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Abstract

In traditional deep functional maps for non-rigid
shape correspondence, estimating a functional map in-
cluding high-frequency information requires enough
linearly independent features via the least square
method, which is prone to be violated in practice, es-
pecially at an early stage of training, or costly post-
processing, e.g. ZoomOut. In this paper, we intro-
duce a novel strategy to compute the functional map
in the deep functional map framework, which jointly
considers training stability and more geometric shape
features than previous works. We directly first pro-
duce a pointwise map by resorting to optimal transport
and then convert it to an initial functional map. Such a
mechanism mitigates the requirements for the descrip-
tor and avoids the training instabilities resulting from
the least square solver. Benefitting from the novel strat-
egy, we successfully integrate a state-of-the-art geomet-
ric regularization for further optimizing the functional
map, which substantially filters the initial functional
map. We show our novel computing functional map
module brings more stable training even under encod-
ing the functional map with high-frequency information
and faster convergence speed. Considering the point-
wise and functional maps, an unsupervised loss is pre-
sented for penalizing the correspondence distortion of
Delta functions between shapes. To catch discretization-
resistant and orientation-aware shape features with our
network, we utilize DiffusionNet as a feature extrac-
tor. Experimental results demonstrate our apparent
superiority in correspondence quality and generaliza-
tion across various shape discretizations and different
datasets compared to the state-of-the-art learning meth-
ods.
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Figure 1. Our approach avoids the training instabilities resulting
from the least squares solver compared with traditional deep func-
tional maps (FMNet) [21] that enable our approach to directly re-
cover high-frequency information. Meanwhile, integrating a state-
of-the-art geometric regularization makes our approach more ac-
curate than FMNet in the same settings.

1. Introduction

Computing shape correspondence is a fundamental prob-
lem in computer graphics, vision, and pattern recognition,
with extensive applications in shape comparison, texture
transfer, and shape interpolation, among many others [42].
It is also a considerably challenging problem, especially
when addressing the cases of non-rigid motion, scanning
noise (e.g., partiality and topological noise), different reso-
lutions and connectivity between source and target shapes.

In recent years, various approaches have been proposed
for computing correspondence [14, 12, 40]. One influential
framework is called the functional map [28, 32, 31, 25, 17,
30], which aims to determine a functional map operator that
maps square-integrable functions defined on shapes rather
than mapping points directly. A desirable pointwise cor-
respondence finally can be recovered from the mapping of
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Delta functions. It makes computing correspondence, orig-
inally a quite complicated problem boils down to a simple
and efficient linear algebraic problem. However, these ax-
iomatic functional maps heavily rely on the quality of hand-
crafted shape features and most of them make restrictive
assumptions about the discretization, topology, or morphol-
ogy of the considered shapes.

To these problems, motivated by great capabilities of
deep learning in various fields such as image analysis, a
recent line of researches aim at integrating deep learning
techniques with axiomatic functional maps. The pioneer-
ing work FMNet [21] learned optimal descriptor transfor-
mations to produce desired maps as close as possible to
ground truth correspondence. It has significantly enhanced
the learning process as elegant geometric priors were con-
sidered. A series of follow-up works generally utilized the
main structure proposed by FMNet [21] while focusing on
improving its certain blocks. Some efforts were paid to im-
prove shape feature learning or functional map computing
schemes, like [10]. Another part of the works aims to design
appropriate loss functions to penalize computed maps, per-
mitting learning from supervised [21, 10] to unsupervised
[16, 33] manner. More recent researches are devoted to ad-
dressing particularly challenging shapes such as with large
partialities [2] or symmetry issues [9]. Although these ap-
proaches have achieved significant improvements, they still
suffer from severe drawbacks w.r.t. correspondence quality
and efficiency. Computation instabilities are prone to ap-
pear when solving systems of linear equations to estimate
the functional map. Moreover, as integrating differential
geometric constraints into the learning is considerably chal-
lenging, most recent computations of functional maps just
depend on descriptor preservation. Such constraints still
insufficiently encode the properties of the underlying map.
This lacking of geometric regularization greatly affects the
performance of the network.

In this paper, we propose a novel unsupervised deep
functional map for shape correspondence, jointly consid-
ering training stability and more informative geometric
features from three major components of the neural net-
work. First, we use the DiffusionNet [37], a recent geomet-
rically informative convolutional neural network to learn
discretization-robust and orientation-aware shape features.
It benefits the robustness of our network in terms of shape
discretizations and disambiguating bilateral symmetry. Sec-
ond, instead of using the learned descriptors to estimate the
functional maps in previous approaches, we use them to di-
rectly produce an initial pointwise map, by resorting to an
optimal transport problem with an entropic regularization
term [8] and then get a functional map using a simple rela-
tion between these two maps. Such a mechanism efficiently
avoids the instabilities resulting from solving systems of
linear equations in earlier works. More importantly, with

these maps, we successfully integrate a simple but powerful
wavelet regularization to optimize the computed functional
map, motivated from a current state-of-the-art axiomatic
functional map [17], where multiscale spectral manifold
wavelets should be correspondingly preserved at each scale
by the functional map. Compared to earlier works mainly
dependent on descriptor preservation, much more geomet-
rical features of the maps are considered in our computa-
tion by this wavelet-preserving constraint. Remarkably, the
optimization can be solved efficiently only by referring to
matrix multiplications. Finally, we are permitted to design
a quite simple unsupervised loss, only penalizing the cor-
respondence distortion of Delta functions between shapes.
This yields great efficiency improvements to existing works,
where either complex structural penalties on maps or expen-
sive computations such as estimating geodesic distance are
employed to make the maps satisfy certain criteria. A wide
variety of experiments in challenging datasets demonstrate
our superiorities to the state-of-the-arts, in correspondence
quality and computing efficiency, as well as generalization
across different datasets and shape discretizations.

