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Abstract

We address the 3D shape assembly of multiple geo-
metric pieces without overlaps, a scenario often encoun-
tered in 3D shape design, field archeology, and robotics.
Existing methods depend on strong assumptions on the
number of shape pieces and coherent geometry or se-
mantics of shape pieces. Despite raising attention on
3D registration with complex or low overlapping pat-
terns, few methods consider shape assembly with rare
overlaps. To address this problem, we present a novel
framework inspired by solving puzzles called PuzzleNet,
which conducts multi-task learning by leveraging 3D
alignment and boundary information. Specifically, we
design an end-to-end neural network based on a point
cloud transformer with a two-way branch for estimating
rigid transformation and predicting boundaries simul-
taneously. The framework is then naturally extended to
reassemble multiple pieces into a full shape by using an
iterative greedy approach based on the distance between
each pair of candidate matched pieces. We train and
evaluate PuzzleNet on both real-world urban scan data
(DublinCity) and synthetic CAD models (ModelNet40).
Experiments demonstrate our effectiveness in solving
3D shape assembly for multiple pieces with arbitrary
geometry and inconsistent semantics. We significantly
outperform state-of-the-art 3D registration approaches
as well as the closely related method for shape mat-
ing. Our code is available at https://github.com/Gibbs-
liu/PuzzleNet.

Keywords: Shape assembly, 3D registration, Geometric
learning, Boundary feature.

1. Introduction

Shape assembly to create 3D complex scenes is one
of the most central problems in computer graphics. The
problem of assembling non-overlapping point clouds is
fundamental to many practical applications, such as 3D
design [10], field archaeology [20], visual art [38], and
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Figure 1: PuzzleNet is designed to automatically assemble
complete shapes from multiple pieces. Given 4 geometric
pieces (a), PuzzleNet learns pairwise shape alignment by
predicting the transformation and the boundary information
(b). Then we achieve a full 3D shape (c) by iteratively com-
puting a global multi-piece assembly based on the distance
between the boundaries of each pair.

robotics. For example, when an object like porcelain is bro-
ken into multiple pieces, we need to scan the pieces and
automatically assemble them to form a complete one. This
problem is challenging in several aspects. First, the multi-
ple pieces are usually highly or low overlapped, making it
difficult to determine their alignment. Second, shape pieces
may have arbitrary geometry and no consistent semantics,
thus reconstruction has to be based purely on the geometric
cues. Third, the target shape is usually composed of multi-
ple pieces, where the organization between different pieces
is unknown.

Assembling multiple shape pieces consists of two key
steps, i.e., pairwise part alignment and multiple parts as-
sembly. Pairwise part alignment registers two pieces so that
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they can be fused together seamlessly. Multi-piece assem-
bly finds the correct connectivity between individual pieces
to make a plausible configuration. These two steps are inter-
wined and make the problem more challenging.

Previous works have made many attempts at shape as-
sembly. A typical line of studies [7, 18] composes two
disassembled shape pieces by exploring implicit shape re-
construction or field guidance. However, these methods
mainly focus on the assembly of two pieces and cannot
handle multiple ones with complex connectivity. Recent
works [19, 28, 27] deal with shape assembly of multiple
shape parts with consistent semantic labels. Therefore it
suffers from the generalization problem when encountering
shape pieces with arbitrary geometry and without coherent
semantics.

A key step for shape assembly is partial shape alignment.
Despite extensive studies, most previous works focus on 3D
registration [23], which usually has a heavy reliance on high
overlaps. Recently, there is also an increasing number of
literature on low overlapping scenarios for more robust 3D
registration [21, 32]. However, it is still an open problem
how to extend the scheme to 3D shape assembly, which usu-
ally assumes rarer and even no overlaps.

To address the above challenges, we present a novel deep
learning-based framework, named PuzzleNet. Our basic
idea is inspired by puzzle solving, where puzzles with sim-
ilar boundary features tend to be assembled together and
the alignment quality between the boundaries of two pieces
hints if the two pieces are well aligned. In shape assembly,
disassembled point clouds are usually aligned by matching
the boundaries and the corresponding pieces’ extensions.
Therefore boundary features are informative about the fi-
nal alignment. As for the assembly of multiple pieces, we
can check whether two pieces are aligned by comparing the
corresponding boundary distances.

