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Abstract

Recently, neural implicit function-based represen-
tation has attracted more and more attention, and
has been widely used to represent surfaces together
with differentiable neural networks. However, existing
neural geometry representations still suffer from slow
computation speed and insufficient reconstruction
accuracy when applied to surface reconstructions
from point clouds and multi-view images. To alleviate
these issues, we propose a multi-scale hash encoding-
based neural geometry representation to effectively
and efficiently optimize the surface represented as
a signed distance field. To this end, a novel neural
network structure is proposed by carefully combining
low-frequency Fourier position encoding with multi-
scale hash encoding. Accordingly, the initialization
of the geometry network and geometry features of
the rendering module is redesigned. Extensive exper-
iments demonstrate that our proposed representation
achieves at least 10 times speedup on the task of million-
level point cloud reconstruction, and significantly
improves the efficiency and accuracy on the multi-view
reconstruction task. Our code and models will be avail-
able at https://github.com/Dengzhi-USTC/
Neural-Geometry-Reconstruction.

Keywords: Neural Geometry Representation, Hash En-
coding, Point Cloud Reconstruction, Multi-view Recon-
struction

1. Introduction

3D geometry shape is fundamental to many problems in
computer graphics, computer vision, and robotics due to the
fact that our physical world is in the 3D space. Unlike the
image, which is usually represented as a regular matrix in
the digital world, 3D geometry shapes have various repre-
sentations according to different applications. Conventional
geometry representations such as the polygon mesh, point
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cloud, and voxel grid can directly model 3D objects, but
suffer from excessive storage to represent high-precision
geometries. While the parametric geometry representation
describes 3D objects via a series of basis functions, it is lim-
ited by the expressive ability of low-dimensional parametric
space. Recently, the MLP-based neural implicit represen-
tations have demonstrated great success in the aspects of
effectiveness and compactness. The coordinate-based MLP
models the 3D space as a continuous implicit function by
mapping a given point to its corresponding scalar attribute,
such as the occupancy and (un) signed distance value. Then
the geometric surface can be extracted from a specified level-
set via Marching Cubes [32].

This work is interested in inferring the signed distance
field from an unorganized input point cloud or calibrated
multi-view images. In other words, we aim to learn a
coordinate-based implicit function Φ(θ,x) with learnable
parameters θ ∈ Rd, which satisfies the eikonal equation:

‖∇xΦ‖ ≡ 1, s.t {Gk(Φ(θ,xi)),xi ∈ ∂Ω}i,k, (1)

where x ∈ R3 is a 3D point, Ω is a well-behaved open set
with boundary ∂Ω, and Gk(·) is a non-linear constraint for
geometry representation Φ. MLP-based approaches [20, 68]
firstly introduce the eikonal equation constraint to enforce
the neural implicit function as a signed distance field under
the input of point cloud and multi-view images, respectively.
However, as analyzed in [44, 35], simple coordinate-based
MLPs with ReLU activation have limited representation
ability due to the “spectral bias” of neural networks. In
addition, this geometry representation often takes a long
time to solve the geometry reconstruction problem.

Many works have been proposed to improve the capability
of neural geometry representation. Some works try to design
more powerful activation functions, like SIREN [46]. Some
other works focus on positional encoding, which encodes
the spatial location into a high-dimensional space via a given
set of sinusoidal functions or spline functions [50, 21, 56].
These methods aim to represent the high-frequency details of
a given surface shape, but still, fail to reconstruct geometric
details accurately and efficiently. To tackle this problem,
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Figure 1. The left and right show our multi-view and point cloud reconstruction results, respectively. Compared with the state-of-the-art
method NeuS [55], our method is 3.6 times faster, and the reconstruction accuracy is significantly improved. Compared with the state-of-the-
art method SIREN [46], our method also considerably improves the optimization speed and reconstruction accuracy on the point cloud
reconstruction.

learnable positional encoding has been introduced to further
encode the local geometric details of a given point based on a
predefined voxel grid. In particular, the learnable multi-scale
hash encoding [36] could efficiently obtain the multi-scale
geometric information. However, reconstruction artifacts
would appear by directly applying this encoding strategy to
neural geometry reconstruction tasks. The possible reasons
include the following two aspects. First, it does not satisfy
eikonal constraints well under weak supervision, and explic-
itly discrete grids-based neural geometry representation has
poor gradient continuity, resulting in a poor approximation
of the signed distance field. Second, it requires reasonable
initialization to help network optimization.

We propose a novel geometry representation based on
multi-scale hash encoding to address these issues. Specifi-
cally, we move the hash encoding to the hidden layer as part
of the input of the connected layer, and introduce the Fourier
position encoding as the input of the first layer to encode
consecutive spatial locations, enhancing the continuity of
gradients of geometry representations. We also initialize
the geometry network with the modified version of SAL [1],
where the optimization of the geometry module is started
from an approximate sphere.

To further verify the effectiveness of our geometry rep-
resentation on multi-view reconstruction tasks, we use
NeuS [55] as the baseline framework, and validate the recon-
struction accuracy and efficiency. In the previous volume
rendering frameworks, the geometry features of any point in
3D space are extracted from the last layer of the geometry
network. Thus, hash encoding of geometry representation
encodes geometry features. This causes the reconstructed
geometry to be inconsistent with the multi-view image ren-
dered by the light field, due to the fast learning ability of the
hash encoding operator. Thereby, we change the feature ex-

traction position in the geometry network to the connection
layer, such that the multi-scale hash encoding only represents
the geometry.

Extensive experiments and ablation studies demonstrate
that our neural geometry representation outperforms the
state-of-the-art neural geometry representations in terms of
computation efficiency and accuracy of reconstructions from
point clouds and multi-view images. Compared with exist-
ing neural implicit function-based point cloud reconstruction
methods, our method achieves at least 10 times speedup and
significantly improves the reconstruction accuracy. In the
multi-view image reconstruction task, benefiting from the
modified rendering framework, our approach can recover
fined geometry details and the reconstruction speed is at least
3.6 times faster than the state-of-the-art.

