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Abstract

We present a novel learning framework for automat-
ically parsing floor plan images. Our key insight is
that the room type text is very common and crucial in
floor plan images as it identifies the important seman-
tic information of the corresponding room. However,
this clue is never considered in previous learning-based
methods. In contrast, we propose the Row&Column
Net (RC-Net), a novel neural network for recognizing
floor plan elements by carefully integrating the text fea-
ture. Specifically, we add the text feature branch in the
network to extract text features corresponding to the
room type for the guidance of room type predictions.
More importantly, we formulate an RC constraint mod-
ule to share and constrain features across the entire row
and column to ensure that only one type is predicted in
each room as much as possible, making the segmenta-
tion boundaries between different rooms more regular
and cleaner. Extensive experiments on three benchmark
datasets validate that our framework substantially out-
performs other state-of-the-art approaches.

Keywords: floor plan understanding, text feature, RC
constraint module, RC-Net

1. Introduction

As the layout of architectural rooms is composed of ar-
chitectural elements and text information, floor plans can
be used for room designing, understanding, and 3D model-
ing, while several downstream applications are highly rele-
vant to floor plan analysis, such as raster to vector conver-
sion [11, 17], indoor scene modeling [3, 16], building plans
retrieval [25, 26], and augmented reality [28, 31, 33], etc.
Although deep learning has been rapidly developed in im-
age processing, automatically parsing floor plan images is
still an extremely challenging task due to the diversity of
floor details.
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Figure 1. Parsing Floor Plan Images by our RC-Net. Left: the
input floor plans that are composed of regular elements and room
type texts. Right: our parsing results by elements recognition and
room segmentation.

The goal of parsing floor plan images is to extract the
geometric structural information of architectural elements
and semantic information such as room types. In the early
stages, the hierarchical heuristic pattern [1, 2, 7, 8, 23] is
widely used to solve this problem. This pattern firstly di-
vides the floor plan image into the graphic image and the
text image, then detects the architectural elements and text
information by the hand-crafted features and OCR technol-
ogy respectively. Obviously, as its core strategy is based
on hand-crafted features, the hierarchical heuristic pattern
cannot adapt to various conditions of floor plans.

Recently, some deep-learning approaches have been pro-
posed to address this problem. Liu et al. [17] detect junc-
tion points in the floor plan image by a convolutional neural
network (CNN) and then use an integer programming algo-
rithm to connect the junctions and find the walls. However,
this method can only find walls between multiple junctions,
making it impossible to detect curved and isolated walls.

Other methods [29, 32] employ segmentation networks
( FCN [18] and Unet [24]) to identify the classes of pixels
in floor plan images, including architectural elements and
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room types. However, their segmentation results contain a
lot of noise, even if the boundaries of the walls cannot be
preserved as regular straight lines or arcs.

In this paper, we propose the Row&Column Net (RC-
Net), a novel network with text features to parse floor plan
images into floor plan elements (including walls, doors,
and windows) and semantic information containing various
types of rooms. Our method is based on two observations
of the floor plan images as shown in Fig. 1: (i) Most rooms
are marked with the room type texts; (ii) The architectural
elements and room boundaries in floor plan images are al-
most regular straight lines and arcs. Unlike previous meth-
ods [1, 23, 32] that use OCR technology in the floor plan
images, we add a text branch to extract text features and use
a merge module to integrate them with the room features,
which can significantly improve the accuracy of room type
prediction. Meanwhile, we design an RC constraint module
for the regularity of the floor plan to share and constrain the
features in the entire row and column, which can make the
room boundaries clear and reduce the noise predictions in
each room. Our main contributions can be summarized as
follows:

• We propose a novel Row&Column Net (RC-Net) with
text features to learn the geometric structural informa-
tion and semantic information in the floor plan images,
which achieves state-of-the-art segmentation results in
parsing floor plan images.

