one triangle simulta-
neously, making the competition between generators more
complicated and thus requiring tedious computation. We
observe that the GVD edges are mostly straight and smooth,

like the Voronoi edges in 2D. The rigidity of the GVD edges
inspires us to predict the complicated GVD branching struc-
tures based on growth. As Figure 3 shows, the 2D Voronoi
diagram can grow from an incomplete configuration to a
complete configuration. In the following, we will explain
the rationale behind from two aspects.

As Figure 3(a) shows, there are totally 6 generators:

si = (xi, yi), i = 1, 2, 3, 4, 5, 6,

thus giving 12 freedom degrees. Each symmetry rela-
tionship, given by one perpendicular bisector, eliminates
2 freedom degrees. Therefore, this implies that the 6 per-
pendicular bisectors (colored in blue) can encode the po-
sitions of the 6 generators, which further determine the
complete Voronoi diagram. (It must be pointed out that
if some coincidence occurs, there may be more freedom
degrees remaining. For example, given four generators
(−1,−1), (−1, 1), (1,−1), (1, 1), one can move one of
them arbitrarily but keep their Voronoi diagram unchanged.)
The observation implies that the traced ordinary segments
shown in Figure 3(a) are able to determine the missing
structures.

We can study the problem from a different perspective.
As Figure 3(a) shows, the 6 generators can be arranged in
a circular order. Each pair of successive generators gives
a perpendicular bisector, thus having 6 ordinary Voronoi
edges pointing outward. Every branching point is deter-
mined by 3 generators and equally distant to them. There-
fore, the missing part of the Voronoi diagram can be pre-
dicted according to the two principles: 1) repeatedly merge
two successive ordinary Voronoi edges, and 2) accept the
intersection as a Voronoi vertex if the intersection is equally
distant to the 3 corresponding generators but more distant
to the other generators.

4. Growth-based Algorithm

We assume that a set of generators S = {si}mi=1 are
specified on a watertight manifold triangular mesh M . The
task is to compute the polyline representation of the GVD,
and report the connections between the GVD branching
points.

Our algorithm pipeline is shown in Figure 4. The algo-
rithm begins with computing the overlapping distance field
using the adapted FMM, then constructs ordinary GVD bi-
sectors constrained in those triangles with two or more con-
tributing generators, and finally stretches the ordinary GVD
bisectors to a complete GVD based on a growth technique.
We will detail the important steps later.

4.1. Adapt The FMM for Producing Overlapping Dis-
tances

FMM. As a typical mark-and-sweep algorithm, the FMM
utilizes a priority queue to propagate distance events from

4

(a) (b) (c) (d)

Figure 4. Algorithm pipeline. (a) Compute the overlapping distance field using the adapted FMM, where the generators are colored in red.
(b) Once the overlapping distance field is computed, those triangles with two or more contributing generators are found (colored in orange).
(c) Construct ordinary GVD bisectors constrained in the orange triangles. (d) Stretch the ordinary GVD bisectors until the complete GVD
is traced.

Figure 5. The FMM is a typical mark-and-sweep algorithm. Dur-
ing its execution, the wavefronts propagate outward until the dis-
tances of all the vertices cannot be reduced.

near to far and prioritizes events closest to the generators,
as shown in Figure 5. During its execution, the wavefronts
propagate outward until the distances of all the vertices can-
not be reduced. It terminates when each vertex finds its
nearest generator, producing a multi-source distance field.
The FMM runs many times faster than the exact geodesic
algorithms, and can predict geodesic distances very accu-
rately especially when the triangles are dense and have a
good quality. However, such a distance field is not informa-
tive enough. For the triangles that accommodate the GVD,
it is hard to accurately predict how the GVD passes through
the interior only by the three distances values kept at the tri-
angle, which motivates us to adapt the FMM to satisfy the
requirements of computing GVDs.

Adapt the FMM. We use two key techniques to im-
prove the FMM. First, we propagate the wavefronts in a
triangle-wise style, rather than in a vertex-wise style like
that achieved in the traditional FMM. For this purpose, we
maintain a generator table, for each triangle, to keep those

generators that may provide shortest distances to at least one
point of this triangle. Let f = △ABC be a triangle swept
by the generator s. Then f ’s priority is measured by

d(A; s) + d(B; s) + d(C; s).