Our PuzzleNet comprises three steps, i.e., 3D transfor-
mation estimation, boundary point classification, and multi-
piece assembly. The first two steps are learned with an
end-to-end multi-task neural network, while the last step
takes a greedy strategy to find the best-aligned pieces one
by one until attaining the final assembled shape. For trans-
formation estimation and boundary prediction, PuzzleNet
combines an attention mechanism and point-based learning
modules to focus on connecting boundaries implicitly. In
particular, we employ a point-transformer-like network to
predict the proper transformation matrix to align two point
clouds.

Our contributions can be summarized as follows:

• We propose a novel framework for learning to assem-
ble non-overlapping point clouds with arbitrary geom-
etry and without prior semantic knowledge, as shown
in Fig. 1.

• We present a multi-task neural network, titled Puz-
zleNet, for inferring rigid transformation and boundary
features simultaneously. We show that the boundary-
aware design can be used to iteratively reassemble
multiple pieces into a full shape.

• We construct two datasets based on the ModelNet40
and DublinCity for studying the problem of multi-
piece assembly. Extensive experiments demonstrate
the performance and superiority of our framework
through comprehensive evaluation and comparisons.

2. Related Work

3D shape assembly. Over the past decades, shape assem-
bly has been widely studied in computer graphics and com-
puter vision communities. Many algorithms have been pro-
posed to address part assembly that aims at composing com-
ponent parts for model creation. Huang et al. [18] intro-
duce a field-guided registration algorithm by aligning two
input parts in a feature-conforming manner. However, their
method is only applicable to registering two parts and the
open boundaries should be well-defined. The majority of
subsequent methods apply deep neural networks to facili-
tate assembly-based modeling by leveraging part segmen-
tation [28, 44, 37, 25, 26] or formulating part assembly as
a graph learning problem [15, 19]. Therefore, the above
methods usually rely on a part database (e.g., PartNet [30])
or assume prior part semantics.

Without the assistance of known semantic labels, re-
searchers propose to reassemble the original shape from a
set of fragments. The typical pipeline of geometric guided
methods [20, 16, 46] is to construct different handcraft fea-
tures of contacting regions and then increasingly reassem-
ble shapes from many candidate matches. For example,
Huang et al. [20] present a system for fragmented solid re-
assembly, but they require an explicit segmentation step to
construct patch-based fracture surface features. Zhang et
al. [46] reassemble broken pieces by using template guid-
ance, i.e., composing fragmented pieces based on their best
match to a complete model. Neural shape mating (NSM) [7]
is the most relative to ours, which focuses on learning the
alignment of two non-overlapping point clouds from geo-
metric information rather than semantics. They develop a
Transfomer-based rigid pose regressor to learn to approx-
imate the spatial transformation, then adopt an adversarial
learning scheme that learns shape priors for evaluating the
plausibility of the predicted shape mating configurations.
However, this approach is designed for only aligning two
object parts as they can not conduct contact-region match-
ing. Instead, our PuzzleNet explicitly learns boundary fea-
tures and assembles multiple pieces by exploiting the simi-
larities in the local boundary geometry of adjacent pieces.
Point cloud registration. The task of shape assembly is



Figure 2: Network architecture of our proposed PuzzleNet. We apply a transformer-based encoder to extract both global and
local geometric features, which are then passed to two decoders to estimate a rigid transformation and predict the boundary
respectively. The number of output channels is shown above the corresponding modules.

also intimately related to 3D shape registration. Classical
3D registration methods can be divided into global registra-
tion and local registration. The former computes a coarse
alignment of two shapes, while the latter aims at further im-
proving the accuracy of the initial estimate. Global registra-
tion methods work through the mechanism of first searching
correspondence based on geometric features (e.g., point-
based [1, 48, 29, 13, 40] or primitive-based [6, 47] de-
scriptors), then estimating the transformation by using a
RANSAC-like algorithm [9]. For local registration, ICP [3]
and its variants [11, 33, 4] are the representatives that iter-
atively search closet points and updates transformation by
solving a least square problem.