• We combine the text feature with the room features
to guide the room segmentation of floor plan images,
significantly improving the segmentation results.

• We design an RC Constraint Module to share and con-
strain features in the entire row and column to promote
the room type prediction accuracy and boundary regu-
larity.

2. Related work

Hand-crafted floor plan parser. Early works on parsing
floor plan images rely on a bunch of low-level image pro-
cessing with strong heuristics. Generally, traditional meth-
ods [1, 2, 6–8, 10, 21–23] firstly divide the floor plan im-
age into a text image and a graphic image, then extract key
graphic elements to generate 3D models. Among them,
[10, 22] analyze the architectural drawings by extracting
features to detect basic architectural entities and convert
the floor plan image into the corresponding 3D description,
while Macé et al. [21] segment the architectural floor plans
into rooms based on Hough transform. Later, Ahmed et
al. [1] separate texts from graphics and extract walls ac-
cording to the line thickness. Subsequently, Heras et al. [7]
assume that the wall is usually modeled by straight parallel

lines and can obtain good performance on different graphi-
cal styles. Besides, they use the patch-based segmentation
approach to detect walls [8], and employ a statistical ap-
proach of the structural pattern recognition techniques [6]
to detect the basic building blocks. Meanwhile, some meth-
ods utilize text information to guide room type detection.
For example, Ahmed et al. [2] retrieve the meaningful room
labeling by OCR and split the floor plan imaged into rooms
according to the distribution of labels, while Ravagli et
al. [23] improve the performance of text extraction, classi-
fication, and recognition in floor plan images by some pre-
and post-processing steps. In general, these hand-crafted
floor plan parsers are highly dependent on specifically de-
fined features that impair the parsing speed and versatility.

Deep floor plan analysis. With the rapid development of
deep learning technology, some methods based on deep
convolutional neural networks achieve state-of-the-art re-
sults in automatic floor plan analysis. Typically, Dodge et
al. [9] use a fully convolutional network (FCN) for wall
segmentation, the faster R-CNN for object detection, and
an optical character recognition API for estimating room
sizes. Further, Liu et al. [17] extract a set of junctions
by a learning-based approach and apply integer program-
ming to encode high-level constraints such as walls, win-
dows, and doors, which are used to recover the floor plan
vector data from the raster. However, this method cannot
handle irregular layouts due to the assumption of the Man-
hattan world and uniform wall thickness. Later, Huang and
Zheng [12] apply pix2pixHD in recognizing and generat-
ing architectural drawings to detect and generate apartment
plans through two convolutional neural networks. Yamasaki
et al. [29] also utilize FCN to segment floor plan images
and form a graph model to measure the structural similarity.
Zeng et al. [32] predict room-boundary elements and rooms
with types by a deep multi-task neural network. However,
the pixel labels of the rooms and other elements are noisy,
thus the performance is unsatisfactory. A joint network pro-
posed by Lu et al. [19] uses U-Net to segment boundaries
and detect text by the SSD to determine the room type, and
a post-processing method is followed to ensure the accuracy
of the area and type of room. Lv et al. [20] apply YOLOv4
to extract the critical region from floor plan images, then
YOLOv4 is reused for detecting texts, symbols, and scale
numbers, while DeepLabv3+ [4] is used simultaneously for
segmenting the area of rooms. Yang et al. [30] predict
boundaries and room types using two branches based on the
same VGG feature extraction. Their direction-aware ker-
nels and boundary features are also used to enhance seman-
tic information of room-type features.

In general, these methods do not utilize the text infor-
mation in the floor plan to extract the semantic information,
and their prediction results contain a lot of noise, which is
inconsistent with the regularity of the floor plan.



Our RC-Net Architecture
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Figure 2. Overview of our RC-Net architecture. Our RC-Net has the text branch and the room branch, and can generate text mask and
room mask respectively.
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Figure 3. The details of our RC-Net architecture, in which the R-C Constraint is given in Fig. 6.