2. Related works

Neural Geometry Representation. Recently, the
coordinate-based neural networks (Φ(θ,x),x ∈ R3),
which represent a 3D object as a continuous geometry shape,
have attracted a lot of attention. [40, 31, 13] utilizes a neural
network to represent the 3D shape as a (sign) distance field,
and [34, 11] represent it as an occupancy field. Our work
is more related to IGR [20], which uses simple coordinate-
based MLPs to recover the SDF of 3D shapes. However, the
implicit representation based on coordinate-based MLPs
cannot represent high-frequency details well due to its
limited representation ability [50]. Xiao et al. [60] give a
more detailed description to representation. Many methods
have been proposed to address this issue.

SIREN [46] uses Sine as the activation function and pro-
poses a proper initialization method for optimizing. Some
works [43, 25, 7, 19, 30] divide complex shapes or large-
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scale scenes into regular subregions and replace the global
MLP with local MLPs, so as to improve the geometry repre-
sentation. It has been proved that the sinusoidal positional
encoding can improve the performance of MLPs with ReLU
in radiance fields fitting [35]. One following work, Hertz
et al. [21] proposes a spatially adaptive progressive encod-
ing (SAPE) scheme based on sinusoidal positional encod-
ing, which makes MLP-based representation better fit the
target signals with complex frequencies. Except for the si-
nusoidal function, uniform parametric spline basis functions
are also utilized as position encoding to improve local and
high-frequency geometry information [56].

Another strategy is decomposing the learnable feature
or domain into different components based on an explicit
3D data structure. EG3D [8] encodes the 3D position
of geometry rendering features by projecting it into a tri-
plane with learnable features to accelerate the training speed.
ACORN [33] applies a tree subdivision to the domain,
wherein a large learnable auxiliary coordinate encoder neural
network is trained to output dense feature grids. Features of
these dense grids are used to represent the position encod-
ing of any point in space. NGLOD [49] represents neural
implicit function using an octree-based position encoding,
which adaptively fits shapes with multiple discrete levels of
detail (LOD).
Hash Encoding-based Methods. As an efficient encoding
tool, hash encoding is also widely used in geometry recon-
struction. Voxel hashing is utilized in [38] to reconstruct an
online system for large and fine-scale volumetric reconstruc-
tion. A dynamic spatially-hashed truncated signed distance
field is applied in [28] to contribute to a real-time house
scale dense 3D reconstruction system. Recently, a learnable
multi-resolution hash encoding framework [36] has been pro-
posed to encode the 3D position, and it has been successfully
applied to tasks for fast training of neural radiation fields
and SDF fitting. The work of [18] learns a series of neural
radiance fields as facial expression basis by hash encoding to
enable semantic control over personalized semantic NeRF.
Point Cloud Reconstruction. Given a point cloud (pos-
sibly with normals), reconstructing its corresponding 3D
geometry shape is a classical problem in digital geometry
processing. The parametric RBFs representation is utilized
to reconstruct the surface by fitting point cloud [6, 52]. Be-
sides, a widely used approach is the Poisson surface recon-
struction [27], which solves a Poisson equation on a discrete
volume based on the given points and normals. For more
related works, the readers can refer to the survey [4].

Recently, surface reconstruction based on coordinate-
based neural implicit representations has achieved great
progress. DeepSDF [40] utilizes a neural implicit function
to decode the SDF of 3D position in a bounding volume.
Points2Surf [15] decomposes the neural geometry represen-
tation into a global sign function and local absolute distance

function. Based on the eikonal equation, IGR [20] proposes
a new paradigm for computing high-fidelity implicit neural
representations directly from raw 3D points.

SALD [2] advocates a novel sign agnostic regression loss,
which incorporates both point-wise values and gradients of
the unsigned distance function. Neural-Pull [3] uses the
predicted signed distance value and the gradient at query
locations to train a high-quality neural geometry represen-
tation. To solve problems not limited to a specific topology
or type of input 3D signal, Chen et al. [10] proposes a new
data-driven approach for mesh reconstruction based on dual
contouring.

Multi-view Image Reconstruction. Traditional MVS al-
gorithms focus on neighbor view selection algorithms and
photometric error measures. Robust neighbor view selec-
tion and visibility consistency algorithm are discussed in
depth in the [17] and [29], respectively. A current popular
MVS system, COLMAP [45], jointly estimates depth and
surface normal, leverages photometric and geometric priors
for pixel-wise view selection, and uses geometric consis-
tency for simultaneous refinement. We refer readers to [16],
a comprehensive overview of classical multi-view stereo
reconstruction algorithms. Classical learning-based MVS
methods attempt to replace some components of the tradi-
tional MVS pipeline. Some works learn to match 2D features
across views [26, 53, 9] or infer depth maps from multi-view
images based on the data-driving framework [63, 65, 42].
There are also some works [61, 64, 12, 54] discuss in depth
the memory reduction of 3D convolution and speeding up
the inference speed of the model.

Recently, inverse rendering-based approaches have
achieved great success in multi-view reconstruction.
DVR [37] proposes a differentiable rendering approach to
directly optimize the shape and texture of the input RGB
images. IDR [68] utilizes the neural implicit function to
simultaneously learn geometry, camera parameters, and a
neural render approximates the light reflected towards the
camera. Wang et al. [57] using the prior information to
extend the IDR to 3D head reconstruction. NeRF [35] pro-
poses a novel view synthesis framework, which optimizes
an underlying continuous volumetric scene function using
multi-view images. VolSDF [67] attaches volume rendering
techniques to IDR and eliminates the need for mask informa-
tion. UNISURF [39] proposes a new multi-view framework
where implicit surface models and radiation fields can be for-
mulated in a unified way. Thus they can achieve surface and
volume rendering using the same model. NerfingMVS [59]
proposes a multi-view framework with learning-based pri-
ors to guide the optimization process of NeRF. NeuralRe-
con [48] offers a neural network to directly reconstruct local
surfaces represented as sparse TSDF volumes for each video
fragment sequentially. MVSDF [69] jointly optimizes an
SDF and a surface light field appearance model, which are
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directly supervised by geometry from stereo matching, and
refined by the multi-view feature consistency and the fidelity
of rendered images. DI-Fusion [22] proposed a local implicit
function based framework for online 3D reconstruction with
a commodity RGB-D camera. NeuS [55] proposes an unbias
density representation to recover high-quality surface shape
with the help of differentiable volume rendering.