The wavefronts transmitted by s are not allowed to cross f
if s is totally defeated by another generator. Second, we
take the midpoint of each mesh edge as an auxiliary point
and keep a distance value for each contributing generator.
Suppose that s is one of the contributing generators kept in
the triangle f . Recall that the FMM infers a linear distance
field for each triangle, when s propagates its distances to
f , it is easy to evaluate the distance for an arbitrary point
in f , naturally including the three edge midpoints. Obvi-
ously, the new FMM, adapted by the two techniques, can
give richer information about how a generator contributes
to the overall distance field. Particularly, the adapted FMM
keeps more distance clues for those ordinary triangles and
branching triangles.

Why the FMM suffices. Two reasons account for why
we use the FMM, instead of those exact geodesic algo-
rithms. On one hand, exact geodesic algorithms run slowly
for large-sized models. On the other hand, GVD bisectors
serve as the symmetry axis between a pair of adjacent gen-
erators. Therefore, even if we use a transformed distance
form like T(d(·, ·)), the traced GVD remains unchanged,
where d(·, ·) reports the exact geodesic distance and T(·)
defines a transform that increases monotonically.

4.2. Construct Ordinary GVD Bisectors

We accomplish the tracing of ordinary GVD bisectors
in two stages, i.e., connecting a sequence of midpoints into
a polyline to extract the rough shape of the ordinary GVD
bisectors, and straightening the rough ordinary GVD bisec-
tors by local unfolding.

5

Rough ordinary GVD bisec-
tors. A triangle is defined to be
an ordinary triangle if the three
vertices own two different con-
tributing generators. Let f =
△ABC be an ordinary triangle. Suppose that the closest
generator to A is s1, while the closest generator to B,C
is s2. We then connect the midpoint of AB and the mid-
point of AC into a straight-line segment, which is named
a rough segment. All the rough segments form the rough
representation of the ordinary part of the GVD. The inset
figure shows an example of the rough representation of the
midpoint-based ordinary part, where the vertices colored in
yellow share one generator and the vertices colored in pur-
ple share the other generator.

Figure 6. Refine ordinary GVD segments. Let Π△ABC be the
plane of △ABC. si (resp. sj) is unfolded onto Π△ABC accord-
ing to d(t1; si) and d(t2; si) (resp. d(t1; sj) and d(t2; sj)), yield-
ing an image point s′i (resp. s′j). The two images s′i and s′j can
fine-tune the GVD segment to a better configuration.

Refine ordinary GVD bisectors. Suppose that △ABC is
an ordinary triangle, as defined in Section 3. There are two
generators si, sj that give the shortest distances to A,B,C.
Take Figure 6 as an example. The generator si gives the
shortest distance to A while the generator sj gives the short-
est distances to B and C. According to the adapted FMM
discussed in Section 4.1, the distances from si to A,B,C,
as well as the three edge midpoints, must be kept at the same
time. Similarly, the distances from sj to the three edge mid-
points are kept as well. The generator si can be unfolded
onto the plane of △ABC based on d(t1; si) and d(t2; si),
where t1, t2 are the edge midpoints. Let s′i, s

′
j be respec-

tively the unfolded image points. It is easy to infer a better
configuration of the GVD segment.

Why the adapted FMM helps. Recall that the adapted
FMM has two differences from the traditional FMM. On
one hand, it propagates in a triangle-wise fashion, rather
than a vertex-wise fashion. In Figure 6, si is the closest
generator for the vertex A, and thus si must arrive at the
entire triangle △ABC, enabling the distance d(t1; si) and
d(t2; si) available. Additionally the segment t1t2, in spite
of not accurately aligning with the real GVD, is closer to

the configuration of the GVD than AB, BC, and AC. Con-
sequently, the segment t1t2 helps better predict the position
of the image points s′i and s′j .

Consistency enforcement. Note that the operation of re-
fining ordinary GVD segments works triangle by triangle.
But it cannot guarantee the consistency across mesh edges
for the mesh is not always a developable surface so that
the expansion operation only provide an approximate result.
Let f1, f2, sharing a common edge e, be two ordinary trian-
gles. Each of them reports a GVD segment. However, the
two ordinary segments, upon being refined, may not join
at the same point on e, thus violating the consistency. Let
tef1 , t

e
f2

be the two endpoints on e, given by f1 and f2 re-
spectively. Therefore, we enforce the consistency by simply
averaging the two endpoints tef1 and tef2 .