3. Our RC-Net

The goal of parsing floor plan images is to extract
architectural elements (such as walls, doors, windows,
etclet@tokeneonedot) and semantic information of various
rooms. Obviously, the room in the floor plan consists of a
set of regular architectural elements and a text that directly
indicates the room type. Therefore, we add a text branch to
extract the text features and expand it to the entire feature
information through our RC constraint module to ensure a
more accurate prediction of the room type. Meanwhile, our
RC constraint module can obtain smooth wall boundaries
due to the constraints on the features of the entire row and
column.

In the following, we first present the architecture of our
Row&Column Net (RC-Net), then we show the text branch
and the implementation of our RC constraint module which
shares and constrains the features on the entire row and col-
umn. Finally, we describe the implementation details of the
training of our RC-Net.

3.1. Network Architecture

The architecture of our RC-Net is illustrated in Fig. 2,
and the parameter details of each sub-module are given
in Fig. 3. We first use a VGG encoder [27] on the input
floor plan image to extract basic features that are used in
two branches: a) The room branch obtains features that
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Figure 4. Upsample Module. Bilinear interpolation is used to ex-
pand the input feature at first, then the expanded feature is mixed
with the feature from the VGG encoder. Finally we use convolu-
tion operations to extract features.

represent the room boundary (i.e. wall, window, door,
etclet@tokeneonedot) and the room type (i.e. dining room,
washroom, bedroom, etclet@tokeneonedot). This branch is
divided into two sub-branches further at the end for maxi-
mizing the learning of features, one for predicting the room
boundary and the other for predicting the room type. Even-
tually, we merge the output of the two sub-branches to get
the final room mask; b) The text branch focuses on the fea-
tures of the text in the floor plan image, and the output is a
text mask which is only used for the loss function in train-
ing steps. This text branch obtains text features and then
mixes them into the room features to get a more accurate
room type.

The Upsample Module (Fig. 4) in our RC-Net employs
the bilinear interpolation to expand the input feature to its
double size at first, then the feature is concatenated with the
corresponding feature from the VGG encoder. The follow-
ing 1× 1 convolution is used to share the channel informa-
tion, while the 3× 3 convolution is used to share the spatial
information. The Merge Module is employed for concate-
nating the text features with room features together, and the
details are given in section 3.2.

3.2. Text Branch

Since the room type text indicates the room type where it
is located, we use the text branch to extract text features and
concatenate them with room features of the corresponding
area in the merge module, in order to obtain richer semantic
features for subsequent prediction branches. Note that if
there is no room type text feature in the area, we can also
use the room feature to predict the room type of the area. In
addition, we can get more accurate predictions without text
using connection information between rooms learned from
the training phase guided by the text branch.

The structure of the merge module is illustrated in Fig. 5.
Firstly, we concatenate the given text features with room
features, use a 1× 1 convolution to share the channel infor-
mation, and a 3×3 convolution to share the spatial informa-
tion. Simultaneously, we employ the Row&Column(RC)-
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●

Figure 5. Merge Module. The text feature obtained from the text
branch and the room feature obtained from the room branch are
merged together in this module, and ⊙ represents the element-wise
product operation.

constraint module to calculate the constrain mask from the
text features and expand the text feature into the entire room
feature as it only occupies a part of this room area. Finally,
the element-wise product is used for the integration of fea-
tures and the constraint mask to obtain the merged room
features containing ample text context.

We mainly obtain the features of the text in the images in
the text branch, rather than the final text result. We can use
our RC RC-Constraint module to learn the relationship be-
tween rooms using features extracted from the text branch
while the object detection for text can only provide what
and where those texts are. Furthermore, when the wording
of specific room types is flexible, it is hard to build a dictio-
nary to map the word into the type rooms, which makes the
program more complex and lacks lots of flexibility. Finally,
the room branch can extract auxiliary signs to enhance the
correspondence between text and room types in the training
phase.