The main contributions of this work are:

• In the deep functional map framework, we propose a
novel strategy to compute the functional map and inte-
grate a state-of-the-art geometric regularization to fur-
ther optimize it.

• We show that, in comparison to existing techniques,
our solution avoids the training instabilities resulting
from the least square solver, which makes the network
compute more stable and converge faster during the
training stage and can directly recover high-frequency
information without any post-processing.

• Using a simple unsupervised loss and DiffusionNet as
a feature extractor, we achieve significant improve-
ments in correspondence quality and generalization
power across shape discretizations and datasets on the
full shape matching application. Additionally, we can
address partial shape matching by replacing Diffusion-
Net with a suitable feature extractor.

2. Related Work

We refer readers to the survey [34] for an in-depth view
of shape correspondence. Below we review the methods
most related to ours.

Axiomatic Functional Maps. Functional maps were
originally introduced by Ovsjanikov et.al. [28] and have
been extended significantly in the follow-up works [32, 31,
25, 17, 30] (see an overview in [29] ). These methods are
based on the notion that it is often easier to obtain corre-
spondences between functions, rather than points, by first



using a reduced functional basis and second by formulating
many linear constraints that allow recovering the functional
map by solving a least-squares system. Finally, a good
pointwise correspondence can be extracted from the func-
tional map. Compared to point-based methods, the func-
tional map framework has the particular advantage of being
flexible, as it allows to easily incorporating of constraints
such as the preservation of geometric quantities (descrip-
tors) into the computation. To this end, several works try
to formulate more powerful constraints in functional maps
to achieve desirable properties, including the partial func-
tional map [32], more powerful descriptor constraints via
commutativity [27], continuous and orientation-preserving
correspondences [31], among many others. Differing from
these works commonly relying on a large set of high-quality
descriptor functions whose obtaining is often challenging,
the work [17] instead uses the multiscale spectral manifold
wavelet preservation as new descriptor constraints to opti-
mize the functional map. Such work could encode mul-
tiscale geometric features into the mapping and keep high
computation efficiency, leading the maps closer to an iso-
metric one. This greatly motivates us to integrate wavelet
preservation into deep learning.

Deep Functional Maps. The combination of learnable
feature extractors with traditional functional maps was pio-
neered by [21]. Their architecture used 7 residual multilayer
perceptron (MLP) layers to optimize nonlinear transforma-
tions of the SHOT descriptor [35] to obtain a map as close
as possible to the given ground truth. The follow-up work
[10] still used the structure of FMNet [21] while extracting
shape features directly from vertex coordinates of shapes
and added regular term constraints to the functional maps
to obtain more effective correspondence. However, these
supervised methods spent expensive to get data with good
labels. As a sequence, it is a natural way to explore un-
supervised learning approaches, less depending on labelled
data. Existing unsupervised methods [16, 33] have pro-
posed different unsupervised loss functions. Halimi et.al.
[16] used unsupervised loss functions based on geodesic
distances. Unfortunately, the geodesic distance matrix has
costly storage and low calculation efficiency. [33] used a
fully spectral-based unsupervised loss that aggregated sev-
eral structural penalties on the functional map. However,
these constraints still are insufficient to encode the proper-
ties of the maps, which leads to overall drops in robustness
and performance. Utilizing the loss function of [33], [36]
designed a weakly supervised learning framework that used
manually aligned vertex coordinates instead of SHOT de-
scriptors as inputs of the network. Marvin et.al. [13] re-
placed the functional map layer with an iterative multiscale
correspondence refinement layer based on optimal transport
at cost of efficiency. Attaiki et.al. [2] paid efforts to address

partial shape matching, a quite challenging correspondence
task. Donati et.al. [9] used complex functional maps to
make their approach orientation-aware. However, the exist-
ing methods compute functional maps via solving systems
of linear equations which is prone to error or computing in-
stability during the training stage [10], especially at the be-
ginning of training. Because the parameters of the network
are randomly initialized and can’t produce good descriptors
to guarantee the unique solution to a system of linear equa-
tions. In addition, the existing unsupervised methods still
have a large room for performance and efficiency improve-
ments, as discussed in Section 4.1.

Convolutional Neural Networks (CNN). Except (deep)
functional map based methods, there are plenty of works
to design convolutional operator to extract shape features
and build CNN to address shape correspondence [24, 4, 26,
20, 43, 15, 22]. They cast the shape correspondence into a
pointwise classification problem and train the network us-
ing a cross-entropy loss function. Compared with the deep
functional map based methods, the cross-entropy loss does
not capture shape geometry resulting in inconsistent corre-
spondence results. However, these convolutional neural net-
works can be used as the backbone for feature extraction in
the deep functional map framework. We review some rep-
resentative methods mainly for non-rigid shape correspon-
dence. Please refer to [6, 44] for a comprehensive descrip-
tion of geometric deep learning.

The first intrinsic CNN was introduced by [24], which
uses a local geodesic system of polar coordinates to extract
patches. One important way to improve computational effi-
ciency is to replace geodesic patches with anisotropic heat
kernels [4]. ACSCNN [20] builds the anisotropic Cheby-
shev spectral CNN via anisotropic spectral filtering. MGCN
[43] defines local patches via multiscale spectral manifold
wavelets with a lack of orientation information. Diffusion-
Net [37] learns optimal diffusion times and introduces spa-
tial gradient features to support directional filters.

3. Background & Notations

3.1. Functional Maps

Let T : M → N be a pointwise map between a
pair of shapes (manifolds) M and N . This map T in-
duces a functional map TF : L2(N ) → L2(M), which
maps the functions from the space of square-integrable
functions defined on manifold N to M, with the image
f = TF (g) = g ◦ T, f ∈ L2(M), g ∈ L2(N ). If
given two bases {φMi }i≥1 and {φNj }j≥1 of L2(M) and
L2(N ), this functional map will admit a matrix represen-
tation C = (cij) =

(〈
TF (φNj ), φMi

〉
M

)
.