Thanks to the advances in point-based 3D deep learn-
ing [31, 36, 14, 17], deep point cloud registration has also
drawn a lot of attention recently. Such methods either es-
timate an accurate correspondence search by robustly fea-
ture learning [45, 42, 8, 12], or directly learn the final
transformation matrix by proposing end-to-end neural net-
works [2, 35, 24]. Although achieving encouraging results
for dense point clouds, they have problems when the input
has a small overlapping area. Thus, registration with low
overlap has become the focus of research. Predator [21]
first introduces an overlap attention block that concentrates
on the points in the overlapping region and predicts the
saliency of overlap points. GeoTransformer [32] proposes
a geometric transformer for accurate super-point mapping,
making it robust in low-overlap cases. NgeNet [49] uti-
lizes a geometric guided encoding module and a multi-
scale architecture to learn point-wise features, then apply
a learning-free voting strategy for filtering wrong feature

mappings. PCAM [5] learns the matching regions by a
point-wise product of cross-attention matrices mixing both
low-level and high-level features. OMNet [41] learns masks
to reject non-overlapping geometric features. However, the
above methods still heavily rely on overlap regions, thus
they can not handle non-overlap examples as in our work.

3. Overview

3.1. Problem Formulation

Given a set of point clouds without overlaps, we aim to
assemble them piece by piece to form an integrated shape.
The problem can be decomposed into two sub-problems:
(i) assembling two pieces with an optimal rigid transforma-
tions; (ii) finding pair-wise pieces close to each other able
to be assembled. As boundaries between two pieces usually
give a clue about assemblable pieces, we convert the second
problem as boundary prediction and matching. To make it
brief, we take two point clouds P ∈ RN×3 and Q ∈ RN×3
as inputs to explain the problem.

For the first goal, we aim to predict a rigid transforma-
tion T = [R, t; 0, 1] with 6DoF, where R ∈ SO(3) is a
rotation matrix and t ∈ R3 is a translation vector. The rigid
transformation transforms the point cloud Q to Q̄ that has
the closest distance to the ground-truth Q̂. In this way, the
following objective function is minimized:

arg min
R∈SO(3),t∈R3

dpc

(
Q̂,RQ+ t

)
, (1)

where dpc(·, ·) is a distance magnanimity of two point
clouds.



The second goal is to predict the boundary between the
two point clouds, i.e., classifying each point in P (or Q̂) as
interior points or boundary points. In this way, the boundary
prediction task can be formulated as:

arg min
BP⊂P,BQ⊂Q

dpc
(
BP , Q̄

)
+ dpc (P,RBQ + t) , (2)

where the BP ∈ RNB×3 and BQ ∈ RNB×3 are the bound-
ary points extracted from the point cloud P and Q, respec-
tively. Last but not least, the possibility that two pieces
are matched can be easily determined by distances between
transformed boundary points.

3.2. Our Approach

To tackle the above problem, we present a novel multi-
task neural network that is composed of three main mod-
ules: one transformer-based point cloud encoder, and two
decoder branches that infer transformation and boundary
points, respectively.

Our pipeline is visualized in Fig. 2. Given the input point
clouds, we first extract latent geometry features from each
point cloud by applying a transformer-based encoder (see
Sec. 4.1). Specifically, the encoder outputs a global fea-
ture for pose estimation and a local feature for boundary
prediction. Next, different decoders are used in two sepa-
rate branches to decode the features for particular sub-tasks,
which will be described in Sec. 4.2 and Sec. 4.3. For the
pose estimation, the global features of the input point clouds
are concatenated and passed to a transformation decoding
module, which consists of a couple of fully connected lay-
ers. This module directly learns a transformation matrix
supervised by the ground-truth pose. For the boundary pre-
diction, we consider using the local feature to recognize the
explicit boundary points.

At last, we utilize an iterative greedy approach to assem-
ble more than two pieces into a complete shape (Sec. 4.4).
Given multiple pieces, we conduct pairwise matching by us-
ing our PuzzleNet to predict the transformation and bound-
ary points between each pair. Then we select the best
matching according to the distance between the boundary
points, and the corresponding two point clouds are regis-
tered together as a new piece. This pairwise matching oper-
ation is repeated until all of the pieces are reassembled.

4. Method

4.1. Point Cloud Encoder

Since our method focuses on learning alignment from
geometric information rather than semantic information, we
compute geometric features for the input points by applying
a point cloud encoder. Inspired by PCT [14], our encoder is
built upon a transformer mechanism, which mainly consists

of four components: feature mapping, sampling and group-
ing, attention-based feature augmentation, and feature ag-
gregation. The detailed network architecture of this module
is illustrated in Fig. 2.