(a) (b)

(c) (d)

Figure 7. Growth Algorithm. (a) Only some ordinary GVD seg-
ments are known, leaving the GVD part around a branching point
missing. (b) From the broken ends, we stretch the ordinary GVD
segments. The white dots represent events currently in the priority
queue. The situations are of two kinds, i.e., exiting from a triangle
and intersecting inside a triangle, which can be observed in (c).
(c) Prioritize the events with the least distance values. (d) When
all the events are handled, the missing part is filled.

4.3. Stretch Ordinary GVD Bisectors

Two kinds of events. We will discuss the growth-based
strategy for generating a complete GVD. The original inten-
tion is to predict the branching structures depending on the
traced ordinary GVD segments, rather than by a lot of dis-
tance queries. Figure 7 shows the key steps of the growth-
based algorithm for filling the missing part. In the 2D Eu-
clidean plane, the growth process is conducted by repeated

6

merging from the broken ends. For a polygonal mesh, how-
ever, one has to conduct the growth process from triangle
to triangle. There are two situations to be considered, i.e.,
exiting from a triangle and intersecting inside a triangle. In
implementation, we use a priority queue to maintain the two
kinds of discrete events such that the event with the least
distance is first handled. When all the events are handled,
the missing part is filled.

Intersection computation. Suppose that the GVD enters

file:///C:/Users/ZongChen/Desktop/inset_int.svg 1/1

f from the point p and the point q,
with the entry directions being Dirp
and Dirq respectively. The inter-
section point between them can be
computed by

p+ λpDirp = q + λqDirq,

from which λp and λq can be solved quickly. The coordi-
nates of the intersection point can be thus computed. The
growth direction of the intersection point will be predicated
along with the distance predication by unfolding two cor-
responding generators to the plane of f . If the intersection
is not inside f , then it is judged to be invalid and thus ig-
nored. In addition, the exit point of a GVD segment can be
similarly computed.

Rotating around an edge. Suppose that the segment pq
is leaving the face f1. It arrives at the point q on the bound-
ing edge e, and will enter the plane of the next face f2.
Let n1,n2 be respectively the normal vectors of f1 and f2.
The key spirit of unfolding f1 and f2 onto one plane is to
rotate f1 around e such that f1’s normal vector is consistent
with f2’s normal vector. That is to say, the vector in Πf1

n1 × e

becomes
n2 × e

upon being unfolded. Therefore, we first decompose pq as
follows:

pq = (pq · e

∥e∥
)

e

∥e∥
+ (pq · n1 × e

∥n1 × e∥
)

n1 × e

∥n1 × e∥
.

We then can obtain p′q:

p′q = (pq · e

∥e∥
)

e

∥e∥
+ (pq · n1 × e

∥n1 × e∥
)

n2 × e

∥n2 × e∥
,

which is unfolded onto the plane of f2.

Figure 8. The segment pq is leaving the face f1 and will enter the
plane of the next face f2.

Distance predication. For
an ordinary segment in the
face f , it has an entry edge e1
and an exiting edge e2. When
it arrives at an edge e2, yield-
ing an intersection q ∈ e2. Suppose that the two generators
associated with the ordinary segment are s1 and s2. The two
generators can be easily unfolded to the plane of f , result-
ing in two image points s′1 and s′2. It is easy to compute the
distance between s′1 and q, as well as the distance between
s′2 and q. By taking the average value, we can estimate the
distance at q contributed by s1 and s2.

Similarly, when two ordinary segments intersect each
other in a triangle f , the intersection point is given by three
generators s1, s2, s3. We unfold si, i = 1, 2, 3, onto the
plane of f around si’s entry edge. The distance at the in-
tersection point can be estimated by averaging the three
distance values. Furthermore, the three image points can
help predict the next growth direction from the intersection
point.

4.4. Complexity Analysis

To estimate the time complexity, we first show an in-
teresting observation. Let n1 be the number of trivial tri-
angles, n2 be the number of ordinary triangles, and n3 be
the number of branching triangles. n = n1 + n2 + n3 is
the total number of triangles. When the base surface has
dense triangulation, we observe n1 ≫ n2 ≫ n3, which im-
plies that the adapted FMM does not significantly increase
the overhead. Therefore, the overall propagation cost can
be bounded by O(n log n), the same with the total timing
cost of the traditional FMM.

During the process of constructing the GVD, we need
to trace the broken ends of the ordinary GVD segments,
and the number of broken ends can be bounded by the to-
tal number of faces, i.e., O(n). We also need to trace the
GVD branching points whose number is O(m), where m is
the number of generators. The peak length of the priority
queue for maintaining the order of events being processed
is thus O(n +m), with each push/pop operation being ac-
complished in O(log(n+m)).