3.3. Row&Column Constraint Module

As rooms in the floor plan are usually regular polygons
due to most of the composed architectural elements being
straight lines, we design the Row&Column (RC) Con-
straint Module (see Fig. 6) to obtain the constraint mask
for the row and column features, as well as more regular
boundaries between the wall and rooms with fewer noises.
At the same time, the feature receptive field is expanded be-
cause we share text features to the entire row and column
through RC constraints.

As illustrated in Fig. 6, given a local feature X as the
input, we firstly extract the column feature Xc and the row
feature Xr using Eq (1):

Xr =

∑
r WrX

C
,

Xc =

∑
c WcX

R
,

(1)

where X ∈ RR×C×k is the given feature, Wr ∈ RR×1×k

and Wc ∈ R1×C×k are the learnable weights. The size of
Xr and Xc are 1 × C × k and R × 1 × k individually,
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Figure 6. RC Constraint Module. For input features, we get the
row and column features by multiplying learnable weights, then
calculate the raw constraint mask by Kronecker Product repre-
sented by ⊗. The sigmoid function is used to limit the value of
the final constraint mask.

while the R, C, and k are the number of rows, columns and
channels of the given feature, with

∑
r and

∑
c denote the

sum in rows and columns respectively.
Then we use matrix multiplication to multiply Xc and

Xr to get the raw constraint mask and propagate the fea-
tures to the entire image. The sigmoid function is utilized to
generate the constraint mask distributions over the features,
and the final constraint mask can be expressed as follows:

M = Xr ⊗Xc

=

∑
r WrX

C
⊗

∑
c WcX

R

=

∑
r WrX ⊗

∑
c WcX

RC
.

(2)

Since there are no text features on some rows and
columns in the input feature map, we give two types of RC
Constraint Modules in our RC-Net: joint-constraint mod-
ule and self-constraint module, which are shown in Fig. 7
(a) and (b). Different from the self-constraint module, the
joint constraint module has one more text feature input as
the constraint, so using it in the merge module can extend
the text feature to the entire row and column of the room
feature. In the subsequent room branch, the joint constraint
module is used again to mix the room type features and
room boundary features. The self-constraint module is only
used in the room branch, which can constrain the row and
column features to get a clearer segmentation boundary.

3.4. Implementation Details

Loss function. Our RC-Net has three output masks in train-
ing steps: text, room type, and room boundary. Since the
number of pixels in different categories is extremely unbal-
anced in every output mask, we employ the focal loss [14]
to define our final loss function as:

L = WtLt +WrtLrt +WrbLrb, (3)

C C

(a) Joint Constraint Module (b) Self Constraint Module

● ●

Figure 7. Two types of the RC Constraint Modules that we used
in our RC-Net. (a) The Joint Constraint is used for sharing infor-
mation from two inputs features. (b) The Self Constraint is used
to constrain the features on the entire row and column to obtain a
smoother segmentation boundary. ⊙ represents the element-wise
product operation.

where Lt, Lrt, and Lrb are focal losses for measuring the
output mask of the text, room type, and room boundary re-
spectively, while Wt, Wrt, and Wrb are the correspond-
ing weights for these three loss functions. We set higher
weights on Lt and Lrb in order to improve the accuracy
of effective categories because the mask of text and room
boundary has more background pixels. In practice, we set
Wt = 10.0, Wrt = 5.0, and Wrb = 10.0 which work well
in all of our experiments.

Training details. We train our network with a total of
100k steps on R2V dataset, 60k steps on R3D dataset, and
120k steps on the Cubicasa dataset, with the details of these
datasets are given in section 4.1. We use a fixed learning
rate of 1e − 4 and employ Adam as the optimizer to train
our network with a weight decay of 1e− 5 to avoid overfit-
ting. The resolution of the input floor plan image is 512512
with good details. During the training, we randomly resize
and select a part from the whole image in the initial 30k
steps, and use the whole image in the remaining steps. We
also randomly distort the color in our training steps for data
augmentation.