As mentioned above, the goal of the point cloud encoder
is to extract the local contextual feature F l and the global
contextual feature F g which is used in the following two-
branch decoders. To this end, we take both point clouds
P and Q as input for two encoders respectively in each
epoch. The input points are uniformly downsampled with
N = 1024 by employing a farthest point sampling (FPS)
strategy. Then two fully-connected layers with batch-norm
and ReLU activation functions are utilized as feature map-
ping, and the points’ coordinates are mapped to a high-
dimensional space as embedding features F l ∈ RN×64.
Different from the local feature (named as point feature
in PCT) extracted from the vanilla PCT, our local features
are extracted before the sampling modules with the purpose
of avoiding messing up the back-propagation in our later
multi-decoder network.

Second, two sampling and grouping (SG) modules are
employed. In the first SG module, we downsample the in-
put further by half to obtain P ′ (orQ′) containingN ′ = 512
points. Then for each sampled point p′i, we consider its
K = 32 nearest points p′j , and concatenate the point coordi-
nates and the local features F lj to computer a new per-point
feature FSGi ∈ RK×(64+3). Therefore, the point cloud P ′

(or Q′) can be represented as a tensor FSG with the shape
of RN ′×K×(64+3). Next, the concatenated feature FSG is
passed to two fully-connected layers with batch-norm and
ReLU layers to remap the aggregated feature’s dimension
into RN ′×K×128. The newly created axis is then squeezed
by max-pooling to gain the grouped feature with a shape
of RN ′×128. In the second SG module, the above feature
grouping process is performed again and we obtain a new
feature FSG ∈ RN′

2 ×256.
After SG modules, the above grouped feature FSG is

forward propagated by four offset-attention blocks to obtain
four attention features {FAtt.i }4i=1. Then FSG and the four
attention features are concatenated in the feature channel
and followed by a linear layer to align the length equal to
input length N = 1024. Finally, the concatenated feature
is fed into a max-pooling layer on the point-wise channel to
obtain the global feature F g ∈ R1024.

4.2. Transformation Estimation

The transformation estimation module is a core compo-
nent of the proposed framework, which aims to infer the
rigid pose T (i.e., R and t) that aligns the point cloud Q
as close as ground-truth Q̂. Different from traditional regis-
tration methods that rely on overlap points, our input point
clouds are exactly disjoint without overlap regions, mak-
ing it hard to align two point clouds by constructing valid



point-wise feature correspondences from only the contact-
ing boundaries. Instinctively, we take full advantage of the
extracted global features of the pieces and formulate the
pose estimation as a regression problem:

S = DT(FgP ,F
g
Q) (3)

where DT(·) is a transformation decoder, S ∈ se (3) rep-
resents the transformation tensor predicted by our network,
and FgP and FgQ are the global feature of input point cloud
P and Q, respectively.

Specifically, we concatenate the two global features as
Fcross to capture cross-piece information. By feeding
Fcross into the decoder, two fully-connected layers with
batch-norm and ReLU layers are employed to predict a ten-
sor S ∈ se (3) with a length of 6 representing the transfor-
mation T. The tensor S are then converted to the rotation
matrix R and translation vector t. The detailed parameters
of this module can be referred to in Fig. 2.
Training loss. The pose estimation network is trained in a
supervised fashion by an efficient joint loss function con-
taining three components: mean squared error (MSE) loss,
Chamfer distance (CD) loss and Earth mover’s distance
(EMD) loss:

Lpose = LMSE + LCD + LEMD . (4)

The MSE loss is used to evaluate the precision of the
predicted transformation:

LMSE = MSE
(
T · T̄−1, I

)
, (5)

where T̄ = [R̄, t̄; 0, 1] is the ground-truth transformation.
If the pose is learnt correctly, the matrix production of
predicted transformation T and ground-truth T̄ should be
equal to the identity matrix I.

The second termLCD is the Chamfer distance loss, which
is a regular metric to evaluate distance between two point
clouds:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22,

(6)
where S1, S2 are two point sets. We use the Chamfer dis-
tance as a constraint between the ground-truth Q̂ and the
prediction Q̄ as

LCD = dCD(Q̂, Q̄) (7)

for the purpose of finding the transformation that converts
the input Q to the ground-truth one.