Generally, the eigenfunctions of the Laplace–Beltrami
Operators (LBO) ∆M and ∆N serve as the bases of the



functional map, as any function g ∈ L2(N ) can be ex-
pressed as g(x) =

∑
j≥1

〈
g, φNj

〉
Nφ
N
j (x),where the prod-

uct
〈
g, φNj

〉
N we called as spectral coefficients. In practi-

cal, only truncated (i.e, the first k) eigenfunctions are used,
since they can approximate the functional map TF well and
make the size of matrix C ∈ Rk×k small, greatly simplify-
ing the optimization problem in correspondence.

The computation of the functional map C often relies on
solving an optimization problem, which supposes C satis-
fies certain geometric constraints or possesses special over-
all structural properties. It is typically formulated as

Copt = arg min
C

Edesc(C) + αEreg(C), (1)

where the first term aims at descriptor preservations and
the second term often penalizes the failure of the unknown
functional map to commute with the LBOs.

In discretized settings, let shapes M and N be repre-
sented by triangular meshes with m and n vertices respec-
tively. We calculate their discretized LBOs and let matri-
ces ΦM ∈ Rm×k and ΦN ∈ Rn×k respectively contain
their first k eigenvectors. Given q-dimensional descriptor
functions DM ∈ Rm×q and DN ∈ Rn×q on shapes M
and N , we store their spectral coefficients as the columns
of the matrices D̂M and D̂N , where D̂M = Φ†MDM,
D̂N = Φ†NDN , here † denotes the Moore-Penrose pseudo-
inverse. Then the descriptor preservation on C can be com-
puted by a linear system of equations CD̂N = D̂M, which
is estimated as the solution to the following least-squares
problem:

C = arg min
C

∥∥∥D̂M −CD̂N

∥∥∥2
F
,

leading to:
C = D̂MD̂†N . (2)

Finally, the underlying pointwise map T can be recov-
ered from the matching of Delta functions or with more ad-
vanced techniques [30, 14].

3.2. Deep Functional Maps

To alleviate the dependence of axiomatic functional
maps on handcrafted features, several approaches have been
proposed to learn optimal transformations of initial descrip-
tors from data so that the optimal computed functional map
satisfies some desired criteria during training. Typical struc-
tures of deep functional maps can be summarized as fol-
lows.

(1) Learning features. Input a shape pair M and N
to a trainable Siamese feature network to produce q-
dimensional learned features DM and DN .

(2) Computing functional maps. Compute the spectral co-
efficient matrices of the learned descriptors and let them
as the inputs of the functional map (FM) layer to calcu-
late the functional map matrix C ∈ Rk×k according to
Eq.(2) or adding commutation with LBO as regulariza-
tion in Eq.(1).

(3) Designing loss functions. One strategy of designing
loss functions is to directly penalize the function map
C. Like GeomFMNet [10] compared the optimized
functional map C with groundtruth Cgt in a super-
vised manner, SURFMNet [33] designed an unsuper-
vised loss that enforced the desired structural proper-
ties on the optimized functional map C, such as its bi-
jectivity, orthonormality, etc. Another strategy is con-
verting C to a soft correspondence matrix P ∈ Rn×m,
where P =

∣∣∣ΦMCΦ†N

∣∣∣
‖·‖

, then penalizing the distor-

tion based on it. FMNet [21] computed a probability-
weighted geodesic distance from the groundtruth, while
UnsupFMNet [16] designed an unsupervised loss via
geodesic distance distortion of predicted P.

4. Method

4.1. Motivation & Overview

Despite significant progress achieved, recent deep func-
tional maps still suffer several drawbacks and have a large
room for improvement. Firstly, their feature extractor net-
works recently mainly depend on a MLP or a point cloud
convolutional network. They either still insufficiently ex-
tract shape features due to spatial structures of the surface
unconsidered, or are prone to make the learning overfit-
ted on shape discretization or connectivity. Secondly, most
unsupervised deep functional maps only utilize the trans-
formed features to compute the functional map C via solv-
ing a system of linear equations (see Eq.(2)). This is due
to integrating other differentiable regularizations into the
learning is challenging when C is computed via an itera-
tive solver. As claimed in [10], such a strategy results in
lots of limitations. On the one hand, only at least k linearly
independent feature functions could make the linear system
invertible, but this condition is prone to be violated in prac-
tice, especially in the early stages of learning, potentially
resulting in a fatal error. On the other hand, heavily rely-
ing on descriptor preservation especially makes the solved
functional map very sensitive to inconsistencies in the com-
puted descriptors, which leads to an overall loss of robust-
ness.

To solve these issues, we propose RFMNet (Robust
Deep Functional Map Nets), a more robust and geomet-
rically informative architecture of unsupervised deep func-
tional maps. Firstly, RFMNet utilizes DiffusionNet as a fea-
ture extraction backbone to produce discretization-resistant
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Figure 2. An overview of our RFMNet. (1) Input a pair of shapes
M and N to a trainable Siamese feature network to produce
learned features DM and DN . (2) Use learned features to com-
pute an initial pointwise map P by resorting to regularized optimal
transport [8] and compute the functional map C using the point-
wise map afterwards. (3) Use the pointwise and functional map
computed in the previous block to calculate training loss.

and orientation-aware learned shape features. Then, we pro-
pose a novel strategy to compute the functional map and in-
tegrate the state-of-the-art geometric constraints to further
optimize it, which avoids the training instabilities resulting
from solving systems of linear equations commonly used in
previous works. Finally, using the pointwise and functional
map computed in the previous block, we introduce a simple
but efficient unsupervised loss by penalizing the correspon-
dence distortion of Delta functions between shapes.