4. Experimental Results

In this section, we first introduce the benchmark datasets
as well as the metrics we used for the evaluation. Then,
we provide a complete qualitative and quantitative compar-
ison with state-of-the-art approaches. Finally, we perform a
series of ablation experiments to validate the effectiveness
of our RC-Net. All experiments are conducted on a server
equipped with an Intel Xeon Gold 6226R processor 2.9GHz
with 64 cores, 256 GB of RAM, and an NVIDIA GeForce
RTX 2080Ti (11GB memory) graphics card.
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Figure 8. Visual comparison of parsing floor plan images on R2V and R3D datasets. From left to right are (a) input floor plan image, (b)
ground truth, (c) Raster-to Vector [17], (d) DeepFloorPlan [32], (e) our method, and (f) the text feature mask. The examples in the top four
rows are from the R2V dataset while the other two are from the R3D dataset.



4.1. Experimental Setup

Datasets. For the performance evaluation and comparison,
we carry out experiments on three commonly used bench-
marks:

• R2V [17]: It contains 870 floor plan images, where
770 images are used as the training data and the re-
maining 100 images are served as the testing data;

• R3D [15]: It originally contains 214 floor plan images.
We follow the modified pattern of [32] which adds 18
floor plan images and splits the dataset into 179 train-
ing images and 53 testing images;

• Cubicasa [13]: It consists of 5000 ground-truth
Finnish floor plan images. Since we need to label the
text mask, we randomly collect 1,000 images from the
training images and 156 images from the testing im-
ages.

Evaluation metrics. For quantitative evaluations, we adopt
several widely-used metrics in [9, 32], including mean Ac-
curacy (mAcc) and mean Intersect over Union (mIoU). Be-
sides, we use the class Intersect over Union (class IoU)
and Frequency Weighted Intersection over Union (FWIoU)
which can reflect the correlation between the predictions
and the ground truth more realistically. These metrics are
formally defined as follows:

mAcc =
1

C

∑
i

Nii∑
j Nij

, (4)

mIoU =
1

C

∑
i

Nii∑
j Nij +

∑
j Nji −Nii

, (5)

class IoUi =
Nii∑

j Nij +
∑

j Nji −Nii
, (6)

FWIoU =
1∑

i

∑
j Nij

∑
i

Nii∑
j Nij +

∑
j Nji −Nii

. (7)

Here Nij is the number of pixels whose ground-truth
class is i while the prediction class is j, and C is the number
of classes.

4.2. Evaluation and Comparison

For comparison, we select two representative learning
approaches to evaluate the floor plan parsing performance
of our RC-Net: Raster-to-Vector [17] and DeepFloor-
Plan [32]. Both methods provide a plethora of comparisons
to other techniques including traditional approach [1] and
general semantic image segmentation network [5, 34] and
establish themselves as state-of-the-art methods, thus we
omit comparisons with other works that have already been
compared.
Comparison on R2V and R3D dataset. We first evalu-
ate the performance of our method on the R2V and R3D

datasets with rectangular and various shapes. For a fair
comparison, we train our network separately on the corre-
sponding training data to compare to Raster-to-Vector [17]
and DeepFloorPlan [32]. Since the network of Raster-to-
Vector only detects the junctions of the floor plan, we use
their released weights to obtain their network output. Fi-
nally, Raster-to-Vector [17] outputs a vector-graphics rep-
resentation by an integer programming, thus we follow its
procedures and instructions to convert its output to pixel im-
ages for comparison. For DeepFloorPlan [32], we use its
released weights to get the results of the R3D dataset and
retrain its network for the R2V dataset based on the official
open-source code released by the authors.

