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Abstract

The emergence of the metaverse leads to rapidly ris-
ing demands for generating extensive 3D worlds. We
consider that an engaging world is built upon a rational
layout of multiple landuse areas (e.g., forest, meadow,
farmland, etc). Towards this perspective, we propose
a generative model of landuse distribution by learning
geographic data. The model is based on transformer
architecture that causally generates a 2D map of lan-
duse layout, which can condition on spatial and seman-
tic hints if one or both are provided. The model enables
diverse layout generation with user controls and layout
expansion by extending borders with partial inputs. To
generate high-quality and satisfactory layouts, we devise
a geometry objective function that supervises the model
to perceive layout shapes and regularize the generations
with geometric priors. We further devise a planning
objective function that supervises the model to perceive
progressive composition demands and suppress the gen-
erations deviating from controls. For evaluating the spa-
tial distribution of the generations, we train an autoen-
coder to embed landuse layouts into vectors so that real
and generated data can be compared using the Wasser-
stein metric inspired by Fréchet inception distance.

Keywords: Layout Generation, Virtual Worlds, Lan-
duse

1. Introduction

The explosion of interest in the metaverse [7] creates
a huge demand for building 3D worlds where people and
their avatars can work, shop, travel, and attend classes.
For decades, computer algorithms have been developed to
generate plausible 3D world components such as terrains,
buildings, animals, plants, etc. However, an engaging world
also needs to be founded on a spatially coherent layout that
consists of diverse landuse areas arranged rationally. For
example, a natural scene is likely to have a residential area,
a lake, and a forest, and the residential area is better to be
in front of the lake and partially surrounded by the forest.
With a rational layout, objects can be organized faithfully
to the real scenes, which improves the experience of explo-

ration. A virtual world further needs to be creative where
human design can be applied to the layouts. For example,
generating a layout where the center should be a commer-
cial area and the rest should be composed of 60% forest and
40% meadow. Designing layouts requires a combination of
logical and artistic considerations and demands a high level
of expertise and effort from humans. It is thus important to
develop algorithms for generating landuse layouts, which is
considered a challenging task.

Layout generation is extensively studied in the context of
graphic design [20, 17, 15, 1, 36] and indoor scene synthe-
sis [3, 21, 31, 29, 18, 4, 23, 6]. The proposed models gener-
ate arrangements of objects regarding their categories, loca-
tions, rotation angles, and scales. However, virtual worlds
involve more complex arrangements, and optimal genera-
tion of their layouts is challenging and little studied. In pro-
cedural generation [5, 25, 39, 11], layouts are synthesized
by noise sampling or heuristic models which focus on ter-
rains and biomes, and have no consideration of human lan-
duse areas. To generate plausible layouts of virtual worlds,
a promising direction is to develop approaches driven by the
real-world landuse distribution.

We consider that virtual world layouts can be referenced
from the real world. Therefore, we build a dataset of lan-
duse layouts which are collected and processed from Open-
StreetMap1. A landuse layout is a 2-dimension grid map
of blocks, where each block is labeled by landuse cate-
gories. We propose Landuse Transformer (LuTF) which is
a generative model of landuse layouts conditioned on spa-
tial and semantic hints. We define the spatial hint as par-
tially observed layouts and the semantic hint as composi-
tions of landuse percentages. LuTF is based on a trans-
former network due to its high expressiveness and natural
adaptation to the discrete landuse category. The network
architecture includes two encoders and one decoder. The
first encoder takes partial layouts as input and the second
encoder takes landuse compositions as input. The encoders
jointly form a latent control representation, which is then
cross-attended by the decoder to generate a layout autore-
gressively from “top-left” to “bottom-right”, following suc-

1OpenStreetMap is released with an open-content license, which allows
free access to all underlying map data. https://www.openstreetmap.org/
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cessful image synthesis work [10, 28, 37, 27]. At the train-
ing stage, a partial layout is produced by masking a fully
observed layout, and a composition is computed as the ra-
tios of the landuses within the masked part. We feed the
model various partial layouts with the corresponding com-
positions to reconstruct the full layouts. A partial layout can
be completely masked, and a composition can be set to an
“unknown” value, which represent no hint. The model can
learn an aggregated layout distribution under no hint/control
circumstances. At the inference stage, LuTF can be used to
sample coherent layouts with or without user input controls.

To improve the quality of the generated layouts, we de-
vise a geometry objective function that enhances the learn-
ing of shapes. In detail, for each block on a layout map,
the model is supervised to predict its distance and direc-
tion to the centroid of its belonging area, and the number
of its neighbors with different landuses. These supervisions
reveal the geometry of the layouts, allowing the model to
perceive shapes and generate layouts with geometric priors.
We further develop a planning objective function to address
an issue with autoregressive predictions. These predictions
are conditioned on previous ones, resulting in fewer restric-
tions at the beginning and more at the end. If the decoding
deviates early on, it can cause the final generation spatially
irrational and out of control. Our planning objective func-
tion guides the model to perceive progressive composition
demands while decoding. This imposes regulations on the
model outputs for better quality and more conformity.

To generate layouts of unlimited sizes for practical use,
we propose an expansion approach that iteratively grows an
existing layout on its borders. We use a window sliding on a
border to capture part of the existing layout as a hint, which
is fed into the model for completion. This expansion ap-
proach can produce locally rational layouts without further
training and modification to the model.