The overview of our pipeline is introduced in Figure
2. It includes three parts: the DiffusionNet [37] for learn-
ing shape features, the proposed novel block for comput-
ing functional maps, and a simple but efficient unsupervised
loss function for training our network.

4.2. The Feature Extractor

We integrate the DiffusionNet proposed by [37] into our
pipeline to learn the transformed descriptors. This convo-
lutional neural network depends on a simple diffusion layer
equipped with spatial gradients for directional filters. It au-
tomatically generalizes across different samplings and res-
olutions of a shape, thus allowing our network to be ap-
plied on various geometric representations such as triangle
meshes or point clouds, and even be trained on one rep-
resentation and applied on another, just using suitable dis-
cretized Laplace-Beltrami operator. Moreover, Diffusion-
Net can produce orientation-aware shape features to disam-
biguate bilateral symmetry even in a purely intrinsic repre-
sentation.

4.3. The Functional Maps Module

We propose an efficient method to compute the func-
tional map C by resorting to optimal transport. It is inde-
pendent of the dimension of input descriptor functions and

could avoid the errors derived from solving linear systems
of equations. More specially, this block could be elegantly
integrated with powerful geometric regularizations on C,
thus permitting the production of more desirable functional
maps and promoting learning efficiency.

Given the input shapesM and N , represented by trian-
gular meshes with m and n vertices respectively, we denote
the pointwise map T : M→ N between them as a matrix
P ∈ Rm×n, s.t. P(i, j) = 1 if T (i) = j and 0 otherwise,
where i and j are the vertex indices of M and N respec-
tively. First, we build a rough pointwise map directly from
the learned descriptors on two shapes, i.e, to solve the fol-
lowing optimization problem

P = arg min
P

‖DM −PDN ‖2F . (3)

Perhaps nearest neighbor searching is the simplest way to
achieve this goal. However, it is not differentiable and thus
prohibitive in the training stage of neural networks. As a
sequence, we resort to the optimal transport problem with
an entropic regularization term [8], which can be efficiently
solved on GPU with the Sinkhorn algorithm. It is differen-
tiable, classically used for bipartite matching, that consists
of iteratively normalizing distance matrix along rows and
columns.

As mentioned above, we demonstrate how to create a
pointwise map using learned features. However, this map
heavily relies on shape features and ignores the overall
structure of shape geometry. Considering the advantages
of functional map representations, we convert the pointwise
map to a functional map representation by

C = Φ†MPΦN . (4)

We intend to add more geometric structural regularization to
the functional map. Although there are plenty of axiomatic
functional map methods that propose various constraints on
the functional map representation, the solvers for most of
these optimization problems are complex and are inapplica-
ble to the deep functional map framework.

Fortunately, we find that the constraints provided
by a recent axiomatic functional map framework [17]
can be conveniently incorporated into our deep learn-
ing pipeline. They require multiscale spectral manifold
wavelets (SMWs) should be preserved at each scale corre-
spondingly by the functional map C, via solving the opti-
mization problem

min
C

L∑
l=1

∥∥∥Cg(slΛN )Φ†N − g(slΛM)Φ†MP
∥∥∥2
F
, (5)

here the diagonal matrix ΛM = diag(λM1 , λM2 , · · · , λMk )
contains the first k eigenvalues of the LBO (similar to ΛN ),
and {sl}Ll=1 is the set of discretized scales of the wavelets.



g (·) is a spectral filter, a smooth and compactly supported
real-valued function.

As SMWs possess plenty of attractive properties, such
as intrinsic invariance under shape isometric deformations,
and efficiently encoding multiscale shape features, their
work is considerably efficient in encoding features of iso-
metric maps. They also demonstrate that using Parseval
tight wavelet frames leads the computation of the functional
map matrix boils down to a simple iterative filtering proce-
dure by various band-pass filters. If given a filter g(λ) for
the wavelets, a smooth real-valued and positive function,
and specifically its generated wavelets could form a Parse-
val tight frame, then the functional map C under multiscale
wavelet preservation constraints can be computed via sim-
ple algebraic operations, shown as following

C =

L∑
l=1

g (slΛM) Φ†MPΦN g (slΛN ). (6)

Note that, the computation of C in Eq.(6) can be treated
as filtering processes to the rough functional map in Eq.(4).
This result greatly benefits us by simply integrating mul-
tiscale spectral manifold wavelets preservation constraints
into our computation of the functional map block. We just
need to compute the functional map via Eq.(6), after getting
the pointwise map P in Eq.(3) and the initial functional map
in Eq.(4).

4.4. The Unsupervised Loss

As we have successfully incorporated powerful wavelet
preservation to regularize the functional map C, we are per-
mitted to lower the structural requirements of C in the loss.
We intend to use a simple and basic relation between the
functional map and the pointwise map as our loss.

According to [28], the pointwise map T indeed can be
recovered from the correspondences of Delta functions. For
each Delta function δx centered at the point x on the shape,
its spectral coefficient 〈δx, φi〉 = φi(x). Thus, in discrete
settings, we have each column of the matrices ΦT

N and ΦT
M

corresponds to the spectral coefficient vector of each Delta
function located at the point with the same index on respec-
tive shapes. Based on these observations, theoretically, the
pointwise map P and the functional map C should satisfy
CΦT
NP

T = ΦT
M. With a simple transpose to this relation,

we finally formulate our unsupervised loss as

loss (M,N ) =
∥∥ΦM −PΦNC

T
∥∥2
F
, (7)

which penalizes the correspondence distortion of the Delta
functions between shapes. Note that, all matrices in Eq.(7)
have been computed in the previous steps of the network.
Compared with some existing works, we don’t need to com-
pute additional variables, which makes our method more
efficient.