3. Method

Inputs GT NGP Ours (w.o. init) Ours

-1.5

1.5

Figure 2. Illustration of our exploration of neural geometry repre-
sentation abilities for the 2D point cloud (sampled from a snowflake
curve) reconstruction task. Left to right: input (2D point cloud with
normals), GT, the baseline of hash encoding (NGP), Ours (w.o.init),
Ours. The blue curves are the extracted zero level set via Marching
Cubes. The color of the images represents the numerical value
of the reconstructed implicit function. The values of the eikonal
constraints Deik are 0.028, 0.0093, and 0.0041 from the third to the
fifth column. And the values of the grad-error Dgrad-error are 0.29,
0.09, 0.04 from the third to the fifth column.

3.1. Neural Geometry Representation

3.1.1 Background

The popular coordinate-based geometry representation is
to represent the 3D geometry shape as SDF: Φ : R3 → R,
SDF (x) = Φ(θ,x), where θ is learnable parameters. Based
on this continuously differentiable geometry representation,
the traditional geometry reconstruction can be directly solved
by an end-to-end optimization framework. e.g., reconstruc-
tion from point clouds or multi-view images. The two most
important validation metrics are the reconstruction accuracy
and efficiency for geometry reconstruction problems. Re-
cently, NGP [36] utilizes a learnable multi-scale hash encod-
ing enc(θh,x), which encodes the 3D position of the space
into the learnable features θh of hash table. The enc(θh,x)
improves the expressive ability of geometry representations
and convergence speed for geometry fitting tasks. e.g., SDF
fitting and neural radiance field fitting. Thus, we introduce it
to the geometry reconstruction tasks under weak supervision
information.

Our geometry representation utilizes the multi-scale hash
encoding enc(θh,x), which derives from NGP. For more
specific details, we first construct hash tables arranged in L
levels, with each level l containing up to Tl learnable features
of dimension F . Each level independently and conceptually
stores feature vectors at the vertices of a grid of a given
resolution. Similar to NGP, the resolution of each level is

progressively set to a value between the coarsest and finest
resolutions [Nmin, Nmax]:

Nl = bNmin ∗ blc.

Here b is the per level scale 2
( 1
L log2( Nmax

Nmin
)) and Nmax

is a predefined target resolution. We set Nmax and
Nmin to be 2048 and 16 respectively in our experiments.

, , + 1 , + 2

+ 1, + 1, + 2

+ 2, + 2, + 1

+ 1, + 1

+ 2, + 2

Figure 4. It shows two spatially adja-
cent points p and q obtain interpola-
tion features on the l-level grid. The
features of p and q are also quite dif-
ferent, due to the discontinuity of fea-
tures on the explicit grids.

Then, for any
point p ∈ R3 in the
space, we compute
the enc(θh,p) by
finding the corre-
sponding position on
the grid of different
levels through the
predefined map-
ping firstly and
then extract the
learnable features
from features stored
in hash tables at
different resolutions.
Specifically, consid-
ering a single level
l hash table, point p is firstly scaled by the level’s grid
resolution and then rounded down and up bplc = bp ∗Nlc,
dple = dp ∗Nle. bplc and dple span a voxel grid with 23

integer vertices in Zd, then, the bplc and dple are mapped
into the hash-table by mapping function h : Z3 → ZTl

. In
the mapping function h, we map each point into the feature
grid according to a one-to-one mapping , when N3

l ≤ Tl.
For the fine level, due to storage limitations, we use a hash
function to determine its position in the feature hash table,
similar to the strategy in NGP.

Finally, the feature vectors of the point p at each level
are obtained via the tri-linear interpolation according to the
relative position of p within its hypercube of the hash ta-
ble. To improve the continuity of high-level features, we
use a second-order continuous interpolation weight function
d(x) = 6x5 − 15x4 + 10x3.

3.1.2 Baseline Geometry Representation (NGP)

Fig. 2 provides a 2D example of our geometry representa-
tion exploration process. We validate the baseline network
structure in NGP for the point cloud reconstruction task. It
takes a hash encoding of a 3D point as input and outputs a
1-dimensional scalar value with several hidden layers. How-
ever, it results in non-smooth reconstruction results, and the
gradient of the geometry representation has very poor con-
tinuity, as shown in Table 3. The reconstructed snowflake
curve is wrong, resulting in a large difference between the
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Figure 3. The left and right are our geometry representation and its application to geometry reconstruction tasks. We propose to combine
Fourier position encoding and multi-scale hash encoding for neural geometry representation (a). Furthermore, regarding the geometry
features of the multi-view rendering framework, we extract them from the connected layer (inside the dashed box), such that hash encoding
is well avoided for ambiguity geometry learning. (The description diagram of hash encoding borrowed from NGP [36].)

predicted SDF and ground truth; the straight reason is that
our supervision information is much weaker than that of
NGP, turning ground truth supervision into weakly super-
vised. This phenomenon also has a great impact on the
multi-view image reconstruction task, as shown in Fig. 10.
What we observed, the more substantial reason is mainly two
aspects. On the one hand, only using the multi-scale hash en-
coding neural network structure is not easy to minimize the
eikonal constraint well under the constraint of weak super-
vision information. On the other hand, the neural geometry
representation based on the explicit grid has discontinuities.
The high compression with hash map h makes gradient dis-
continuities in geometry representation worse. As shown
in Fig. 4, point p and point q are adjacent in space, but due
to the discontinuity of the features on the grid, they are far
away in the feature space. One straightforward solution is
to increase the number of sampling points for computing
the eikonal equation constraint, but it still can not solve this
problem well.