The Earth mover’s distance loss LEMD is another loss
function that is commonly used for point cloud registration.
The EMD distance is based on finding the 1-1 correspon-
dence between the two point sets, so that the sum of dis-
tances between corresponding points is minimal:

dEMD = min
φ:S1→S2

∑
x∈S1

‖x− φ (x)‖2 (8)

where φ is a bijection. Our LEMD is then calculated by

LEMD = dEMD(Q̂, Q̄). (9)

We train the pose estimation network with the loss func-
tion Lpose to optimize the Equation 1, aiming to minimize
the distance between point clouds Q̂ and Q̄, as well as the
distance between transformation matrix T and T̄.

4.3. Boundary Prediction

The boundary prediction module aims to extract the
boundary points from each input point cloud. Note that we
focus on the geometric alignment where we do not have
particular semantic labels as in previous semantic segmen-
tation methods, there is no clear criterion for deciding which
points should be the boundary points. As the supervision on
our neural network, we regard the closest NB points to the
input point clouds as ground-truth boundary parts. We set
NB = 128 by default in all of our experiments. More-
over, the boundary prediction should not have an influence
on the back-propagation of transformation estimation en-
coding. To avoid messing up these two totally different
functions in the encoding stage, the decoder for boundary
predicting takes only two local features F lP and F lQ as in-
puts rather than the global context. We define the boundary
prediction module by the following formulation:

BP = DPB(F lP ,F lQ),

BQ = DQB(F lQ,F lP ),
(10)

where DPB and DQB are the decoders for predicting the
boundary points.

To efficiently learn the local boundary information, it is
crucial that both decoders should have the receptive field
covering each other. Without loss of generality, we take the
boundary prediction of point cloud P as an example to illus-
trate the prediction process, as indicated in Fig. 2. Our net-
works take the low-level local features F lP and F lQ as input.
Feature F lQ with a shape of RN×64 is first remapped into a
feature with the same shape by a fully-connected layer. The
point channel of the new feature is zeroed by a max-pooling
operation, and then repeated to form a high-level feature
FhQ ∈ RN×64 that depicts the shape of Q. By concatenat-
ing the low-level featureF lP of P and high-level featureFhQ
ofQ in the feature channel, we obtain a cross-geometry fea-
ture with a shape of RN×128. Next, linear layers with ReLU
are employed to transform the cross-geometry feature into
point-wise classification results FBP ∈ RN×2, which infer
the probabilities of a point belonging to the boundary or in-
terior regions, respectively. Finally, we use a softmax func-
tion to obtain a 1-dimensional probability score vector, and
then we select the first NB points with the highest prob-
abilities as boundary points BP . The same operations are
conducted on point cloud Q to obtain BQ.



Figure 3: Detailed illustration of our multi-piece assembly process. Top row shows that four input pieces can be assembled
into a complete shape after three iterations. In each iteration (bottom row), PuzzleNet is first applied to predict pairwise rigid
pose and boundary points. Then we select the best alignment with the minimum distance between the boundary points. The
corresponding two pieces are merged together and involved in later iterations.

To supervise the training of the boundary prediction net-
work, we leverage the cross-entropy loss and Chamfer dis-
tance loss. We first use a cross-entropy to measure the
loss between the predicted point-wise classification and the
ground truth label:

LCE = CE(BP , B̂P ) + CE(B̂Q, BQ ·R + t), (11)

where B̂P and B̂Q are the ground-truth boundary points.
The Chamfer loss is used to restrict the distance of predicted
boundary points from the ground truth:

L′CD = dCD(B̂Q, BQ ·R + t). (12)

The summation of LCE, L
′
CD are minimized to optimize the

Equation 2.

4.4. Multi-piece Assembly

Thanks to the proposed multi-task neural network, we
are able to not only conduct reasonable pairwise alignment
but also predict the open boundaries. This allows us to eas-
ily generalize the pairwise matching to multi-piece assem-
bly, which can not be achieved by previous learning-based
assembly approaches [7].

Given n unaligned and roughly cut pieces of point clouds
from a 3D shape, we first perform the pairwise matching
among all the pieces. Then, we construct an undirected
complete graph G = {V,E}, whose nodes V are the collec-
tion of input pieces and edges E represent the matching re-
lationships between the nodes. Initially, between each pair

of nodes we build an edge as a candidate match by pairwise
matching, and let Dis(Ei) denote the weight of such an
edge and T(Ei) its estimated transformation. The weight
Dis(Ei) is computed as the Chamfer distance of the pre-
dicted boundary points. Based on the assumption that in-
correct matches lead to large transformation errors, we pro-
pose a greedy approach to iteratively compute a multi-piece
matching. At each iteration, we first select the best pairwise
matching that has the least weighted edge Ei. We merge
the two nodes into a new one by registering the correspond-
ing point clouds together based on the predicted T(Ei).
Then the point cloud of the new node is re-sampled into
N = 1024 points, and the graph G is updated by pairwise
matching between the new node and other nodes. The above
procedure is repeated until only one node in the graph, i.e.,
all of the pieces have been reassembled into a complete
shape. The numerical algorithm for multi-piece assembly
is given in Algorithm 1, and Fig. 3 visually illustrates the
reassembling process with a 4-pieces example.