5. Experimental Results

5.1. Implementation

All experiments are tested on a PC with Intel(R) Core
i7-9700K CPU at 3.6GHz, 32G RAM, and Nvidia GeForce
RTX 2080 Ti (11G). We implement our method in PyTorch
v1.11 by adapting the open-source implementation of Dif-
fusionNet [37]. We use the DiffusionNet as a feature ex-
tractor with its default settings which uses 16-dimensional
HKS [39] as input features and produces 128-dimensional
learned features. The Adam [18] optimizer with an initial
learning rate of 0.001 is used for all training. For triangle
meshes and point clouds, the first k eigenvalues and eigen-
functions of the discretized LBOs are precomputed accord-
ing to [38]. We choose the Meyer wavelet filters [19] which
satisfies Parseval tight frame to generate our wavelets.

Note that, We use the average geodesic error to evalu-
ate the shape correspondence accuracy which is computed
over all pairs and points in the dataset and normalized by
the geodesic diameter of the source shape. All results are
multiplied by 100 for the sake of readability.

5.2. Results

In this section, we show the comparisons with several
state-of-the-art shape correspondence methods, including:

• Axiomatic methods: BCICP [31], ZoomOut [25],
SmoothShells [11], MWP [17] and GCPD [14].

• Supervised learning methods: FMNet [21] and Ge-
omFMNet [10, 37].

• Unsupervised learning methods: UnsupFMNet [16],
SURFMNet [33], DeepShells [13], DUO-FMNet [9],
WTFMNet [22].

Note that, axiomatic methods are slower than a test pass
of our method which could directly recover high-frequency
information and does not require any post-processing. Ge-
omFMNet was first introduced in [10] which use KPConv
[41] to learned features from 3D vertices coordinates. We
use the improved version of GeomFMNet provided in [37]
which replaces KPConv with DiffusionNet [37] as the fea-
ture extractor and uses 16-dimensional HKS [39] as input
features, the same as our method. In addition, DUO-FMNet
and WTFMNet also use DiffusionNet [37] as the feature
extractor and 100-dimensional WKS as input features that
require higher-order input descriptors.

Benchmark Tests. We first evaluate our method on the
remeshed versions of the standard benchmarks FAUST [3]
and SCAPE [1] from [10]. These datasets contain incom-
patible mesh structures, and thus are more challenging and
realistic than the original ones which template with the same



Ground truth FMNet GeomFMNet UnsupFMNet SURFMNet DeepShells

Source

Ours

Training on remeshed SCAPE

Training on remeshed FAUST

DUO-FMNet WTFMNet

Figure 3. Generalization. We test the correspondence accuracy of several supervised and unsupervised learning methods on a shape pair
from the remeshed SCAPE, where the correspondences are visualized via color transfer. All methods are trained on the remeshed SCAPE
and remeshed FAUST respectively, shown in the top and bottom rows. Our results have the least color distortion and outperform other
state-of-the-art methods.

Method / Dataset FAUST SCAPE F on S S on F

BCICP [31] 4.0 6.9 – –
ZoomOut [25] 5.6 8.2 – –
SmoothShells [11] 2.0 3.1 – –
MWP [17] 1.8 2.4 – –
GCPD [14] 2.0 3.6 – –

FMNet [21] 3.2 4.2 14.4 17.2
GeomFMNet [10] 2.0 3.4 7.0 3.9

UnsupFMNet [16] 10.8 13.5 17.2 15.6
SURFMNet [33] 10.1 6.6 21.6 17.4
DeepShells [13] 1.1 1.9 4.4 2.7
DUO-FMNet [9] 1.5 1.7 4.8 1.7
WTFMNet [22] 1.5 1.8 2.4 1.7
Ours 1.0 1.2 1.4 1.0

Table 1. Benchmark tests. The numbers in the table are aver-
age geodesic errors. From top to bottom, this table is subdivided
into three categories, including axiomatic, supervised and unsu-
pervised learning methods. F on S shows the results on the test set
of remeshed SCAPE trained on the remeshed FAUST, while vice
versa.

number of vertexes and connectivity. FAUST contains in-
terclass pairs of 10 different peoples in 10 different poses,
with significant variability existing between different hu-
man subjects. The 71 SCAPE shapes all show the same
person in different poses. We split both datasets into train-
ing sets of 80 and 51 shapes respectively and the remain-

ing 20 shapes for testing. The results of these benchmarks
are demonstrated in Table 1, where our method is com-
pared with current state-of-the-art axiomatic and learning
approaches.

Generalization. In addition, to evaluate the matching ac-
curacy on the individual benchmarks, we also show gener-
alization results across different datasets, which are shown
in the last two columns of Table 1. To that end, we apply
the network parameters learned on the remeshed FAUST to
the test set of remeshed SCAPE and vice versa. These re-
sults show that our network can extract robust local features
for previously unseen data, even when the local geometry
of the inputs varies significantly, thus possessing much bet-
ter generalization than existing learning approaches. This
advantage is confirmed again via qualitative comparisons in
Figure 3, where the correspondences are visualized by color
transfer. Our method has little color distortion no matter
trained on the same dataset or a different dataset.

Robustness to shape discretizations. Ideally, we expect
correspondence methods to be agnostic to shape discretiza-
tions because scanning of real-world objects typically leads
to incompatible meshing or representations. We use the
benchmark of the discretization robust correspondence pro-
vided by [37] to test for the generalization of the new or
totally different discretizations of shapes. This benchmark
contains test shapes of human bodies, derived from the



Source Ground truth

FMNet GeomFMNet DeepShells Ours

Figure 4. Qualitative comparisons of the robustness of shape dis-
cretizations. The correspondences between two shapes in the
FAUST dataset are visualized via texture transfer. The target shape
is from the mc dataset [37], with a poor quality of triangles while
the source from the orig dataset. All methods are pre-trained on
orig dataset. Apparently, little texture distortion happens in our
method, achieving better results than other approaches.

orig

(Source)
iso dense qes mc cloud

Figure 5. Qualitative demonstration of our method’s robust-
ness across shape discretizations. Our method is trained on
the orig dataset and predicts the correspondence between other
remeshed/resampled variants and the original shape of FAUST
[3]. The correspondence results are visualized by color transfer.
The results show our method could generalize well across differ-
ent shape discretizations.