3.1.3 Our Neural Geometry Representation

As shown in Fig. 3.a, based on the baseline network (NGP),
we first introduce the connected layer, a hidden layer in
the network used to connect features between different
layers. Next, we move the hash-encoding enc(θh,x) to
the middle layer of the MLP as the input of the con-
nected layer. Then the low-dimensional Fourier position
encoding encff(x) is added as the input of the first layer
to reduce the discontinuity of learnable features brought

by hash encoding. Finally, the modified initialization of
SAL [1] is utilized to initialize our geometry network.

NGP Ours

Figure 5. The initial results of the
NGP and our geometry network
with default initialization.

As shown in Fig. 5, it ini-
tializes our network pa-
rameters into an approx-
imately spherical shape.
Our final result is shown
in Fig. 2 and Table 3,
where the eikonal con-
straints are better satis-
fied, and the reconstruc-
tion results get smoother.
Our final neural geometry representation is expressed as:
Φ(θ, encff(x), enc(θh,x)).

3.1.4 Modification of Geometry Features

A neural rendering-based multi-view reconstruction frame-
work usually consists of a geometry network and a color net-
work, as discussed in Sec. 3.2.2. The color network predicts
the RGB value of a given point with its geometry features,
which are previously extracted from the last layer of the
geometry network. In our geometry representation, due to
the fast learning ability of hash encoding, the hash encoding
of geometric features may encode rendering properties. As a
result, the geometry module and the color module cannot be
well decoupled. Thus, the reconstructed geometry would be
inconsistent with the rendered image, as analyzed in Sec. 5.3.
To avoid this problem, we directly extract the geometry fea-
tures from the connected layer in the geometry network, thus
ensuring that the hash encoding only encodes the geometry
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(SDF) of the object, as shown in Fig. 3.a.

3.2. Applications of Our Geometry Representation

3.2.1 Neural Point cloud Reconstruction

Similar with [46, 40], we embed our neural geometry rep-
resentation SDF (x) = Φ(θ, encff(x), enc(θh,x)) into the
classical point cloud reconstruction task. Given an input
point cloud {pi|pi ∈ R3} and normal {ni|ni ∈ R3} of the
underlying surface S, the neural point cloud reconstruction
task aims to infer a neural signed distance function of the
surface S under a bounded volume Ω ({pi} ⊂ Ω). As indi-
cated in Eq. (1), the constraints {Gk(·)} encourages {xi} to
be on the surface, and the gradient of the implicit surface at
{xi} should be identical with the given normal {ni}. Specif-
ically, we optimize our neural geometry representation via
the following loss terms:

L = Ldata + λ1Leikonal + λ2Loff, (2)

where

Ldata =

∫
Ω0

|Φ(x)|+ λ3(|1− < ∇xΦ(x),n(x)) > |)dx,

Leikonal =

∫
Ω

(‖∇xΦ(x)‖ − 1)2dx,

Loff =

∫
Ω\Ω0

ψ(Φ(x), β0)dx.

Here, Ω0 represents the input point set {pi}, and the function
ψ(x, β0) can be formulated as exp(−β0 ∗ |x|), β0 � 1,
{λi}4i=1 are balance weights. Among them, the data term
Ldata constraints the implicit function Φ by using oriented
points sampled on the point cloud. The off-surface term Loff
encourages the value of non-surface points to be nonzero.

3.2.2 Neural Multi-view Image Reconstruction

Given calibrated multi-view images, neural multi-view re-
construction decouples geometry and appearance from them.
Its geometry and appearance are represented by implicit
signed distance function (SDF) and light field, respectively.
In our work, the SDF is represented by our neural geom-
etry representation SDF (x) = Φ(θ, encff(x), enc(θh,x)).
To optimize the parameters of our geometry representation,
we utilize the state-of-the-art volume rendering framework
NeuS [55] to render the 2D images based on neural implicit
SDF and light field, and then minimize the difference be-
tween the rendered images and the inputs. It needs to be
noted that the volume rendering framework contains a color
network c : R3 × S2 → R3, which encodes the color associ-
ated with geometry properties of a point x ∈ R3 and view
direction v ∈ S2.
Rendering. We render the proposed geometry representa-
tion with the corresponding light field to 2D images via a

volume rendering framework and then measure the differ-
ence between the rendered images and the input images for
network supervision. Specifically, given a pixel from the
input image It, we denote the ray along the center of the
camera through this pixel as {r(s) = o + sv|s ≥ 0}, where
o is the center of the camera and v is the unit direction vector
of the ray. We integrate the color along the ray as:

Ĉ(r) =

∫ sf

sn

T (t)σ(r(t))c(r(t),v) dt, (3)

M̂(r) =

∫ sf

sn

T (t)σ(r(t)) dt, (4)

where Ĉ(r) is the output color of this pixel, M̂(r) is
the sum of the transmittance weights along the camera
ray, sn and sf represent near and far bounds of the ray
r. T (t) = exp(−

∫ t

sn
σ(r(u)) du) denotes the accumulated

transmittance along the ray, and c(r(t),v) is the color at the
point r(t) along with the viewing direction v. We set σ(r(t))
as an unbiased and occlusion-aware function, defined in
NeuS [55]. Finally, we use the following loss functions to
optimize the network parameters of the geometry module
and the color module.

L = Lcolor + αLeikonal + βLmask + γLoff, (5)

where α, β and γ are balance weights, and the color term
Lcolor is defined as

Lcolor =
1

#R
∑
r∈R
‖M(r)(Ĉ(r)−C(r))‖1,

where
R = R({Ki}, {Ti}),

#R =
∑
r∈R

M(r).