5. Dataset

To train our PuzzleNet and demonstrate its efficacy, we
utilize two kinds of datasets, including a real-world scanned
dataset and a synthetic CAD dataset.
DublinCity dataset. The DublinCity constructed by Iman
et al. [50] is an airborne LiDAR dataset with hierarchical
labels, which is often used as a benchmark for evaluating
point cloud segmentation or classification algorithms. The



Algorithm 1 Mulit-pieces Assembly
Input: n pieces of point clouds SP = {P1, P2 . . . Pn}
Output: Point cloud S′P representing the reassembled
complete shape

1: nS ← 0
2: for Pi ∈ SP do
3: Si ←MAKE-SET(Pi)
4: nS ← nS + 1
5: end for
6: SP ← {S1, S2, . . . , Si, . . . Sn}
7: while nS > 1 do
8: Dj

i ← {}
9: for Si ← {S1, . . . , Sn−1} do

10: for Sj ← {Si+1, . . . , Sn} do
11: Tj

i , d
j
i ← PuzzleNET(FPS(Si), FPS(Sj))

12: Dj
i .add(dji )

13: end for
14: end for
15: Si, Sj ← min({Dj

i })
16: SP .pop(Si); SP .pop(Sj)
17: SP .add(UNION(Si, Sj ·Tj

i ))
18: nS ← nS − 1
19: end while
20: S′P ← SP .pop(S1)
21: return S′P

objects of the city are classified into 4 categories: building,
ground, vegetation, and undefined. Among them, the build-
ing is the most complicated category with diverse types of
historic and modern urban elements, such as offices, shops,
libraries, and residential houses. Specifically, the facade
and roof are separated and attached with different labels
manually as two disjoint parts of the buildings. This charac-
teristic makes the dataset suitable for testing our PuzzleNet.

To prepare the dataset, we manually extract all the build-
ings and then segment 3D building instances based on their
semantic labels. Each building is assembled by two parts
which represent the facade and roof, respectively. After fil-
tering the outliers, there remain about 600 buildings, which
are randomly split into training (400), validation (100) and
test (100) sets. All of the point clouds are downsampled
by FPS with N = 1024 points and normalized into a zero-
centered unit sphere [0, 1]

3.
Without the loss of generality, point clouds with label Fa-

cade are regarded as P , while point clouds with label Roof
are treated as Q. Then during training, each point cloud Q
is rotated and translated on the fly with a random transfor-
mation matrix se (3). The rotation and translation are ini-
tialized to range [0, 60◦] and [0, 1.0] following [22]. Note
that although we have the semantic labels of each part, in
our neural network we do not require semantic information

Figure 4: Four basic cutting cases that can represent the
most pairwise matching relationships among multi-piece
data. The detailed illustration is described in Sec. 5.

and only focus on geometric alignment.
ModelNet40 dataset. We also evaluate our method on a
CAD dataset, i.e., ModelNet40 [39], from which we choose
two categories of objects: 726 airplanes, and 608 beds. For
the pairwise assembling task, we first build a dataset in a
two-piece mode. We sample a dense point cloud from the
original CAD models and normalize the sampled points into
a unit sphere. To cut each point cloud, we use different
3D primitives that are randomly placed in a unit sphere to
cut the point cloud into two pieces. We define four differ-
ent cutting types, each of which is represented by a specific
primitive, including plane, sphere, cylinder, and cone. After
cutting, we uniformly sample each piece and conduct a ran-
dom transformation as described in the DublinCity dataset.
Finally, we select 100 models as the test set for each cat-
egory, and the remaining models are used as training and
validation sets with a rate of 9:1.