To evaluate the performance of the model, we propose
two metrics. One is the Wasserstein distance which mea-
sures visual or spatial similarity between a set of layout
generations and the real samples. We train a convolutional
autoencoder that maps 2D layouts to vectors, and calculate
the distance between the two vector distributions. The other
metric is the difference between the compositions of gener-
ated layouts and the input composition, which measures the
semantic conformity to the control. Finally, given a gener-
ated layout, terrains can be created and assets can be popu-
lated depending on the landuse areas to form a virtual world.
An overview of our method is shown in Figure 1.

Contributions

• We formulate a problem of generating virtual world
layouts with landuse distribution from the real world.
To the best of our knowledge, this is the first work to
study the problem.

• We propose a controllable generative model of layouts:
Landuse Transformer (LuTF), which encodes given
spatial and semantic hints, and then decodes layouts
of 2D landuse maps.

• To improve layout quality and conformity to the con-
trol, we design a geometry and a planning objective
which supervise the model to perceive layout shapes
and composition demands in progress. LuTF is there-
fore able to regularize generations with geometric pri-
ors and drive the outputs to meet the requirements.

• For evaluating generation quality from a spatial simi-
larity perspective, we train an autoencoder to embed
layouts into vectors, so that the generated and real-
world layouts can be compared by the Wasserstein
metric.

2. Related Work

Procedural Generation Procedural generation aims to
automatically generate realistic content for virtual worlds
such as landscapes, vegetation, road networks, buildings,
and living beings [12]. The placement of the objects is usu-
ally based on noise sampling [25] or a Voronoi diagram [9]
with considerations of geography and climate factors such
as flatness, altitude, and humidity [11]. However, the pro-
cedural layouts are short of interesting human landuse areas
and are heuristic compared to real-world distribution. It is
thus important to investigate data-driven methods for gen-
erating optimal layouts.

Layout Generation in Graphic Design Layout genera-
tion is an important problem abstracted from designing im-
ages, documents, and software user interfaces. The study
aims to automatically arrange a meaningful composition of
graphic primitives. LayoutGAN [20] synthesizes bounding
box annotations of 2D graphic elements based on seman-
tic and geometric properties using a generative adversarial
network (GAN) framework. LayoutVAE [17] takes a label
set description to generate a full image layout by using an
autoregressive model based on a conditional variational au-
toencoder (VAE) framework. LayoutTransformer [15] ap-
plies self-attention to learn contextual relationships between
graphic elements, and enables generating a layout from an
empty set of elements or an initial seed set of primitives.
Variational Transformer Network (VTN) [1] captures high-
level relationships between elements with self-attention lay-
ers and models the layout synthesis with the VAE frame-
work. VTN is capable of learning margins, alignments, and
other global design rules without explicit supervision. Lay-
outTransformer Network (LT-Net) [36] uniquely encodes
the semantic features of scene graph elements for exploit-
ing co-occurrences and implicit relationships. LT-Net can
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Figure 1: An overview of the method based on Landuse Transformer (LuTF).

additionally produce a spatially-diverse layout by fitting a
Gaussian mixture model on the bounding box distribution.

Indoor Scene Synthesis There is a large body of work
on indoor scene synthesis, which aims to generate optimal
arrangements of a set of indoor objects. Make It Home
[38] starts from a randomly initialized layout, and itera-
tively adjusts it by minimizing a cost function regarding
factors such as human-accessibility, visibility, pairwise ob-
ject relationships, etc. PlanIt [31] generates indoor lay-
outs with a deep graph convolutional model which synthe-
sizes relation graphs of objects in an autoregressive manner.
GRAINS [21] uses a recursive VAE based model to gener-
ate a scene structure of objects hierarchically from a random
code. SceneGraphNet [40] takes an incomplete scene as
context to predict the most likely object type given a query
location. It uses a graph neural network to model long and
short object relationships with a neural message passing ap-
proach. SceneGen [18] takes a semantic segmentation of an
incomplete scene to predict a placement probability map for
new objects. 3D-SLN [23] uses an end-to-end variational
generative model to generate diverse layouts given scene
graphs. A convolutional neural network based method [32]
uses top-down images of scenes to predict the next object to
insert and its location simultaneously. This method is later
extended with factorizing the process which enables global
reasoning of adding an object and considers more geometric
dimensions like scales and rotations [29]. For more flexible
scene synthesis, natural language is used to control the lay-
out generation. Early work [2, 3] parses text input into a set
of object constraints, then expands the set by inference and
arranges objects. A novel framework [24] considers scene
synthesis at a sub-scene level which regularizes the outputs.

It parses textual commands into a semantic scene graph to
retrieve sub-scenes from a database, then the final scene is
synthesized by aligning the sub-scenes with augmentation
of adding new objects. The House Plan Generative Model
[4] translates text into a structural graph representation, and
predicts the layout by a graph convolutional network and
generates interior texture by a language conditioned gener-
ative adversarial network.

Other Layouts with Deep Generative Models Com-
pared to graphic design and interior scene synthesis, layouts
of virtual worlds arrange a lot more elements with com-
plex and implicit relations, which are intractable to be rep-
resented by sparse annotations and modeled using the above
methods. Generating virtual world layouts therefore re-
quires designing models with high expressiveness and pow-
erful generative capability.