Here,R({Ki}, {Ti}) represents ray set constructed based on
the pixels of all images, and {Ki}, {Ti} are the intrinsic and
extrinsic parameters of the camera, respectively. C(r) ∈ R3

and M(r) ∈ {0, 1} are ground truth color and the object
mask value of the ray r, respectively.

The eikonal term, which regularizes the geometry repre-
sentation Φ(θ, encff(x), enc(θh,x)) as SDF, is defined as

Leikonal =
1

#X
∑
p∈X

(‖∇xΦ(p)‖2 − 1)2,

where X is the sample point set on rays of set
R({Ki}, {Ti}), and #X is the number of points in X .

The mask term Lmask is optional, and defined as

Lmask =
1

#R
∑
r∈R

BCE(M̂(r),M(r)),
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where BCE is the binary cross entropy loss.
The off-surface loss Loff is defined as

Loff =
1∑

x∈Ω

1

∑
x∈Ω

ψ(Φ(x), β0),

where Ω is the bounding volume of the object. We uni-
formly sample 500 points per iteration in Ω, ψ is defined in
Sec. 3.2.1, and the β0 is 100.

4. Datasets and Implement Details

4.1. Datasets Description

For the neural point cloud reconstruction task, we evaluate
our approach and baseline methods on the public ”FAMOUS”
dataset released by Points2Surf [15] and other cases from
the Standard 3D Scanning Repository1 and the online 3D
data library2, the total is 19 models. To show high-quality
point cloud reconstruction results, we preprocess the above
dataset by subdividing each original mesh into millions of
points with normals. In addition, we normalize these point
clouds into [−1, 1]3.

For the neural multi-view reconstruction task, same
as [68, 55, 39], we evaluate our approach and baseline meth-
ods on 15 scenes from the DTU dataset [23]. Each scene
contains 49 or 64 images from different perspectives with
corresponding extrinsic parameters and a foreground mask
provided by IDR [68]. The resolution of each image is
1200×1600, and the intrinsic camera parameters of each
scene are known. It is noted that the above dataset is partic-
ularly challenging for reconstruction algorithms due to its
diverse materials, appearances, geometry, Non-Lambertian
appearance, and thin structure effect. In addition, we conduct
experiments and evaluations on some challenging scenes
from the low-res set of the BlendedMVS dataset [66], which
is a large-scale dataset containing multi-view images with
respective camera extrinsic and intrinsic parameters. These
cases have 31 to 143 images with a resolution of 768 ×
576 and corresponding masks. Finally, some scenes from a
large-scale multi-view face image dataset, i.e., FaceScape
dataset [62], were evaluated. For each scene, we select 32
images with the 900 × 600 resolution and corresponding
camera parameters, and a manually annotated rough fore-
ground mask.

4.2. Evaluation Metrics

For the neural point cloud reconstruction task, to extract
the fine geometry, we set the volume resolution as 20483

in the Marching Cubes algorithm [32]. And for each scene,
we evaluate the quality of 3D surface reconstruction result
by calculating the Chamfer-L2 distance between the 107

1http://graphics.stanford.edu/data/3Dscanrep/
2https://www.turbosquid.com/

uniformly sampled points on the reconstructed surface and
the ground truth point cloud.

Dscd(P,Q) =
1

#P

∑
p∈P

min
qt∈Q

‖p− qt‖22, (6)

Dcd(P,Q) = Dscd(P,Q) +Dscd(Q,P ), (7)

where P and Q are two point clouds, respectively,

Dlap({V,E}) =

∑
v∈V ‖

∑
u∈N (v) ωv,uu− v‖22

ave-edge ({V, E})
, (8)

where {V,E} represents a triangle mesh, V and E represent
the whole vertices and egdes of the triangle mesh {V,E} re-
spectively, non-scale laplaceDlap({V,E}) measures the non-
scale smoothness of the surface ({V,E}), ave-edge ({V, E})
represents the average edge length of the triangle mesh
{V,E}, N (v) represents the set of neighbors of v, and
ωv,u represents area weights of the discrete laplace operator
as defined in the [58].

Deik(Φ) =
1

#X
∑
p∈X

(‖∇xΦ(p)‖2 − 1)2, (9)

Dgrad(Φ) =
1

#X
∑
p∈X
‖∇xΦ(p)−∇xΦ(p + δ)‖2, (10)

where Deik(Φ) and Dgrad(Φ) measure the satisfaction of
the eikonal constraint and the continuity of the gradient of
geometry representation Φ, respectively, X is the uniformly
sampling point set in the bounding volume Ω, we set #X
20000 in our experiments, Φ represents neural function, and
δ = {10−3, 10−3, 10−3} represents a displacement.

For the neural multi-view image reconstruction task, sim-
ilar to [68, 55, 39, 69], we choose 5123 as the resolution
of volume in the Marching Cubes algorithm to extract the
final geometry shape. We use the formal “surface” evalu-
ation script from the DTU dataset [23] to evaluate our 3D
surface reconstruction results. Besides, we choose a higher
resolution 20483 to show the details of reconstructed results.
Furthermore, we synthesize the novel view images by per-
forming the volume or surface rendering to the reconstructed
geometry under the given novel view. And for all methods,
we report the PSNR using pixels located in the predefined
masks between the rendered images and the reference images
to measure the reconstruction quality of the light field.

4.3. Implement Details

Comparison methods. For the point cloud reconstruc-
tion task, we compare our approach with several state-of-
the-art neural point cloud reconstruction methods, includ-
ing IGR [50], SIREN [46], SplinePE [56], EG3D [8] and
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SAPE [21]. And we conduct all experiments with Py-
torch [41] on the GeForce RTX 3090 (24 GB memory)
graphics except SplinePE [56], whose official implemen-
tation conflicts with the GeForce RTX 3090 graphics. Thus,
we conduct the experiments of the SplinePE on the Tesla
V100 (32 GB memory) graphics. For SAPE [21], we refer to
the point cloud reconstruction framework used in IGR [20],
and then reproduce it for the point cloud reconstruction task.
For EG3D [8], we reproduce the second-order gradient of
the tri-plane position encoding operator on the Pytorch and
embed it as a learnable position encoding in the framework
of the geometry reconstruction task. To obtain a fair compar-
ison with IGR [20], we add a Fourier-position encoding [50]
layer with encoding dimension 6 into their geometry network
in the official implementation. For simplicity, we denote the
three reproduced methods as EG3D*, SAPE*, and IGR(PE),
respectively.