7

Figure 9. A gallery of GVD results computed by our algorithm.

Therefore, the overall time complexity can be bounded
by O((n+m) log(n+m)).

5. Evaluation

To evaluate the performance of the proposed algo-
rithm, we implement it in C++. All the experiments were
conducted on a PC with Intel(R) Core(TM) i5-8400 CPU
and 8GB memory. As our algorithm is stronger in deal-
ing with sparse generators, the number of generators in
the experiments ranges from 10 to 500. (When there are
enough generators, it is better to use the restricted Voroni
diagram [29] instead.) Figure 9 is the gallery of the GVD
results computed by our approach on a variety of models. It
shows that our method can process not only simple models
but also geometry/topology complicated complex models.

5.1. Run-time Performance

The whole GVD computation procedure includes two
parts: (1) computing multi-source geodesic distance field
and (2) predicting GVD bisectors on. We will come to eval-
uate our algorithm about how the timing cost varies with the
mesh complexity and the number of generators.

Number of facets. We randomly select 50 vertices as
generators and repeatedly increase the mesh resolution. Ta-
ble 1 shows the timing statistics. The overhead of com-
puting the geodesic distance field (GDF) increases with the
number of faces. At the same time, the overhead of tracing
the GVD increases as well.

F GDF(ms) Bisector(ms) Total(ms) Memory(KB)
10k 76.11 19.25 95.3 293.59
30k 366.2 187.6 553.7 464.87
60k 758.65 231.12 989.8 571.68
90k 1967.8 276.98 2244.8 703.70

120k 3893.7 1042.02 4935.7 799.31
150k 6701.08 627.39 7328.4 877.07

Table 1. Run-time performance statistics on the Kitten model with
50 generators but increasing mesh resolutions.

m GDF(ms) Bisector(ms) Total(ms) Memory(KB)
10 96.62 7.66 104.28 127.91
30 117.1 20.63 137.73 261.63
60 162.2 31.89 194.12 415.87
80 171.0 41.00 211.99 510.14

120 238.4 64.83 303.28 665.10
250 197.9 93.83 292.77 1023.87
500 330.2 164.83 495.155 1,766.63

Table 2. The run-time performance of our algorithm on the Spot
Model (V=10k, F=20k). We keep the base unchanged while in-
creasing the number of generators, denoted by m.

Number of generators. By keeping the base surface un-
changed, we repeatedly increase the number of generators.
For example, the number of generators on the Spot model
increases from 10 to 500. Table 2 shows the timing statistics
and the memory usage with the increasing of the number of
generators. The main reason lies in that as the number of
generators grows, so does the number of branching trian-
gles, which raises timing consumption.

To summarize, the empirical observation is consistent
with our theoretical time complexity O(m+n) log(m+n).

8

But we must point that when the generators are sufficiently
many, the restricted Voroni diagram [29] is a better choice.
When the generators are sparse, our algorithm has a bigger
advantage.

5.2. Accuracy v.s. Mesh Quality

Our method is not sensitive to mesh quality. Although
it performs on a poor-quality mesh, the resulting GVD is
still favourable. To evaluate correctness of our result, we
use stochastic error calculated on GVD bisectors. Let p be a
point sitting on the GVD. It’s known that p must be equally
distant to the two nearest generators. Therefore, it is proper
to use the following function to measure the total deviation
of the traced GVD to the exact GVD:

E =

∫
GVD

E(p)dp,

where E(p) can be defined as follows. Let S(p) =
{s1, s2, · · · , sk} denote the generator set related to p.
We evaluate the geodesic distance d(p; si) for each i =
1, 2, · · · , k. Then E(p) is given by the maximum differ-
ence:

E(p) = max
i,j

|d(p; si)− d(p; sj)|.

Besides, we use Q(t) to measure the quality of the triangle
t, where Q(t) = 6√

3

|t|
p(t)h(t) [28] (|t| is the area of t. p(t)

is the half-perimeter of t and h(t) is the longest edge length
of t). When Q(t) approaches 1, the triangular mesh has
the best quality (each triangle facet is regular triangle). To
measure the quality of the model, we use a pair of indica-
tors, i.e., Qavg and Percent(< 30◦), where the latter denotes
the percentage of triangles with minimum angles less than
30◦.