A considerable amount of effort has been devoted to gen-
erating other types of layouts by deep generative models
[19, 13, 26]. BlockPlanner [35] generates large-scale city
blocks. It uses a vectorized graph representation for land
lots which enables a lightweight graph VAE to capture the
hidden distributions. 3D shape structures can be considered
as layouts as well. SAGNet [34] is a structure-aware gen-
erative model for 3D shapes. It embeds the geometry of
object parts and the pairwise relationships jointly in a latent
space, that is learned by an autoencoder. MatFormer [14]
generates procedural material graphs which are viewed as
compact, parametric, and resolution dependent spatial lay-
outs for material authoring. It addresses the problem with a
model of multi-stage transformers which sequentially gen-
erates nodes and edges while ensuring semantic validity.

Transformers with powerful modeling architecture for



long-range relations, have achieved state-of-the-art perfor-
mance on various learning tasks [30, 8, 22]. Even for spa-
tially distributed images, the transformer architecture con-
tains no built-in inductive prior on the locality of interac-
tions compared with vision predominant convolutional neu-
ral nets, and is therefore free to learn complex relation-
ships among its inputs. A lot of work has demonstrated the
success of using transformers to synthesize natural images
[10, 28, 37, 27]. Transformers have also been investigated
for scene layout generations. Sceneformer [33] predicts a
sequence of objects along with their locations and orienta-
tions. It improves quality and shows faster generation com-
pared to previous methods. The model is also flexible to
be conditioned on text descriptions due to modality com-
patibility. Inspired by those recent successes, we study the
virtual world layout generation based on transformer archi-
tecture and augment it with novel designs.

3. Data Description

As virtual world layouts can be referenced from the real-
world distribution, we use OpenStreetMap which is a free
geographic database of the world. We take the data of
“Greater London” from OpenStreetMap. The data con-
tains a vast number of lands labeled by landuse which de-
scribes primary human usage. For example, a land can
be labeled as forest, meadow, farmland, etc. As there are
dozens of landuse categories, and most of them are ex-
tremely rare, we only consider those types with a cover-
age ratio of more than 1%: “residential”, “farmland”, “in-
dustrial”, “meadow”, “grass”, “retail”, “recreation ground”,
“forest”, “commercial”, “railway”, and “cemetery”. The
coverage details are presented in Table 1. For the areas
not covered by any land, we label them as “none” so that
there are 12 categories in total. Each land is represented by
a polygon where vertices are coordinates. We use a slid-
ing window of size 512 × 512 meters with a stride of 256
meters to extract sample regions from the entire land plane.
Each sample captures a number of land polygons (cropped
if one intersects with the window). We exclude the sampled
regions which are fully covered by one landuse category as
they provide no information for learning layout organiza-
tions. The final number of samples is 21864. Following
state-of-the-art image generation approaches [28, 10], we
divide the sampled regions into L2 = 32×32 grids of equal-
sized blocks, and each block is labeled as the landuse of the
largest covering polygon. Therefore, a sampled region is
converted into a 2-dimensional categorical map of blocks
to represent a landuse layout. We show a few samples in
Figure 2.

4. Methodology

In this section, we first introduce primary notations used
in the paper. We then discuss our method of Landuse

Transformer (LuTF) with the model architecture and learn-
ing objectives. Finally, we describe the training and infer-
ence procedures of our model, and an approach to expand
layouts for practical use.

4.1. Notations

We denote a layout map as x. We denote a partial layout
as ẋ where a number of blocks are labeled as a mask value.
We denote a landuse composition as c which states the area
percentage of different landuse categories. Let M be the
total number of landuse categories, c can be formally pre-
sented as a sequence of pairs {ci = (ui, ri) | i = 1, ...,M}
where ui is a one-hot vector indicating the category, and ri
is a scalar of the area percentage that

∑M
i=1 ri = 1.

4.2. Landuse Transformer (LuTF) Model

4.2.1 Model Architecture & Basic Objective

Let D = {x} be a layout dataset. We mask x to pro-
duce ẋ as a spatial hint. ẋ can be fully masked as “un-
known” for no spatial control. We compute c for those
masked blocks of x as a semantic hint. c can also be an
“unknown” value for no semantic control. Our goal is to
learn a conditional generative model p(x|ẋ, c). We propose
LuTF which utilizes highly expressive transformer archi-
tecture to model x. We reshape a 2-dimensional x to a
block sequence {xt | t = 1, ..., T} of length T = L2 using
“top-left” to “bottom-right” order, and each block xt can
be viewed as a discrete token for the transformer. The ar-
chitecture of LuTF includes two encoders and one decoder,
each one is composed of a stack of transformer layers. The
first encoder takes a partial layout ẋ to generate a sequential
representation h1. The second encoder takes a composition
c to generate a representation h2. The final latent control
representation h is concatenated as:

h = h1 ⊕ h2 = Encoder1(ẋ)⊕ Encoder2(c). (1)

Let x<t = {x1, x2, ..., xt−1}. The decoder conditioned on
h to generate x via a probabilistic model p(x|h) which can
be factorized as:

p(x|h) =
T∏

t=1

p(xt|x<t, h). (2)