Fig. 8 shows the visual comparisons, where the top four
rows are comparisons on R2V, and the bottom two rows
are comparisons on R3D. The Raster-to-Vector network ob-
tains the basic elements such as walls, doors, and windows
by connecting the junctions, and finds the room area by the
integer programming with various geometric and semantic
constraints. Since its results of basic elements are related
to the predicted junctions, the top two rows in Fig. 8 (c)
lack some isolated wall lines or create some extra wall lines
compared with the ground-truth in Fig. 8 (b). Meanwhile, it
produces some wrong room topology and room type predic-
tion results in the second, third, and bottom rows with the
limitation of the integer programming and semantic con-
straints. In particular, this method can only generate some
non-existent regular rectangles even if some joint points can
be detected for the circular floor plan shown in the fifth
row. The reason is that Raster-to-Vector is based on the
assumption of the Manhattan world, thus it cannot process
such non-rectangle images. Due to the per-pixel prediction,
the results of DeepFloorPlan always contain noises at the
boundary of different categories, and its predicted results
of the room type may be wrong (see Fig. 8 (d)). In con-
trast, our room prediction results are more accurate than
other two algorithms with the guide of the text branch, as
shown in Fig. 8 (e). Obviously, the room types prediction
of our text branch is more accurate as seen in Fig. 8 (f). Be-
sides, due to the impact of our RC constraint module, our
room prediction results are less noisy and boundaries are
much smoother.

The numerical statistics about the predicted IoU and
mean accuracy for each method are reported in Table 1.
There are many non-rectangular room shapes in the R3D
dataset, so the performance of Raster-to-Vector is worse
compared on the R2V dataset. For the average, our method
has a higher mACC with 3%∼24% improvement, and a
higher mIoU with 4%∼31% improvement, which means
that the predicted results of our network are more accurate.
Comparison on CubiCasa dataset. Since the Cubicasa
dataset divides the category of Opening into Window and
Door, while the number of room types is more than R2V



Table 1. Quantitative comparison on R2V and R3D datasets. The best results of each measurement are marked in bold font.

Dataset Methods FWIoU
class IoU

mACC mIoU
Wall Opening Closet Bathroom Living room Bedroom Hall Balcony

R2V
Raster-to-Vector 0.75 0.60 0.57 0.68 0.79 0.74 0.84 0.53 0.72 0.83 0.69
DeepFloorPlan 0.72 0.62 0.53 0.62 0.73 0.73 0.80 0.37 0.75 0.84 0.64

Our RC-Net 0.77 0.62 0.58 0.77 0.82 0.77 0.82 0.65 0.83 0.87 0.73

R3D
Raster-to-Vector 0.49 0.65 0.41 0.34 0.31 0.58 0.46 0.51 0.27 0.60 0.44
DeepFloorPlan 0.69 0.81 0.61 0.37 0.77 0.71 0.66 0.50 0.50 0.80 0.65

Our RC-Net 0.84 0.77 0.53 0.59 0.84 0.89 0.86 0.79 0.72 0.84 0.75

Table 2. Comparison on CubiCasa dataset.

Methods FWIoU

class IoU

mACC mIoU

Wall Window Door Outdoor
Kitchen

&
etclet@tokeneonedot

Living
Room

Bedroom Bath Hall Railing Storage Garage Others

Raster-to-Vector 0.38 0.60 0.37 0.14 0.40 0.36 0.42 0.46 0.21 0.38 0.10 0.18 0.12 0.20 0.46 0.30

DeepFloorPlan 0.46 0.64 0.43 0.36 0.38 0.47 0.52 0.48 0.53 0.46 0.07 0.39 0.25 0.31 0.63 0.41

Our RC-Net 0.70 0.70 0.66 0.53 0.61 0.77 0.81 0.86 0.61 0.67 0.43 0.54 0.57 0.53 0.76 0.64

（a） （b） （c） （d） （e） （f）

Figure 9. Visual comparison on CubiCasa dataset. From left to right: (a) input floor plan, (b) ground truth, (c) Raster-to-Vector [17], (d)
DeepFloorPlan [32], (e) our method, and (f) the text feature mask.