Model Quality Qavg Percent(< 30◦) E
low 0.598 52.88 0.087

Elephant medium 0.769 10.15 0.132
high 0.859 0.455 0.076
low 0.692 27.57 0.303

Rocker medium 0.803 11.88 0.154
high 0.914 0.00 0.222
low 0.638 39.43 0.164

Pegaso medium 0.758 11.62 0.126
high 0.871 00.02 0.120

Table 3. Accuracy statistics for various meshing quality.

Table 3 gives the accuracy statistics of our method on
polygonal surfaces with varying meshing quality. It can be
seen that the accuracy does not significantly drop even if
the input mesh has a poor quality. The reasons are two-
fold. First, we also consider the distance values at the aux-
iliary points, which is more informative than the traditional

FMM. Second, the growth based strategy aims at inferring
the missing branching structure based on the traced ordinary
segments, and thus insensitive to mesh quality.

5.3. Comparison with Xu et al. [27]

Xu et al. [27] propose a geodesic distance-based al-
gorithm to construct GVDs. It can be viewed as the state-
of-the-art in accurately computing a GVD. Similar to our
method, their method consists of two stages: (1) geodesic
distance field computation via MMP [16] and (2) trace the
GVD bisectors where the geodesic wavefronts terminate.
Next, we will compare it with our approach from the two
aspects: (1) run-time performance and (2) accuracy.

Run-time performance comparison. To make the com-
parison fair, we maximize the efficiency of Xu et al.’s
method by setting the parameter c = 1e9. As shown in
Table 4, our algorithm runs 2 to 7 times faster than their al-
gorithm. This is due to the fact that our method does not
heavily depend on the tedious computation of geodesic dis-
tances especially in the branching triangles, unlike their al-
gorithm, which has to construct GVD bisectors by compet-
ing competition between windows given by different gen-
erators. Besides, the FMM runs many times faster than the
exact MMP algorithm.

Accuracy comparison. Table 4 shows that the accuracy
difference between the two methods is surprisingly small.
There are several reasons for this. First, the exact GVD
consists of hyperbolic segments but existing algorithms can
only trace straight-line segment, which implies that even if
the exact geodesic algorithm is used, the resulting GVD is
still approximate. Second, the FMM is not so accurate as
the MMP, but the bias is roughly related to the distance. As
pointed out earlier, a monotonically increasing transforma-
tion of distance field leads to the same GVD. Last but not
least, we keep more informative clues about the distance
field in the adapted FMM, which suffices to trace an accu-
rate GVD.

5.4. Comparison with Diffusion Diagram [8]

The diffusion diagram proposed by Herholz et al. [8]
takes advantage of the heat diffusion approach [7] for ap-
proximating geodesic distances. They suggested a recursive
subdivision-based method to calculate GVDs. Based on our
tests, the diffusion diagram is competitive on computing
GVDs. Compared with our algorithm, the GVD reported
by the diffusion diagram is less straight; See Figure 10.

The diffusion diagram has some inherent disadvan-
tages. First, it has to utilize the cot-weight matrix and the
factorization operation, which implies that the diffusion di-
agram is weak in dealing with poor triangulation and dense
triangulation. For example, when the number of vertices

9

Model
(F, m)

Spot
(5856, 30)

Bunny
(10000, 47)

Ant
(14482, 24)

Lucy
(19984, 43)

Bear
(20444, 21)

Handok
(20582, 35)

4-kids
(25014, 83)

X
u

et
al

.

Runtime
(ms)

GDF 31.15 77.98 125.51 203.11 234.05 234.10 235.15
VD 15.60 47.02 78.50 79.10 125.65 93.01 109.15

Total 46.76 125.00 204.01 282.21 359.70 327.10 344.30
E(GVD) 0.168 0.151 0.141 1.095 0.016 0.042 0.308

O
ur

s Runtime
(ms)

GDF 10.32 55.28 67.24 155.67 104.04 118.71 153.45
VD 6.42 14.20 8.31 19.92 14.16 18.58 37.21

Total 16.74 69.48 75.55 175.59 118.2 137.29 190.66
E(GBGVD) 0.205 0.184 0.154 1.196 0.019 0.073 0.562

Table 4. Performance comparison with [27]. “GDF” indicates the timing cost for computing a geodesic distance field while “VD” indicates
the timing cost for computing Voronoi diagrams.