FAUST [3] and remeshed/resampled with several strategies:
orig is the original test mesh, iso is a uniform isotropic
remeshing, dense refines the mesh in randomly sampled re-
gions, qes first refines the meshes and then applies quadric
error simplification, mc is extracted via the marching cubes
algorithm. cloud is a point cloud with normals sampled
from the surface. All methods are trained on the orig type
discretization dataset and evaluate the correspondence be-

remeshed/resampled variants
Method orig iso dense qes mc cloud
FMNet [21] 1.9 20.9 11.9 38.3 33.3 –
DeepShells [13] 0.6 2.1 4.9 12.9 20.4 –
GeomFMNet [10] 1.4 1.5 1.4 1.5 12.1 2.1
Ours 0.6 0.8 0.7 0.9 2.2 1.9

Table 2. Quantitative comparisons of the robustness of shape dis-
cretizations. We use the discretization robust correspondence
benchmark provided by [37] to test the generalization ability of
the methods across different discretizations. We train on the orig
dataset, and then test the correspondences using the shapes of orig,
iso, dense, qes, mc, and cloud datasets respectively as the targets
and the shapes of orig as the souces.

tween other types and orig type discretization shapes. All
quantitative results are shown in Table 2. Moreover, we also
qualitatively demonstrate the results on these challenging
datasets in Figure 4 and Figure 5. Our work announces de-
sirable robustness across incompatible mesh structures and
shape representations, even on the point cloud.

Robustness to shape noises. To further demonstrate the
robustness of our method to noisy data, we evaluate the
correspondence quality of shapes with noises. First, we
train RFMNet on the noise-free remeshed FAUST dataset
and compute shape correspondences of the noisy shapes in
the test stage. The correspondence results are visualized in
Figure 6. The first is a source shape, and the others are tar-
get shapes. The two middle shapes have varying degrees
of Gaussian geometric noise, and the rightmost shape has
a different topology structure due to legs sticking together
compared with the source shape. The results demonstrate
our method is robust to geometric and topological noises. It
should be noted that we cannot handle high levels of topo-
logical noise because this is no longer an approximately iso-
metric deformation.

Source Our results

Figure 6. Qualitative demonstration of our method’s robustness to
shape noises. The first is a source shape, and the others are tar-
gets. The two middle shapes have varying degrees of Gaussian
geometric noise, and the rightmost shape has a different topology
structure due to legs sticking together compared with the source.



Method / Dataset TOSCA r

BCICP [31] 6.1
ZoomOut [25] 6.6
MWP [17] 3.0

UnsupFMNet [16] 26.0
Deepshell [13] 8.1
DUO-FMNet [9] 19.0
WTFMNet [22] 2.4
Ours 1.2

Table 3. Shape matching on remeshed TOSCA [5] dataset from
[31]. Numbers in the table are the average geodesic errors (×102).

Evaluation on TOSCA Dataset. The remeshed TOSCA
dataset constitutes shapes from 8 categories (cats, dogs,
wolves, horses, centaurs, gorillas, and male and female hu-
mans). This dataset is also a challenging one and we com-
pare it with the existing state-of-the-art axiomatic methods
and unsupervised learning methods. As shown in Table
3, we obtain the best results that comparing both unsuper-
vised learning-based and axiom-based methods. In particu-
lar, DUO-FMNet requires that the input mesh must be man-
ifold without borders. Direct training on the TOSCA dataset
using the publicly official code will fail (loss = NaN ), we
set n cfmap = 0 as the authors’ suggestion.

Method / Dataset SMAL r

BCICP [31] 16.3
ZoomOut [25] 28.6
SmoothShells [11] 20.5
MWP [17] 12.3

UnsupFMNet [16] 35.0
Deepshell [13] 20.6
DUO-FMNet [9] 4.8
WTFMNet [22] 4.6
Ours 3.0

Table 4. Non-isometric shape matching on remeshed SMAL
dataset. The numbers in the table are average geodesic errors
(×102).

Non-isomtetric Matching. We also test our performance
on SMAL remeshed shapes[45] from [9], where the connec-
tivity of every mesh is different. This dataset is considerably
challenging since it contains 49 animal shapes of different
species which are strongly non-isometric. Note that, for this
non-isometric test, we slightly modify our pipeline, where
we replace Eq.(6)) with simple Eq.(4) to compute the func-
tional map to relax strong isometric conditions imposed by
the multiscale spectral manifold wavelets preservations as
the geometric regularization. We split it into 32 training
shapes and 17 test shapes. The results are shown in Table

Source ZoomOut MWP

DeepShells Ours

Figure 7. A qualitative comparison on a challenging non-isometric
pair from the remeshed SMAL dataset.

4 and Figure 7. It highlights our method still achieves the
best performance compared to the state-of-the-arts even in
this quite challenging case.

Source Ground truth Ours

62 128 62 128

Figure 8. A qualitative demonstration of our method on a chal-
lenging part-to-full shape correspondence, where shapes from
SHREC’16 Partiality benchmark [7]. The leftmost full shape is
the source shape. We show the pointwise map and functional map
of ground truth and ours on the target shape, respectively. The
pointwise maps are visualized by color transfer.