For the multi-view image reconstruction task, we compare
our approach with IDR [68], NeuS [55], UNISURF [39],
VolSDF [67], and NeRF [35]. Similarly, we conducted all
the experiments on the GeForce RTX 3090 graphics based
on their official implementations.
Our approach. The hash encoding enc(θh, x) in our work
has 16 layers, and the dimension of each grid feature in
each layer is 2. The frequency domain dimension of Fourier
position encoding encff(x) is 6. In addition, we modify the
network initialization strategy in [1] and then apply it to
initialize our geometry network. Following NeuS [55], we
use the hierarchical sampling strategy to sample points on
the rays in the multi-view image reconstruction task. Then
we use the mean of the SDF of sampling points as a threshold
to eliminate some invalid sampled points on each ray.

5. Experiments

5.1. Neural Point Cloud Reconstruction

Architecture. We use a 4-layer MLP with Softplus acti-
vation functions to represent the geometry network in all
neural point cloud reconstruction experiments. Each hidden
layer contains 128 units, and the parameters of the Softplus
activation functions are set as β = 100. Specifically, the
input of the first layer is the Fourier-position encoding of
spatial location (encff(x)), and the input of the third layer is
the concatenation of the hash encoding of spatial location
(enc(θh, x)) and the output of the second hidden layer.
Hyperparameter. We train our neural network for 1500
iterations with reconstruction loss Eq. (2). Following
IGR [20], for each iteration, we sample 65536 points from
the input unorganized 3D point cloud and 65536 points from
the bounding volume uniformly to optimize our network,
respectively. In our objective loss functions in the Eq. (2),
we set β0 and balance parameters λ1, λ2, λ3 as 100, 0.1,
0.05, and 1, respectively.

Table 1. Comparisons of reconstruction quality and computational
cost of different methods for point cloud reconstruction. The CD
in the first row is defined as the Chamfer-L2 Distance (Eq. (7)).

IGR (PE) SPAE* SplinePE SIREN EG3D* Ours

CD(×10−6) 4.41 1.97 2.04 1.48 1.02 0.59
Time(min) 18 50 1200 60 150 6

#Iter(×102) 500 500 200 400 500 15
Mem(GB) 6.6 11.31 6.8 13 6.2 6.0

Comparison of point cloud reconstruction. We measure
the reconstruction quality with the Chamfer distance metric
and record the required training time for each method. As
shown in Table 1, in these selected challenging cases, our
approach achieves great accuracy improvement and a 10
times increase in training speed. In addition, we conduct the
qualitative comparisons on the “Thai statut” case in Fig. 6.
For IGR and SIREN, modifying the activation function and
the spatial position encoding based on the ReLU-MLPs can
improve the accuracy to a certain extent. But for IGR, the
limited expressiveness of sinusoid functions results in a gen-
erally smooth reconstruction result with fewer details and a
slow convergence speed. SAPE and SplinePE adopt a novel
progressive learning strategy from low-frequency informa-
tion to high-frequency information, which can reconstruct
more details but take a lot of time for training. EG3D in-
troduces great adaptability for the reconstructed objects to
high-frequency and low-frequency information via the learn-
able position encoding, so its reconstruction results have rich
details. However, as shown in the blue rectangle of Fig. 6,
EG3D is prone to noise in high-frequency details due to a
lack of proper initialization and low continuity of the explicit
discrete representation. Like EG3D, our hash-encoded geom-
etry representation employs a learnable positional encoding
with multiple resolution layers, which is then compressed
into a hash table with learnable features. Due to our geom-
etry representation and initialization design, our approach
achieves better performance.

5.2. Neural Multi-view Image Reconstruction

Architecture. In the neural multi-view image reconstruc-
tion task, our geometry network architecture is roughly the
same as described in Sec. 3.2.1, except for the number of
MLP layers, here is 6. In addition, our light field c for color
prediction is modeled by an MLP with 4 hidden layers, each
containing 256 units. And the inputs of the light field are
the Fourier position encoding of view direction v, gradient n,
and the geometry feature vector output from the connected
layer of the geometry network.

Hyperparameter. In our experiments, we set balance pa-
rameters α, β and γ in Eq. (5) as 0.1, 0.1 and 5× 10−4.
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GT

IGR (PE) SAPE* SplinePE

SIREN EG3D* Ours

Figure 6. Comparisons of different geometry representations on the neural point cloud reconstruction. The method with ∗ in the figure
is our implementation with the same settings in SIREN [46]. The yellow box is an enlarged area of details, which can be more directly
observed. The accuracy of the reconstruction of our method has a significant advantage. The blue boxes are some anomalous results of the
reconstruction.

DTU24

DTU40

DTU37

Clock

Stone

Jade

Reference image NeuSIDR VolSDFUNISURF NeRF Ours

Figure 7. Comparison of different methods for multi-view image reconstruction on DTU and MVS-blender dataset.

9



Table 2. Comparison results of multi-view reconstruction on the DTU dataset.