We therefore formulate p(x|h) as an autoregressive model.
In the decoder self-attention modules, token values only at-
tend to the previous ones. In the cross-attention modules,
h induces keys and values which can be considered as a
landuse platter. The t-th query token, which encodes the
information of x<t, checks the platter and finds a proper
representation for the t-th position from the platter. The last
layer of the decoder generates hidden states z, and a linear
layer f(z) transforms z into an M -dimensional vector for



Landuse Area Coverage Color Landuse Area Coverage Color

residential 775.10 km2 64.25% recreation ground 30.51 km2 2.53%
farmland 148.82 km2 12.34% forest 20.54 km2 1.70%
industrial 51.38 km2 4.26% commercial 14.52 km2 1.20%
meadow 38.38 km2 3.18% railway 14.44 km2 1.20%

grass 31.56 km2 2.62% cemetery 13.02 km2 1.08%
retail 30.56 km2 2.53% none - -

Table 1: The landuse coverage in the “Greater London” region.

Figure 2: Samples of landuse layouts in the “Greater London” region.
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Figure 3: The model architecture of Landuse Transformer
(LuTF).

computing p(xt|x<t, h) = softmax(f(z)). The end-to-end
transformer model is expressed as:

p(xt|x<t, ẋ, c) = Decoder(x<t,Encoder1(ẋ),Encoder2(c)),
(3)

which can be learned by minimizing the objective of nega-
tive log-likelihood loss regarding landuse category:

Llanduse =
∑
xt∈x

− log p(xt|x<t, ẋ, c). (4)

The architecture of LuTF model is depicted in Figure 3.

4.2.2 Geometry & Planning Objectives

We improve the layout quality by introducing two addi-
tional objectives for training LuTF. We propose a geome-
try objective function to learn geometric properties, that the
model is capable of perceiving shapes and generating lay-
outs with shape priors. We devise the supervision at the
block level. For each block, the model is expected to pre-
dict three geometric descriptors: 1) the distance to the cen-
troid of the area to which the block belongs; 2) the direction
from the block to the centroid; 3) the number of neighbors
with different landuse categories. The distances, directions,
and neighbor counts describe the shape of an area. For ex-
ample, a “ring” area has many equally distanced blocks,
a “stick” area majorly has two opposite directions, and an
area of complex shape has more neighbors than a simplex
area. Given a layout x, we compute the three descriptor
maps: d for distances, θ for directions, and b for neighbor
counts. Let vec(t) be the direction vector of the spatial co-
ordinate at t to its corresponding centroid, and neb(t) be
the adjacent neighbor set at t. The three descriptor maps



are defined as:

d = {dt =
1√
2L

||vec(t)||2 | t = 1, ..., T}, (5)

θ = {θt =
1

2π
arctan(vec(t)) | t = 1, ..., T}, (6)

b = {bt =
1

|neb(t)|
∑

τ∈neb(t)

1{xt ̸= xτ} | t = 1, ..., T}.

(7)

We introduce three linear layers fd(z), fθ(z), fb(z) on the
decoder hidden states z. Let d̃, θ̃, and b̃ be the model predic-
tions of the three descriptors, where d̃t = sigmoid(fd(z)), θ̃t
= sigmoid(fθ(z)), and b̃t = sigmoid(fb(z)). The geometry
objective function is the sum of the l1 distances between the
predictions and the targets:

Ld = ||d̃− d||1, (8)

Lθ = ||θ̃ − θ||1, (9)

Lb = ||b̃− b||1, (10)

which are minimized together with Llanduse. We use the
l1 loss function to prevent the model fitting outliers of ex-
tremely irregular shapes.

Recall that we generate x with an autoregressive trans-
former decoder, where the t-th prediction is conditioned on
the previous predictions. This causes the model generations
to have fewer restrictions at the beginning and more at the
end. Therefore, when the early generations largely deviate
from the control, the final output can be irrational and not
meet the requirements. For example, the model may gener-
ate a large “forest” so that there is no space for an expected
“farmland” area. To impose control, we devise a planning
objective that enables the model to perceive step-by-step
composition demands while decoding. It guides the model
to make rectifications on-the-fly, so that the final output can
be more spatially rational and under control. Let x≥t = {xt,
xt+1, ..., xT }, and c≥t be the composition of x≥t which is
demanded at the t-th step. The model is expected to predict
c≥t, which can be simplified as a vector:

c≥t = (r≥t,1, r≥t,2, ..., r≥t,M ), (11)

where r≥t,i is the area percentage of the i-th landuse cat-
egory. Let the model prediction be c̃≥t, and we define the
planning loss as the sum of Kullback-Leibler divergences
between c≥t and c̃≥t as:

Lplan =

T∑
t=1

M∑
i=1

r≥t,i log
r≥t,i

r̃≥t,i + ϵ
, (12)

where ϵ is a constant to avoid division by zero.

In summary, with the awareness of this dynamic compo-
sition demand, the model can improve the generation con-
formity to the control. Combining the loss functions regard-
ing landuse category, geometric descriptors, and planning,
the final learning objective is expressed as:

L =
∑

(x,c)∈D

Llanduse+λ1Ld+λ2Lθ+λ3Lb+λ4Lplan, (13)

where λ1, λ2, λ3, and λ4 are the hyper-parameters for
weighting each loss.