Method / Dataset Cuts Holes

PFM [32] 5.6 11.4
ZoomOut [25] 4.7 8.2
MWP [17] 2.2 4.7

FMNet [21] 14.3 15.4
DeepShells [13] 32.4 22.5
Ours 1.7 3.6

Table 5. Correspondence accuracy on SHREC’16 Partiality bench-
mark [7]. Here our method uses 7 residual multilayer perceptron
layers as feature extractors and SHOT [35] descriptors as input
features, instead of DiffusionNet suggested in the paper. It aims
to make our network more suitable to address partial shapes. We
compare with the state-of-the-art axiomatic and learning methods,
respectively demonstrated in the first and second sections of the
table. All results show we achieve the best accuracy even on this
considerably challenging dataset.



Source Our results

Figure 9. Visualized correspondence on a set of shapes with big cuts and holes from SHREC’16 Partiality benchmark [7] via color transfer.
Here our method uses 7 residual multilayer perceptron (MLP) layers as a feature extractor and SHOT [35] descriptors as input features,
rather than DiffusionNet [37] suggested in the paper. Such a process makes our network more suitable to address partial shapes. A little
color distortion appears at this moment, demonstrating the advantages of our proposed computing functional map block and unsupervised
loss function.

Part-to-full Shape Correspondence. A particularly
challenging setting of shape correspondence occurs when-
ever one of the two shapes has missing geometry. As
feature extractor DiffusionNet is not automatically robust
to topological errors or outliers, resulting from diffusion
does not allow any communication at all between distinct
components of a surface, we fail to achieve desirable
results on shapes with big cuts or holes. Fortunately,
this limitation can be effectively mitigated by integrating
other input descriptors and feature extractor networks like
SHOT [35] and MLP which are less sensitive to missing
parts. Firstly, we replace the DiffusionNet with 7 residual
multilayer perceptron (MLP) layers as a feature extractor
and use SHOT [35] descriptors as input features. In [32],
it was shown that, in the case of partial isometries, the
functional map matrix C has a “slanted diagonal” with a
slope proportional to the area ratio AM/AN (here, M is a
partial shape and N is a full shape.) Therefore, we truncate

the eigenvalues and the eigenvectors of partial and full
shapes to different sizes for recovering the right isometry
between them. We set kN = 128 and determine kM via
the formula kM := maxkM

i=1{i|λMi ≤ maxkN
j=1 λ

N
j }, where

λMi and λNj are eigenvalues of shapeM andN , see Figure
8 for an illustration.

We test our method on the SHREC’16 Partiality bench-
mark [7], consisting of 8 shape classes (humans and ani-
mals) undergoing partiality transformations of two kinds:
regular ‘cuts’ and irregular ‘holes’. Quantitative and qual-
itative results are reported in Table 5 and Figure 9, respec-
tively. The results demonstrate our method still achieves
superior accuracy to other methods even under challeng-
ing circumstances. Note that, the results also clarify again
the superiorities of our proposed computing functional map
block and loss function.
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Figure 10. Comparions in training loss between using Eq.(2) and ours as the network trained iteratively under different values of k. The
results show our method is more stable under relatively large values of k when using Eq.(2) fails.

5.3. Discussion

As stated above, we propose a novel strategy to com-
pute the functional map, following the deep functional map
framework. This strategy avoids solving a system of lin-
ear equations leading to many excellent properties. We will
discuss them theoretically and experimentally in the follow-
ing. To verify our claims from an experimental perspec-
tive, we construct two deep function map methods with dif-
ferent strategies to compute the functional map represen-
tation. One of them is computed using Eq.(2) and other
one is using our proposed Eq.(6). For a fair and sim-
ple comparison, all their other modules are the same, us-
ing 16-dimensional HKS [39] as input features, Diffusion-
Net [37] to produces 128-dimensional learned features and
||C−Cgt||2F as the loss function. We conduct experiments
on remeshed SCAPE dataset from [10]. The first 51 shape
are for training and the remaining 20 shapes for testing. We
report the correspondence quality comparisons in Table 6.
The training loss as the network iteratively trained is tracked
in Figure 10 and 11. For the clarity of the presentation, we
report the average of the training losses per 50 iterations.

Stability. To guarantee that Eq.(2) can be solved, the fea-
ture extractor must output learned shape features that ad-
here to certain requirements, e.g. rank(D̂N ) > k. As
claimed in [10], this condition can be violated in practice,
especially in the early stages of learning, potentially result-
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Figure 11. Comparison of convergence speed of networks using
Eq.(2) or our proposed Eq.(6) to compute functional map repre-
sentation. The results show our method significantly accelerates
convergence speed. It gives optimal results within only 500 itera-
tions.

ing in a fatal error. Figure 10 reports the average of the train-
ing losses per 50 iterations under setting different values of
k. The network training will fail if relatively high values of
k are used in the Eq.(2). Therefore, to ensure the stability
of the computation, the majority of existing methods using
Eq.(2) opt for relatively small values of k leading to a lack
of high-frequency information. ZoomOut [25] is typically
used as post-processing to recover high-frequency informa-
tion from low-frequency spectral map representations by it-



erative upsampling in the spectral domain. However, our
method successfully avoids this issue because it is indepen-
dent of the dimension of learned features and just uses ba-
sic matrix operations. Therefore, we can produce functional
maps representation with any values of k leading to the re-
covery of high-frequency information directly. And results
in Table 6 demonstrate our superiority in comparisons with
using Eq.(2) even with ZoomOut [25] as post-processing.

Method Performance

Eq.(2)(k = 32) 2.7
+ZoomOut32...128 2.0

Eq.(2)(k = 64) 3.1
+ZoomOut64...128 2.1

Ours (k = 128) 1.2
Table 6. Comparison of map quality with different strategies to
compute functional maps in the deep functional map framework.
Our method allows us to directly recover high-frequency informa-
tion and achieves quite excellent correspondence accuracy.