ScanID
IDR NeuS UNISURF VolSDF NeRF Ours

CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑
scan24 1.63 23.29 0.83 26.73 1.32 25.51 1.14 24.16 1.90 26.02 0.64 29.67
scan37 1.87 21.36 0.98 23.42 1.36 23.26 1.26 21.29 1.60 24.78 0.90 24.23

scan40 0.63 24.39 0.56 26.32 1.72 25.79 0.81 24.93 1.85 27.83 0.40 28.86
scan55 0.48 22.96 0.37 24.92 0.44 25.53 0.49 22.78 0.58 26.36 0.35 29.86
scan63 1.04 23.22 1.13 30.49 1.35 28.12 1.25 28.99 2.28 31.48 1.04 30.97

scan65 0.79 23.94 0.59 32.55 0.79 30.38 0.70 28.68 1.27 31.92 0.72 32.99
scan69 0.77 20.34 0.60 29.03 0.80 28.78 0.72 27.67 1.47 30.46 0.71 28.53

scan83 1.33 21.87 1.45 33.51 1.49 30.78 1.29 31.50 1.67 33.31 1.39 33.45

scan97 1.16 22.95 0.95 27.65 1.37 25.93 1.18 22.57 2.05 26.43 0.90 27.49

scan105 0.76 22.71 0.78 31.20 0.89 30.83 0.70 30.56 1.07 31.07 0.76 31.63
scan106 0.67 22.81 0.52 32.13 0.59 30.68 0.66 29.50 0.88 32.26 0.47 33.53
scan110 0.90 21.26 1.43 28.85 1.47 29.03 1.08 27.11 2.53 28.19 1.01 29.77
scan114 0.42 25.35 0.36 28.42 0.46 28.06 0.42 26.60 1.06 29.08 0.36 29.40
scan118 0.51 23.54 0.45 34.97 0.59 32.31 0.61 28.60 1.15 34.86 0.49 36.58
scan122 0.53 27.98 0.45 34.81 0.62 33.03 0.55 31.60 0.96 32.95 0.57 35.91

mean 0.90 23.20 0.77 29.66 1.02 28.53 0.86 27.11 1.49 29.8 0.72 30.85

5.2.1 Comparison of Multi-view Image Reconstruction

On the multi-view image reconstruction task, for each scene,
IDR and NeuS reconstruct the foreground object only with
a given mask, while NeRF, UNISURF, and VolSDF recon-
struct the entire 3D scene. We evaluate the geometry recon-
struction quality with the Chamfer distance metric on the
DTU dataset. And we refer directly to the existing results
of IDR, NeuS, NeRF, UNISURF, and VolSDF, which were
reported in the original paper [55] and [67], respectively.
The corresponding scores are reported in Table 2. The results
show that our approach outperforms other baseline methods
in these selected scenes. In addition, we fairly and com-
prehensively compare the time and memory consumption
in training between our approach and baseline methods in
Table 4. As shown in Table 4, our approach requires less
memory and training faster.

NeuS

Ours

Figure 8. Comparison with NeuS on DTU106. Left and right are
renderings of the reconstructed light field and geometry.

We also conduct qualitative comparisons on the DTU
and BlendedMVS datasets in Fig. 7, respectively. As Fig. 7

-1.00

0.400

0.200

NGP Ours (w.o.init) OursGT

Figure 9. Ablation study of geometry network designs on point
cloud reconstruction task. Left to right: GT, the baseline of hash
encoding (NGP), Added with Fourier position encoding, and the
geometry network is properly initialized (Ours). First row: the
extracted zero level set via Marching Cubes. Second row: a slice
view of SDFs. The values of the eikonal constraints Deik are 0.012,
0.006, and 0.00091 from the second column to the fourth column.
The values of Dgrad are 0.22, 0.10, 0.005 from second column to
fourth column. In addition, the inside of the NGP’s result has a
double-layer structure.

Reference image OursNGP

Figure 10. Ablation study of geometry network designs on neural
multi-view image reconstruction task.

illustrates, NeuS, IDR, VolSDF, and UNISURF perform
poorly in textureless areas of scenes DTU40. And because
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Table 3. Ablation of the network structure of geometry representa-
tion on our processed point cloud datasets (contained 19 original
models before upsampling). “S” and “T” represent the original
point cloud and the reconstructed mesh, respectively. “S”2“T” and
“T”2“S” represents the Dscd(“S”, “T”) and Dscd(“T”, “S”), respec-
tively. The values in the “S”2“T” and “T”2“S” are multiplied by
10−7 and 10−4, respectively.

“S”2“T”↓ “T”2“S” ↓ Dlap Deik ↓ Dgrad ↓
NGP 4.06 1.64 0.166 0.023 0.27

Our (w.o.init) 3.962 1.63 0.145 0.009 0.11

Our (w.init) 3.242 0.758 0.129 0.002 0.06

of the lack of direct constraints on the volume density, the
geometry reconstructed by NeRF is relatively rough and with
obvious noise. Compared with other baselines, our approach
has the ability to reconstruct more geometry details, which
is evident in the result of scene DTU24 and bmvs-clock
(tick value) and bmvs-stone (pebbles and flowers) in Fig. 7.
We further compare our approach with NeuS [55] on scene
DTU106. Focusing on the bird’s detailed feathers in Fig. 8,
our approach reconstructs high-frequency details consistent
with the multi-view images.

Reference image W.o. M Fea W. M Fea

Figure 11. Illustration of the location of geometric features in the
rendering module of the neural multi-view framework. The middle
is the result of the usual feature extraction location, and the right
is the result by changing the extraction location to the connected
layer.

Reference image W. init W.o. init

Figure 12. Ablation study of the initialization strategy on the multi-
view reconstruction.

Table 4. Comparisons of the computational cost of different meth-
ods for multi-view image reconstruction.

IDR NeuS UNISURF VolSDF NeRF Ours

Time(h) 5.2 7.2 21 9 9.1 1.8
#Rays 2048 512 1024 1024 1024 512

#Iter (×103) 128 300 400 128 200 120
Mem(GB) 6.5 7 6 13.8 8 5

5.2.2 Comparison of Novel View Synthesis Results

The novel view synthesis task is a direct application of our
neural multi-view image reconstruction framework. After
using the existing neural volume rendering technique under
a given novel view, we can obtain the synthesis image in
this view. Thus, we also measure the PSNR between the
reference images and the synthesis images rendered from the
reconstructed light field (only focusing on the foreground
mask region) on the DTU in Table 2. It indicate that the
quality of our reconstructed images achieves significant im-
provements compared with other neural multi-view image
reconstruction methods. We also perform better than the re-
sults with the state-of-the-art method of novel view synthesis,
i.e., NeRF.