4.3. Training & Inference

The training of LuTF requires producing a partial layout
ẋ and a composition c for each x. We introduce four types
of partial layout regarding masking strategy: 1) Unknown:
completely masked; 2) Stroke: a few stroked parts are visi-
ble, and the rest are masked; 3) Border: a layout is vertically
or horizontally cut into halves, and one half is masked; 4)
Patch: a layout is divided into grids of patches, and some
of them are masked. While iterating the dataset, we ran-
domly choose one of the masking types to produce ẋ, then
c can be either computed on the masked part x − ẋ or set
to “unknown”. To enable autoregressive decoding, we put
an x0 labeled as “start” at the beginning of x. Then, the
model input is a map x′ = {x0, x1, ..., xT−1} along with ẋ
and c, and the model output is supervised by the original x
= {x1, x2, ..., xT } with d, θ, b, and all c≥t.

The inference of LuTF is based on causal sampling. A
user can provide a partial layout ẋ and an arbitrary composi-
tion c. They are set to “unknown” if not provided. We feed
them into the encoders to obtain the control representation
h. We start with x0, and use the decoder to progressively
generate the next hidden state zt = z. We perform top-K
filtering on values of f(z), i.e, only the K largest values
are kept and others are set to negative infinity. The proba-
bility p(xt|x<t, h) is computed as softmax(f(z)) where we
draw out xt using the multinomial sampling. We iterate this
procedure for T steps and obtain the final inference.

4.4. Layout Expansion

To generate large layouts for virtual worlds, we addi-
tionally present an expansion approach based on the LuTF
model. Given an existing layout, we can extend one of its
borders, for example, the upper border. We place an L× L
window at the border with the bottom half overlapping the
existing layout, and produce an ẋ with the top half set to
mask values. The model predicts the landuse of the top half
which is then stitched to the layout. If the border length is
longer than L, we slide the window with overlaps of newly
inferred regions, for maintaining the continuity of the gener-
ations between steps. We illustrate the expansion procedure
in Figure 4. With this approach, an existing layout can be
expanded to an unlimited size. It might be a concern that



Figure 4: A window slides along the border, which captures part of existing layout as spatial hint for inference. The dark
part in the window is the generated partial layout, which is then stitched to the border for expansion. The strips outside the
window represent the masked parts waiting to be completed in the future.

the entire expanded layout is not optimized regarding spa-
tial distribution. However, since a single L × L region can
be very large for users to perceive (above 1/4 km2 in this
study), we consider that ensuring coherence on sub-regions
would be enough for virtual world layouts in general.

5. Evaluation Metrics

To the best of our knowledge, there is no existing work
on landuse layout generation for virtual worlds. We there-
fore propose two metrics for performance evaluation. The
first one is the Wasserstein metric inspired by Fréchet in-
ception distance [16]. We train a convolutional autoencoder
that converts layout maps into encoding vectors. Suppose
N (µ,Σ) is the distribution of encoding vectors of the gen-
erated layouts, and N (µ′,Σ′) is the distribution of encoding
vectors of the real-world layouts. The Wasserstein metric
mw is computed as:

mw = ||µ− µ′||22 + tr(Σ + Σ′ − 2(ΣΣ′)
1
2 ), (14)

where tr is the trace of a matrix. This metric indicates how
generated layouts are spatially similar to the real-world.
The second metric is the difference between the provided
composition c and c̃ of generated x̃. We compute this met-
ric denoted by mc as:

mc =
1

2M

M∑
i=1

|ri − r̃i|. (15)

If c is equal to c̃, then mc = 0.0. If c is completely different
to c̃, for example, c = (0.4, 0.0, 0.6) and c̃ = (0.0, 1.0, 0.0),
then mc = 1.0. This metric indicates how the compo-
sition of a layout fits to user control. We consider that
a high-quality and more satisfactory generation should be
with both small mw and mc.

6. Experiments

6.1. Implementation Details

The landuse categories used in the experiments are listed
in Table 1. We also add a category of “UNK” which is used
as mask value and as the start sign of the decoder. There are
M = 13 landuse categories in total. The model implemen-
tation is based on PyTorch 1.8. The transformer configura-
tion of the proposed model is as follows: The partial layout
encoder has 6 transformer layers, and the composition en-
coder has 3 transformer layers, where the hidden dimension
is 64, the head number is 8; The decoder has 6 transformer
layers, where the hidden dimension is 64, the head number
is 8, and with an upper triangle attention mask. The autoen-
coder proposed to evaluate the mw metric consists of an
embedding layer, 3 convolution layers, and 4 devconvolu-
tion layers, and the encoding vector is 256-dim normalized
into [0, 1]. We train and evaluate the methods on a Tesla
V100 GPU.

6.2. Comparison Methods & Settings

We setup the comparison methods as follows:

• Voronoi: The classic method for game world layout
generation using the Voronoi diagram. Given a com-
position c, the number of Voronoi cells is set to the
count of unique landuses which have a ratio greater
than zero. If c is not given, the cell number is chosen
randomly within [1,M ] (M is the total number of lan-
duse categories). The site points are randomly placed
on the layout for generating cells. Note that there is no
learning procedure.