(a) (b)

Figure 10. Comparison between Herholz et al. [8] and ours. Our
GVD edges are straight but theirs are zig-zag. (a) Herholz et al.’s
result. (b) Our result.

amounts to more than 10K, it is hard to compute the factor-
ization of the large-sized dense cot-weight matrix. Second,
each generator dominates a limited part of the surface, but
it is hard for the diffusion diagram to accurately control the
dominance region since it is not propagation based. Finally,
the diffusion diagram needs to repeatedly split a triangle
until the small-range distance change is linear. However,
when the generators are very dense (e.g., many generators
are located in one triangle), the algorithm may fail.

Model (F, m) E(LRVD) E(GBGVD) Ratio
sphere (1280, 14) 0.024 0.016 1.50
spot (5856, 30) 7.458 0.205 36.38

bunny (10000, 47) 11.310 0.184 61.47
bear (20444, 21) 13.001 0.019 684.26

Table 5. Comparison with the LRVD [28].

5.5. Comparison with RVD and LRVD [28]

The RVD is a popular choice when the generators are
sufficiently dense. It can be viewed as the intersection of the
3D voronoi diagram and the input mesh surface (although
its implementation depends on the Delaunay triangulation,
rather than the 3D voronoi diagram itself).

Due to the inconsistency between Euclidean distances

(a) GVD (b) RVD (c) LRVD (d) GBGVD

Figure 11. The RVD easily contains ownerless regions. Even if it
is repaired and becomes the LRVD, the result is still conspicuously
different from the exact GVD. In contrast to the LRVD, our result
is more like the GVD.

and geodesic distances, the RVD may have various de-
fects especially when the input shape contains thin plates or
tubes. Yan et al. [28] proposed a sweeping-based approach
to guarantee the “one generator, one cell” property, named
localized RVD (LRVD), but all the boundary curves of a
LRVD cell are still given by perpendicular bisectors in 3D.
Therefore, the LRVD is fundamentally different from the
GVD due to different mechanisms. It can be seen from Fig-
ure 11 that there is a major difference between the LRVD
and the GVD in the highlighted area. Compared with the
LRVD, our result is closer to the exact GVD. (We subdi-
vide the surface into a dense version and run Xu et al.’s
method [27] to simulate the exact GVD.)

6. Conclusions

In this paper, we present a simple yet efficient ap-
proach, named GBGVD, for computing the GVD on mesh
surfaces. We propose two techniques to improve the effi-
ciency and the accuracy. The first technique is the adapted
FMM, which can obtain a more informative distance field
with negligible additional overhead. The second technique
is the growth-based GVD tracing algorithm. Rather than

10

compute the branching structure purely using geodesic dis-
tances, we suggest using traced ordinary GVD segments to
infer the missing branching structure. Our algorithm has a
big advantage when the generators are sparse. However,
when the generators are sufficiently dense, that is, each
mesh triangle is a branching triangle, there is no ordinary
triangle , and the ordinary segment cannot be inferred. At
this time LRVD is a better choice than our approach in prac-
tice. We will further boost the performance of our approach
in the future.

References

[1] Y. Y. Adikusuma, Z. Fang, and Y. He. Fast construction of
discrete geodesic graphs. ACM Trans. Graph., 39(2), mar
2020. 2

[2] J. M. Augenbaum and C. S. Peskin. On the construction of
the voronoi mesh on a sphere. Journal of Computational
Physics, 59(2):177–192, 1985. 3

[3] J.-D. Boissonnat, R. Dyer, and A. Ghosh. Constructing
intrinsic delaunay triangulations of submanifolds. arXiv
preprint arXiv:1303.6493, 2013. 3

[4] B. Boots, K. Sugihara, S. N. Chiu, and A. Okabe. Spatial
tessellations: concepts and applications of voronoi diagrams.
2009. 3

[5] J. Chen and Y. Han. Shortest paths on a polyhedron. In
Acm Symposium on Computational Geometry, pages 360–
369, 1990. 2

[6] K. Crane, M. Livesu, E. Puppo, and Y. Qin. A survey
of algorithms for geodesic paths and distances. ArXiv,
abs/2007.10430, 2020. 3

[7] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in
heat: A new approach to computing distance based on heat
flow. Acm Transactions on Graphics, 32(5):13–15, 2013. 2,
9

[8] P. Herholz, F. Haase, and M. Alexa. Diffusion diagrams:
Voronoi cells and centroids from diffusion. In Computer
Graphics Forum, volume 36, pages 163–175. Wiley Online
Library, 2017. 2, 3, 9, 10