Focusing on the novel view synthetic task, we compare
our approach with NeuS, NeRF on scenes DTU55 (“rabbit”)
qualitatively in Fig. 13. From Fig. 13, we observe that, com-
pared to the state-of-the-art geometry reconstruction method
NeuS, our novel view synthetic results are more realistic and
detailed, achieving better results than NeRF, as shown in the
fined texture of “rabbit”. Even in some places, such as the
yellow light of the background of “rabbits”, NeRF has evi-
dent new novel synthesis artifacts due to incorrect geometry
learned, but our approach still performs well. In addition,
our training time is five times shorter than the original NeRF.

5.3. Ablation Study

Network structure of geometry representation. In this
section, we conduct a thorough ablation analysis for the
effectiveness of our geometry representation. As we ana-
lyzed in the Sec. 3.1, the geometry representation, which
only uses learnable hash features as a positional encoding
(NGP), is unable to satisfy the constraints of the eikonal
equation well under weak supervision, and it is prone to
falling into a non-smooth solution in the point cloud recon-
struction and multi-view image reconstruction tasks. The
Table 3 shows our comparative numerical results on network
structure design, indicates that the fitting accuracy of NGP
on the point cloud is very high, but the reconstructed sur-
face is very rough. Specially, the non-scale Laplace metric
Dlap({Vori, Eori}) of original mesh is 0.132, is closest to the
result reconstructed by our method. In particular, with regard
to the continuous metric of the neural implicit representation
in the whole space, the eikonal constraint Deik and the spa-
tial gradient continuity Dgrad of the NGP are both poor. The
reason for the discontinuity of the gradient of the geometry
representation in the space is that the features bound on these
explicit grids are discontinuous, as shown in Fig. 4. To alle-
viate the above issue, we first introduce a Fourier position
encoding [50] as input to the first layer of the geometry net-
work to encode 3D position information in space, improving
the continuity of geometry representations. We then use the
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NeRF

NeuS

Ours

Figure 13. Comparison of different methods on novel view synthesis. It shows the continuous interpolation of randomly selected two views
to synthesize an unknown view image for DTU55. From the first column to the sixth column are the synthesis image of different novel
views. The last column is a partial enlargement of the blue box in the first column of images.

Table 5. Ablation study of whether hash encoding only encodes
geometry (SDF) of multi-view reconstruction on the DTU dataset.
w.o. M Fea and w. M Fea represents the geometry representation of
the extracted position of the geometry feature without modification
and modification, respectively.

NGP Ours (w.o. M Fea) Ours (w. M Fea)
CD ↓ PSNR ↑ CD ↓ PSNR ↑ CD ↓ PSNR ↑

mean 0.94 29.45 0.86 29.89 0.72 30.85

network initialization of the SAL [1] into our network to
better satisfy eikonal constraints. Fig. 9 and Fig. 10 show
our geometry representation with the Fourier positional en-
coding and the learnable hash positional encoding together
results in smoother reconstruction results.
Framework of neural volume rendering. In most existing
neural rendering frameworks, such as [68, 35, 55], estimat-
ing the light field of each input 3D point p ∈ R3 requires
the geometry feature and density, which are generated by the
geometry network. Usually, the geometry feature is a part of
the output of the last network layer. However, it is easy for
the hash encoding to participate in learning color attributes
in the multi-view geometry reconstruction task, which makes
the optimization of geometry density ambiguous. The main
reasons are its strong expressiveness and faster-to-learn prop-
erties. As indicated in Table 5, encoding only geometric
properties can improve geometry reconstruction and quality
rendering. Thus, in our geometry representation, we extract
the geometry feature from the connected layer of our geom-
etry network, where the hash encoding is exclusively used
to represent the geometry (SDF) of objects. It avoids the
expression ambiguity and achieves more consistent geom-
etry results with multi-view images, so our reconstructed
geometry is more consistent with the rendered image, as
shown in Fig. 11.
Initialization of the geometry network. Regarding the
problem of neural geometry reconstruction, reasonable ini-
tialization plays a critical role in the optimization of the

network, as discussed in the NeuS and IDR. The Table 3
shows the initialization of the geometry representation is a
crucial module. And the Fig. 12 shows that the geometry
network without a proper initialization performs poorly in
some complex areas, such as somewhere with highlights or
rapidly changing geometry.

6. Discussion

Although our method moderately improves the recon-
struction accuracy of textureless regions for the neural multi-
view reconstruction tasks, it still needs to be improved to
solve the problem of reconstructions with shadows and high-
lights. This is mainly due to the fact that the rendering
representation cannot be perfectly decoupled from the ge-
ometry representation. Thus, it is crucial to design a more
powerful rendering representation, and decoupling method
to solve these problems, such as [51, 47]. In addition, it is
a topic worth exploring to introduce it to the problems of
dynamic geometry reconstruction and single-image based
geometry reconstruction to improve speed and precision,
such as [5, 24, 14].

7. Conclusion

In this work, we have proposed a hash encoding-based
neural geometry representation, and applied this representa-
tion to recover the surface’s signed distance function from
the input point clouds or multi-view images. In the ge-
ometry network, we further combine our method with the
low-dimensional Fourier positional encoding and network
initialization in SAL [1]. Meanwhile, in the multi-view
reconstruction task, we redesign the extraction way of ge-
ometry features to avoid the singularity between geometries
and color values. Extensive experimental results also have
demonstrated that our method can achieve at least 10 times
speedup in the point cloud-based surface reconstruction task,
and significantly improve the accuracy and efficiency of
multi-view reconstruction.
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