and R3D dataset, we modify the output categories of all al-
gorithms and retrain them on this dataset. We follow the
method introduced in [13] to convert their SVG format an-
notations into pixel labels, where the floor plan elements
include wall, door and window, with the room types have

10 categories as shown in Table 2.
Fig. 9 shows the visual comparisons and Table 2 reports

the numerical statistics about the performance on the Cu-
bicasa dataset. Compared with the R2V and R3D datasets,
the Cubicasa dataset is more extensive, and the floor plan
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Figure 10. Prediction results of floor plan images without text, fewer text and all texts by our RC-Net. From left to right: (a) Images without
texts and predictions of our RC-Net, (b) Images with part of texts and predictions of our RC-Net, (c) Images with all texts and predictions
of our RC-Net, and (d) Ground truth.

styles and structures vary greatly in color and quality. At
the same time, its annotations divide areas containing mul-
tiple texts (such as living room, dining room, and kitchen)
into different categories. Thus the numerical statistics in Ta-
ble 2 show that the overall classification results are worse.
As shown in Fig. 9 (c), it’s difficult for the Raster-to-Vector
method to find all of the junctions in complex scenes, lead-
ing to lots of missing walls and rooms in its prediction re-
sults. Meanwhile, its converted wall widths are the same
and not matching the actual image as the wall width may be
different in the floor plan image. Finally, some slightly in-
clined lines are converted into straight lines as shown in the
bottom row of Fig. 9 (c). Therefore, the prediction results
of the Raster-to-Vector method on the Cubicasa dataset are
extremely unsatisfactory. Similarly, the floor plan recog-
nition results produced by DeepFloorPlan have too much
noise due to too many room categories and the similarity of
room structures in the Cubicasa dataset shown in Fig. 9 (d).

In contrast, our RC-Net can still get accurate room pre-
diction results with the powerful guide by our text branch
shown in Fig. 9 (f). Our RC constraint module greatly
reduces the noise pixels in the room and the boundary to
ensure that each room is predicted correctly with regular
boundaries. It is worth noting that for a room without text
information, our RC-Net can still accurately infer the type
of the room based on its internal information. For exam-
ple, in most floor plan images, the living room and balcony
are adjacent, our method can detect the relationship and in-
fer the balcony room without any text when the living room
is confirmed using the text. There are bathtub, toilet and
other signs in the bathroom, while the room branch can
extract these features to determine whether the room is a
bathroom or not when removing the text in the floorplan.
Fig. 10 shows the prediction results by our RC-Net on two

floorplan images with no texts, fewer texts, and full texts,
respectively. We can see that the regions with text changing
can be segmented, but may be classified into another type
that is different from the ground truth when the texts are
lost. After the texts are added, they will be classified cor-
rectly. In general, the predictions of our RC-Net are better
when the texts exist, which reflects our advantage of using
the text branch.

4.3. Ablation Study of Our Text Branch

We first study the effectiveness of the added text branch
in our RC-Net and conduct ablation experiments for the text
branch. Note that the merge module is also removed while
not using the text branch. Specifically, we use the previous
weights of the whole RC-Net for initialization, which can
significantly reduce the training time.

From Table 3, we can see that in most cases, the text
branch makes predictions more accurate. This is because
the types of rooms are closely dependent on the correspond-
ing text of the room. The accuracy improvements on the
R2V and R3D datasets are extremely obvious because the
text information in these floor plans has a large proportion
of the room, and other icon information is less.

Besides, due to a large amount of iconic information
in the room for the Cubicasa dataset, the room branch
can learn enough features, making prediction accuracy on
the Cubicasa is only slightly improved by adding the text
branch. In general, the results with our text branch are bet-
ter with 3%∼20% improvement.

4.4. Ablation Study of Our RC Constraint Module

We also investigate whether our RC Constraint Module
can share and constraint features effectively. We conduct
ablation experiments on our RC Constraint Module used in



Table 3. The performance of our RC-Net without and with the text
branch.