• CVAE: The model is based on a conditional variational
autoencoder with convolutional architecture. The en-
coder learns a normal distribution from a joint repre-
sentation of layout x, partial layout ẋ, and composition



Method (Eval mw) U-U U-M S-U S-M B-U B-M

Voronoi 7.7848 2.9410 5.9547 1.6883 2.8773 0.6596
CVAE 16.1266 15.3241 4.7707 3.6969 2.0580 1.6160
CGAN 15.0759 7.0437 0.6624 0.5994 0.4498 0.4146
LuTF 0.6854 0.2776 0.1398 0.1339 0.1060 0.0948
LuTF + G 0.7030 0.2469 0.1473 0.1320 0.1075 0.0900
LuTF + G + P 0.6745 0.2239 0.1393 0.1267 0.1030 0.0870

Method (Eval mc) U-U U-M S-U S-M B-U B-M

Voronoi - 44.90 (17.55) - 32.94 (14.87) - 22.24 (17.93)
CVAE - 50.70 (22.73) - 37.64 (18.61) - 24.84 (20.39)
CGAN - 28.63 (14.31) - 9.97 (7.86) - 8.72 (9.16)
LuTF - 15.32 (11.97) - 9.32 (7.69) - 7.66 (8.36)
LuTF + G - 9.31 (8.27) - 6.96 (5.71) - 5.73 (6.08)
LuTF + G + P - 8.70 (7.56) - 6.96 (5.66) - 5.69 (5.93)

Table 2: The top half shows the mw values (the Wasserstein distances). The bottom half shows the mc values with standard
deviations in the brackets, where the numbers are in 100%.

Method U-R S-R B-R U-R S-R B-R

mw mc

Voronoi 8.1185 5.6584 2.7576 29.04 (13.81) 21.76 (11.25) 16.40 (12.80)
CVAE 15.7308 4.2976 1.9934 83.13 (17.34) 60.88 (17.18) 41.09 (27.30)
CGAN 9.7293 3.0658 1.9797 37.07 (15.65) 29.41 (12.09) 17.91 (13.64)
LuTF 8.6048 2.4484 1.6374 46.73 (21.33) 39.77 (14.65) 25.76 (18.51)
LuTF + G 8.0324 2.5395 1.5790 40.60 (20.73) 37.39 (14.96) 24.18 (17.29)
LuTF + G + P 7.7088 2.6335 1.6202 39.05 (20.54) 35.01 (14.50) 22.86 (16.77)

Table 3: The results of using Random compositions. The left half shows the mw values. The right half shows the mc values
with standard deviations in the brackets, where the numbers are in 100%.

c. The decoder generates a layout using a sampled la-
tent vector with the conditions. The CVAE is trained
with reconstruction loss.

• CGAN: The model is based on a conditional genera-
tive adversarial network with convolutional architec-
ture. The generator composes an encoder that maps ẋ
and c with random noise to a latent vector, and a de-
coder that decodes the vector to x. The discriminator
judges whether a generation is real or fake. The CGAN
is trained with both reconstruction and adversarial loss.

• LuTF: The proposed transformer model with only cat-
egorical loss.

• LuTF + G: The proposed model with categorical + ge-
ometry (G) loss.

• LuTF + G + P: The proposed model with categorical +
geometry (G) + planning (P) loss.

We randomly split the dataset into three parts: 70% for
training, 10% for validation, and 20% for testing. We train
the models for 1000 epochs using the Adam optimizer with
a learning rate of 0.0001 and a batch size of 16. The hyper-
parameters λ1, λ2, λ3, and λ4 are all set to 0.1. The model
inference uses top-5 filtering. The autoencoder is trained for
70 epochs using the Adam optimizer with a learning rate of
0.001 and a batch size of 16.

We evaluate the methods with combinations of various
spatial and semantic inputs. We produce 3 types of partial
layout input ẋ: Unknown (U), Stroke (S), and Border (B),
which have been described in section 4.3. We produce 2
types of composition input c: 1) Unknown (U): the ratio
of “UNK” is 100% ; 2) Masked (M): c is computed on the
masked part of a layout sample. For simplicity, we denote
a combination of inputs with the abbreviate letters in the
brackets. For example, an ẋ of Stroke (S) with a c of Un-
known (U) is denoted as S-U. Totally, we use 6 different
combinations of inputs to evaluate the methods.



Real-world Unknown Stroke Border

Figure 5: A real-world layout with three partial layout in-
puts ẋ: Unknown (U), Stroke (S), and Border (B).

U-U

U-M

LuTF LuTF + G LuTF + G + P

Figure 6: The 1st row is the results of input U-U: Unknown
(U) partial layout ẋ and Unknown (U) composition c. The
2nd row is the results of U-M: Unknown (U) ẋ and Masked
(M) c.

S-U

S-M

LuTF LuTF + G LuTF + G + P

Figure 7: The 1st row is the results of input S-U: Stroke (S)
partial layout ẋ and Unknown (U) composition c. The 2nd
row is the results of S-M: Stroke (S) ẋ and Masked (M) c.