[9] W. H. Hesselink and J. B. T. M. Roerdink. Euclidean skele-
tons of digital image and volume data in linear time by the in-
teger medial axis transform. IEEE Computer Society, 2008.
3

[10] R. Kimmel and J. A. Sethian. Computing geodesic paths on
manifolds. Proceedings of the national academy of Sciences,
95(15):8431–8435, 1998. 2, 3

[11] R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic voronoi
diagrams on parametric surfaces. In Proceedings Computer
Graphics International, pages 230–237. IEEE, 1997. 3

[12] G. Leibon and D. Letscher. Delaunay triangulations and
voronoi diagrams for riemannian manifolds. In Sixteenth
Symposium on Computational Geometry, 2000. 1

[13] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu,
and C. Yang. On centroidal voronoi tessellation—energy
smoothness and fast computation. ACM Transactions on
Graphics (ToG), 28(4):1–17, 2009. 1

[14] Y.-J. Liu, Z. Chen, and K. Tang. Construction of iso-
contours, bisectors, and voronoi diagrams on triangulated
surfaces. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(8):1502–1517, 2010. 1, 2, 3

[15] L. Lu, B. Lévy, and W. Wang. Centroidal voronoi tessellation
of line segments and graphs. In Computer Graphics Forum,
volume 31, pages 775–784. Wiley Online Library, 2012. 1

[16] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou.
The discrete geodesic problem. SIAM Journal on Comput-
ing, 1987. 2, 3, 9

[17] H. S. Na, C. N. Lee, and O. Cheong. Voronoi diagrams on
the sphere. Computational Geometry, 23(2):183–194, 2002.
3

[18] K. Onishi and J.-i. Itoh. Estimation of the necessary num-
ber of points in riemannian voronoi diagram. In Proc. 15th
Canad. Conf. Comput. Geom, pages 19–24, 2003. 3

[19] K. Onishi and N. Takayama. Construction of voronoi dia-
gram on the upper half-plane. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sci-
ences, 79(4):533–539, 1996. 3

[20] J. Peethambaran and R. Muthuganapathy. Reconstruc-
tion of water-tight surfaces through delaunay sculpting.
58(C):62–72, jan 2015. 1

[21] Y. Qin, H. Yu, and J. Zhang. Fast and memory-efficient
voronoi diagram construction on triangle meshes. In Com-
puter Graphics Forum, volume 36, pages 93–104. Wiley On-
line Library, 2017. 3

[22] J. A. Sethian and A. Vladimirsky. Fast methods for the
eikonal and related hamilton–jacobi equations on unstruc-
tured meshes. Proceedings of the National Academy of Sci-
ences, 97(11):5699–5703, 2000. 2, 3

[23] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and
H. Hoppe. Fast exact and approximate geodesics on meshes.
ACM Transactions on Graphics, 24(3):553–560, 2005. 2

[24] P. Wang, S. Xin, C. Tu, D. Yan, Y. Zhou, and C. Zhang.
Robustly computing restricted voronoi diagrams (rvd) on
thin-plate models. Computer Aided Geometric Design,
79:101848, 2020. 2, 3

[25] S. Q. Xin, D. T. P. Quynh, X. Ying, and Y. He. A global
algorithm to compute defect-tolerant geodesic distance. In
Siggraph Asia Technical Briefs, pages 1–4, 2012. 2

[26] S. Q. Xin and G. J. Wang. Improving chen and han’s algo-
rithm on the discrete geodesic problem. Acm Transactions
on Graphics, 28(4), 2009. 2

[27] C. Xu, Y.-J. Liu, Q. Sun, J. Li, and Y. He. Polyline-sourced
geodesic voronoi diagrams on triangle meshes. In Computer
Graphics Forum, volume 33, pages 161–170. Wiley Online
Library, 2014. 2, 3, 9, 10

[28] D.-M. Yan, G. Bao, X. Zhang, and P. Wonka. Low-resolution
remeshing using the localized restricted voronoi diagram.
IEEE transactions on visualization and computer graphics,
20(10):1418–1427, 2014. 2, 3, 9, 10

[29] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang. Isotropic
remeshing with fast and exact computation of restricted
voronoi diagram. In Computer graphics forum, volume 28,
pages 1445–1454. Wiley Online Library, 2009. 2, 8, 9

11