Dataset Text Branch? mAcc mIoU FWIoU

R2V
✗ 0.80 0.63 0.66

✓ 0.87 0.73 0.77

R3D
✗ 0.62 0.50 0.65

✓ 0.84 0.75 0.85

CubiCasa
✗ 0.73 0.60 0.64

✓ 0.76 0.64 0.70

Table 4. The performance of different combination for JC*, JC
and SC. JC* is the joint constraint module used in merge module.
JC and SC are the joint constraint module and the self constraint
module of the bottom layers of our network.

Dataset
Method

mAcc mIoU FWIoU
JC* JC SC

R2V

✗ ✗ ✗ 0.81 0.62 0.68
✓ ✗ ✗ 0.83 0.68 0.73
✓ ✓ ✗ 0.84 0.71 0.75
✓ ✗ ✓ 0.84 0.70 0.75
✓ ✓ ✓ 0.87 0.73 0.77

R3D

✗ ✗ ✗ 0.65 0.55 0.69
✓ ✗ ✗ 0.73 0.62 0.79
✓ ✓ ✗ 0.81 0.74 0.84
✓ ✗ ✓ 0.82 0.74 0.82
✓ ✓ ✓ 0.84 0.75 0.85

CubiCasa

✗ ✗ ✗ 0.68 0.58 0.66
✓ ✗ ✗ 0.71 0.61 0.69
✓ ✓ ✗ 0.74 0.61 0.67
✓ ✗ ✓ 0.71 0.63 0.69
✓ ✓ ✓ 0.76 0.64 0.70

the self constraint module (SC), the joint constraint module
(JC) of the bottom layers, as well as the joint constraint
module (JC*) in the merge module. To this end, we have
designed five different experiments: i) without them all; ii)
without SC and JC;iii) without SC; iv) without JC; v) using
all of them. Specifically, we initialize the weights of each
experiment with the previously trained weights of the entire
RC-Net.

From Table 4, we have the following observations:
(i)The JC* can provide more precise segmentation on the
R2V and R3D datasets since it can maximize the sharing of
textual context to the room features. However, it has less
impact on CubiCasa dataset as the floor plan images of Cu-
biCasa have huge iconic information. (ii)The JC and SC
can improve the accuracy slightly since it can provide bet-
ter constraints on the boundaries of rooms to make the seg-
mentation of boundaries more regular;(iii)The combination
of JC and SC has better performance due to its ability to
share features on the room boundary features and the room

type features;(iv)With the features sharing on the entire row
and column for using our RC Constraint model completely,
each pixel can be classified more accurately.

In sum, all the evaluation metrics are improved by using
our RC constraint module partly or completely.

5. Conclusion and Future Work

We propose a novel RC-Net to extract semantic informa-
tion from floor plan images for segmentation to parse resi-
dential buildings. By introducing the text branch for guid-
ing room type predictions and designing the RC constraint
module to share and constraint features on the entire row
and column, the text features are fully integrated with the
room features, while the noise points are greatly reduced in
the prediction. Experiments demonstrate the advantages of
our method by comparing to other state-of-the-art methods
on three benchmark datasets.
Limitations and future work. When the floor plan images
lack text labels, the segmentation accuracy is not improved
obviously based on our method. Besides, there are still a
few noise points (as shown in Fig. 8 & Fig. 9) in some seg-
mentation results where the boundaries are not obvious. In
addition, our method may not achieve good performance
in extremely complicated settings. For example, when the
rooms are very small and crowded together, our method is
difficult to segment and identify these rooms properly.

In the future, we will improve the prediction of room
types by using more iconic information and more con-
straints, thereby promoting the prediction of room types.
In addition, we will explore the applications of the RC con-
straint module to image detection and other tasks and ver-
ify the effectiveness of this module on other public bench-
marks.
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