6.3. Primary Results & Analysis

The experimental results regarding mw and mc are
shown in Table 2. Note that for those combinations with
Unknown c (U-U, S-U, B-U), evaluations regarding mc are
omitted as there is no composition for comparison. The re-

B-U

B-M

LuTF LuTF + G LuTF + G + P

Figure 8: The 1st row is the results of input B-U: Border (B)
ẋ and Unknown (U) c. The 2nd row is the results of B-M:
Border (B) ẋ and Masked (M) c.

sults show that all the LuTF based methods significantly
outperform Voronoi, CVAE, and CGAN due to the strong
generation capability of the transformer architecture. With
geometry and planning objective functions, LuTF + G +
P outperforms the original LuTF on mw and mc, which
demonstrates the advantages of the proposed supervisions
to improve layout quality and conformity. LuTF + G out-
performs LuTF on mw and mc for most of the evaluation in-
put types. As the geometry objective function facilitates the
model to perceive shapes, the generated layouts are more
coherent and organized in geometry, which leads to the im-
provement on mc. We notice that there is a slight dropping
of spatial realness (higher mw) for those experiments with-
out composition control (Unknown c: U-U, S-U, B-U). As
LuTF + G leans to produce layouts which are more diverse
in terms of shapes, the spatial distance to the real-world
layouts could be increased. When a composition control
is given, LuTF + G achieves lower mw since it can gener-
ate more complex shapes that meet the control. As a re-
sult, the geometry objective generally improves spatial co-
herence and conformity. LuTF + G + P outperforms LuTF
+ G on both mw and mc for all the input types. As the
planning objective injects the model a semantic preview of
generations, decoding deviations at early stages can be sup-
pressed. Therefore, the planning objective also improves
spatial rationality and conformity to the control.

We use a layout sample to qualitatively analyze LuTF
based methods and demonstrate the advantages of the pro-
posed objectives. We choose a real-world layout, and pro-
duce three partial layout inputs ẋ of Unknown, Stroke, and
Border, which are shown in Figure 5. Given the Unknown
ẋ, we show the results of inputs U-U and U-M in Figure 6.
For U-U, all the methods generate reasonably simple lay-
outs as there is no control. For U-M, LuTF and LuTF + G



Input c: 35.94%, 32.52%, 29.91%, 1.63%

U-R

LuTF LuTF + G LuTF + G + P

Input c: 42.21%, 28.79%, 21.09%, 7.90%

S-R

LuTF LuTF + G LuTF + G + P

Input c: 39.34%, 31.14%, 29.52%

B-R

LuTF LuTF + G LuTF + G + P

Figure 9: The results of Unknown (U), Stroke (S), Border
(B) ẋ with Random (R) composition c. The landuse ratios of
c are shown above each row. Note that the input c controls
the generation of the masked part of the input ẋ, shown in
Figure 5.

fail to generate a large enough “industrial” ( ) area, while
LuTF + G + P generates a more satisfied layout given the
control of composition, due to the advantage of the planning
objective. Given the Stroke ẋ, we show the results of inputs
S-U and S-M in Figure 7. For S-U, both LuTF + G and
LuTF + G + P recover a left-to-right “road” of “none” ( )
inferred from the input partial layout, due to the advantage
of the geometry objective. For S-M, LuTF + G + P gen-
erates and places a “residential” ( ) area properly. Given
the Border ẋ, we show the results of inputs B-U and B-M
in Figure 8. Overall, all the methods perform well, while
LuTF + G + P generates spatially more coherent layouts
regarding the “residential” ( ) area.

6.4. Random Composition

A virtual world also needs to be creative so that users can
apply various designs to the layouts. Therefore, we evaluate

the methods with randomly generated composition inputs
simulating user creative ideas. For each masked layout in
the testing data, we first obtain the number n of unique lan-
duse in the masked part, and produce c with random n lan-
duses where random ratios are assigned (normalized to 1).
We denote this type of input c as Random (R). Generating
layouts with Random c is challenging, as its distribution is
different from the real world, which makes the model hard
to maintain both spatial rationality and conformity.

The evaluation results regarding mw and mc are shown
in Table 3. In terms of mw, LuTF based methods all out-
perform Voronoi, CVAE, and CGAN, which demonstrates
better spatial generalization ability. LuTF with geometry
objective shows lower mw for U-R and B-R but higher for
S-R. The reason might be that, adopting shape priors can
complete complex shapes between strokes, but the outputs
can be less similar to the real-world layouts. In terms of mc,
Voronoi naturally outperforms the others as it forces to gen-
erate n cells of the required landuses in c without consider-
ing spatial rationality. CGAN performs as the second best,
due to that the adversarial learning is capable of discriminat-
ing “fake” generations unfaithful to the input c. LuTF + G +
P performs closely behind CGAN, but outperforms LuTF +
G and LuTF, due to that the planning objective makes better
control of the decodings. In general, the geometry and plan-
ning objective functions jointly improve spatial rationality
and conformity.

We qualitatively study the results using the same layout
sample shown in Figure 5. For U-R, LuTF + G generates
the most satisfied layout that recovers all the required lan-
duses but with a bit discrepancy in the ratios. For S-R, all
the methods recover “grass” ( ) while only LuTF + G re-
covers “residential” ( ). For B-R, LuTF recovers “com-
mercial” ( ), while LuTF + G and LuTF + G + P recover
“recreation ground” ( ). As spatial rationality is consid-
ered, generating layouts of irregular landuse compositions
can be suppressed as the models tend to maintain similarity
to the real-world layouts.