Convergence. Another limitation of using Eq.(2) to com-
pute functional map representation in the deep functional
map framework is that it lacks regularization on C making
the solved functional map C overly dependent on learned
features. This dramatically affects neural networks in cor-
respondence quality and training convergence speed. [10]
added commutation with LBO as regularization and de-
rives a differentiable solution. But it still can not avoid
solving a system of linear equations. We successfully in-
tegrate a state-of-the-art geometric regularization [17] into
our method resorting to our novel strategy to compute
the functional map representation. Figure 11 shows the
comparisons between Eq.(2) and ours, which demonstrate
our method significantly accelerates convergence speed. It
gives optimal results within only 500 iterations.

5.4. Ablation Study

We assess the effects of proposed blocks in the ab-
lation study in Table 7. Remarkably, our computation
of functional maps based on wavelets brings significant
performance improvements and generalization in different
datasets, compared to the baseline structure (Compare the
first row with the second row of the table). Integrating our
unsupervised loss and DiffusionNet can further improve ac-
curacy and generalization (Compare the second row with
the last two rows of tables).

5.5. Parameter Settings

In addition to the architecture above, our method has
some key hyper-parameters. We analyze the following two
parameters of our method: the number of the first k eigen-
functions and the number of the scales of the wavelets L.

Network Architecture F on F F on SFeat.Extr. Comp.Fun.M. Loss
No No No 10.11 26.76
No Yes No 1.24 4.69
No Yes Yes 1.28 3.41
Yes No No 2.21 7.84
Yes Yes No 0.94 2.50
Yes Yes Yes 1.04 1.38

Table 7. Ablation study. We conduct ablation studies to test the
effects of our three components. In this test, we alternate the su-
pervised loss of FMNet [21] (as stated in Section 3.2) with the su-
pervised spectral loss provided by GeomFMNet [10] to make the
network more suitable for remeshed shapes. We use this modified
FMNet as a baseline structure to test the performance of each pro-
posed block, by successively replacing one or two or three blocks
of this baseline with ours, where the related components are de-
noted as ’Yes’, otherwise ’No’. We test their matching accuracy
on benchmark datasets, with training on the remeshed FAUST and
testing on the remeshed FASUT and SCAPE.

Figure 12. Parameter analysis. We test the correspondence accu-
racy on the remeshed FAUST dataset to find optimal values of the
parameters for our method, including the number of the eigenfunc-
tions k and the number of the scales of the wavelets L.

We set the optimal values of the parameters of our network
according to the tests on the remeshed FAUST dataset. Ex-
periment results are shown in Figure 12. To relatively small
k and L, their increase brings apparent performance im-
provements. However, the results tend to be flat if further
increasing them. Therefore, for the balance of computing
efficiency and accuracy, we finally set k = 128, L = 5.

Runtime. We compute the typical timings for the
remeshed FAUST dataset where each shape has approxi-
mately 5K vertices. It takes nearly 12 minutes for training
(6340 pairs of shapes) per epoch and less than 1 minute for
testing (380 pairs of shapes). Training 2 epoch is enough
for our method.

6. Conclusions

We presented a novel functional map architecture for im-
proving the generalization, correspondence quality and ef-



Figure 13. A failure case of our method. Our approach is still
based on the bases of LBO, which can’t address quite strong non-
isometric shape correspondence.

ficiency of the learning. Building a novel strategy for com-
puting functional maps benefits extracting more informa-
tive geometrical features of the map in the learning and
improve the training stability. Remarkably we also de-
sign a quite simple but efficient unsupervised loss function
for learning. Built upon the DiffusionNet for extracting
shape features, our approach is demonstrated to be supe-
rior to the state-of-the-art methods, w.r.t. correspondence
quality and computing efficiency, as well as generalization
across different datasets and shape discretizations. Addi-
tionally, we can address partial shape matching by replac-
ing DiffusionNet with a suitable feature extractor. Source
codes to replicate our results are available at: https:
//github.com/Qinsong-Li/RFMNet.

Limitations. Although DiffusionNet can produce
discretization-resistant and orientation-aware shape fea-
tures, it is not automatically robust to topological errors or
outliers. For partial matching, we must replace Diffusion-
Net with SHOT+MLP as the feature extractor in our archi-
tecture. We will find or design a robust feature extractor
both for ideal and flawed shapes in the future. Another lim-
itation of our method is that it’s still based on the bases of
LBO, which can’t address quite strong non-isometric shape
matching. A example of failure case is shown in Figure 13.
This limitation might be mitigated by [23], which learns a
spectral bases adapted to non-isometry from the datasets.
We leave it for future work.
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[7] L. Cosmo, E. Rodolà, M. M. Bronstein, A. Torsello, D. Cre-
mers, and Y. Sahillioglu. Partial Matching of Deformable
Shapes. In Eurographics Workshop on 3D Object Retrieval.
The Eurographics Association, 2016. 9, 10

[8] M. Cuturi. Sinkhorn distances: Lightspeed computation of
optimal transport. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 26, 2013. 2, 5

[9] N. Donati, E. Corman, and M. Ovsjanikov. Deep orientation-
aware functional maps: Tackling symmetry issues in shape
matching. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 732–741, 2022. 2, 3, 6,
7, 9

[10] N. Donati, A. Sharma, and M. Ovsjanikov. Deep geometric
functional maps: Robust feature learning for shape corre-
spondence. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8589–8598, 2020.
2, 3, 4, 6, 7, 8, 11, 12

[11] M. Eisenberger, Z. Lähner, and D. Cremers. Smooth
shells: Multi-scale shape registration with functional maps.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12262–12271, 2020. 6, 7, 9

[12] M. Eisenberger, D. Novotny, G. Kerchenbaum, P. Labatut,
N. Neverova, D. Cremers, and A. Vedaldi. Neuromorph:
Unsupervised shape interpolation and correspondence in one
go. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7469–7479, 2021. 1

[13] M. Eisenberger, A. Toker, L. Leal-Taixé, and D. Cremers.
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