6.5. Layout Expansion

We evaluate the quality of expanded layouts produced
by the proposed expansion approach described in section
4.4. Recall that we train the model with samples of size
32 × 32 corresponding to 512 × 512 meters regions. We
test the model with 3 groups of larger-sized layout samples:
64 × 64 (4x), 96 × 96 (9x), and 128 × 128 (16x). Given a
testing sample, we crop out its central layout of size 32×32
as a starting point. We use the border expansion approach to
extend its size spirally until reaches the original size, where
the composition of the testing sample is used as control. The
extended layouts are compared with the original layouts in
terms of mw and mc. The results are shown in Table 4.
LuTF + G + P outperforms the others in all the evaluations,



4x

9x

16x

Real-world Input LuTF LuTF + G LuTF + G + P

Figure 10: The figure shows expanded layouts of sizes 4x, 9x, and 16x. The images are scaled to the same size for a clean
presentation.

Scale 4x 9x 16x

mw

LuTF 4.2960 4.8279 5.1633
LuTF + G 4.2621 4.6278 5.0536
LuTF + G + P 4.2367 4.7194 4.9176

mc

LuTF 7.76 (4.64) 7.70 (4.43) 7.93 (4.41)
LuTF + G 6.23 (4.09) 6.54 (3.99) 6.03 (3.41)
LuTF + G + P 6.00 (3.11) 6.31 (3.90) 5.29 (3.13)

Table 4: The results of mw and mc for the expanded lay-
outs.

except mw at the 9x scale.
We show a few examples to visualize the quality of the

expanded layouts. As shown in Figure 10, maintaining spa-
tial coherence can be challenging with increased scales.
Although the layouts are visually scattered, an ordinary
user inside a virtual world can hardly perceive the entire
2048 × 2048 meters region. If global coherence has to be
ensured, a multi-scale learning strategy can be applied. But
there are always larger sizes that cannot be covered, which
leaves an open question to study in the future.

6.6. Generating Virtual Worlds

Layouts provide important guidance for generating ter-
rains and placing 3D objects in virtual worlds such as build-
ings, plants, and animals. In the experiment, we generate
virtual worlds based on the layouts from the proposed LuTF.
We first use Perlin noise sampling [25] to generate terrains,
and scale the undulations depending on the landuse. For
example, “residential” is usually on flat areas which needs
a small scaling factor. For each area in the layout, we
populate objects depending on the landuse. For example,
we populate houses in “residential” areas, and plants in
“meadow” areas. We build a system using ThreeJS frame-
work2 to synthesis and render virtual worlds. We show a
few layouts and rendered views of the corresponding vir-
tual worlds in Figure 11, 12, and 13.

7. Conclusions

In this paper, we study the problem of generating landuse
layouts for virtual worlds by learning real-world geographic
data. We propose Landuse Transformer (LuTF), a control-
lable generative model based on transformer architecture.
The model takes inputs of spatial and semantic hints, and
causally outputs a 2D map of landuse. The model can
be used to sample diverse layouts under user controls, and

2ThreeJS: https://threejs.org/



Figure 11: A layout, an aerial view of the generated 3D
virtual world, and a view inside the world.

Figure 12: A layout, an aerial view of the generated 3D
virtual world, and a view inside the world.

scale up existing layouts to an unlimited size. To generate
high-quality and satisfactory layouts, we integrate two ob-
jective functions: one that supervises the model to perceive
layout shapes and enhances the generations with geometric
priors; the other supervises the model to perceive step-by-
step composition demands and suppress the generations de-
viating from controls. To evaluate at the spatial level, we

Figure 13: A layout, an aerial view of the generated 3D
virtual world, and a view inside the world.

train an autoencoder to embed landuse layouts into vectors
so that real and generated data can be compared using the
Wasserstein distance. Given a generated layout, objects can
be populated using stochastic sampling within each landuse
area to form a virtual world.
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and P. Prusinkiewicz. Realistic modeling and rendering of
plant ecosystems. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques,
pages 275–286, 1998. 1

[6] H. Dhamo, F. Manhardt, N. Navab, and F. Tombari. Graph-
to-3d: End-to-end generation and manipulation of 3d scenes
using scene graphs. In Proceedings of the IEEE/CVF In-



ternational Conference on Computer Vision, pages 16352–
16361, 2021. 1

[7] J. D. N. Dionisio, W. G. B. III, and R. Gilbert. 3d virtual
worlds and the metaverse: Current status and future possibil-
ities. ACM Computing Surveys (CSUR), 45(3):1–38, 2013.
1

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 4

[9] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003. 2

[10] P. Esser, R. Rombach, and B. Ommer. Taming transform-
ers for high-resolution image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12873–12883, 2021. 2, 4

[11] R. Fischer, P. Dittmann, R. Weller, and G. Zachmann. Au-
tobiomes: procedural generation of multi-biome landscapes.
The Visual Computer, 36(10):2263–2272, 2020. 1, 2

[12] J. Freiknecht and W. Effelsberg. A survey on the procedural
generation of virtual worlds. Multimodal Technologies and
Interaction, 1(4):27, 2017. 2

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. Advances in neural information pro-
cessing systems, 27, 2014. 3
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