In the multi-piece mode, as a 3D shape may be cut into
much smaller pieces revealing less global geometric fea-
tures, we should train our network by extending the two-
piece dataset to the multi-piece one. We adopt a coarse-
to-fine cutting strategy. As shown in Fig. 4, we consider
four basic cutting cases that can represent the most pair-
wise matching relationships among multi-piece data: (a)
The most common case is that the whole shape is split into
two pieces. (b) The whole shape is first cut to obtain two
pieces, then we randomly discard one piece (indicated by
the gray color in the figure) and cut the other piece further
into two smaller parts. (c) The whole shape is first cut twice
randomly to obtain four pieces. After that, we merge three
random neighboring pieces into a larger one. Thus, we fi-
nally also have two pieces. (d) The whole shape is also cut



Figure 5: Visual results of pairwise shape alignment using the bed, airplane and Dublin buildings. For bed and airplane
models, we show the cutting types using different 3D primitives (cone, Plane, sphere and cylinder) which are drawn in
transparent gray color. Besides, in (d) and (e) we show the predicted boundaries and ground-truth boundary points.

twice to obtain four pieces. Then we select the two mid-
dle neighboring pieces while discarding the other two. Ini-
tially, these four cases are selected with the same probabil-
ity. However, cases (c) and (d) are more complicated con-
sidering the 3D primitives are randomly posed, so we first

try five times in these cases. If the number of sampled points
is still less than 1024, we go back to the case (a) to speed up
the sampling steps in every epoch. Finally, the ratios of four
cases are about 35%, 25%, 20%, 20% respectively. Over-
all, after simulating the above pairwise matching cases, our



PuzzleNet is still only trained by taking two pieces as inputs
in each epoch.

6. Experimental Results

6.1. Experimental Setup

Implementation details. Our PuzzleNet is implemented in
Pytorch on a single Nvidia RTX 2080Ti (11GB memory)
graphics card. We train the neural network on a two-piece
dataset for 5000 epochs, and on a multi-piece dataset for
10000 epochs with an Adam optimizer. The initial learning
rate is set to 10−3 and reduced with an attenuation coeffi-
cient of 0.99 every 30 steps.
Evaluation metrics. To evaluate the accuracy of our esti-
mated transformation, we use several commonly used met-
rics [35, 43] to measure the difference between ground-truth
R̄ and t̄ and our predicted R and t. We first compute the
mean isotropic rotation and translation errors by:

Riso = arccos ((Tr(R̄−1R)− 1)/2), tiso = ‖R̄−1t−t̄‖1,
(13)

where Tr(M) returns the trace of a matrix M, Riso mea-
sures the minimum rotation angle required to align the ro-
tations (R̄ and R) of two poses. In addition, anisotropic
metrics are calculated in the forms of mean squared error
(mse) and mean absolute error (mae) to evaluate the abso-
lute errors over Euler angles and translation vectors:

Rmse = MSE(Euler(R̄), Euler(R)),
Rmae = MAE(Euler(R̄), Euler(R)),
tmse = MSE(̄t, t), tmae = MAE(̄t, t),

(14)

where MAE(·) and MSE(·) are two functions to calculate
mean absolute errors and mean squared errors, respectively.
Euler(·) calculates the corresponding Euler angles from a
rotation matrix.

To determine the accuracy of boundary prediction, we
adopt the metric of point-wise intersection over union (IoU)
which is widely used in 3D part-segmentation works. Be-
sides, we also use the Chamfer distance to evaluate the
distance between the predicted boundaries BP , BQ, and
ground-truth boundary points B̂P , B̂Q:

CDP = dCD(BP , B̂P ), CDQ = dCD(BQ, B̂Q) (15)

6.2. Self Evaluation

Pairwise shape alignment. We first evaluate the perfor-
mance of our PuzzleNet on pairwise geometric shape align-
ment. Fig. 5 shows the visual shape alignment results using
several CAD models (airplane and bed) and Dublin build-
ings, where we cut the CAD models using different primi-
tives. For each example, we also draw the predicted bound-
aries to show whether our approach is able to learn effective

Figure 6: Transformation estimation performance of our
PuzzleNet for multi-piece assembly. We show the recall
as a function of rotation and translation errors, where the
X-axis represents the thresholds ξr and ξt, respectively.

Table 1: Numerical statistics of the accuracy of boundary
prediction tested on the DublinCity dataset and the airplane
dataset under different cut types.

Dataset IoUP ↑ IoUQ ↑ CDP ↓ CDQ ↓
DublinCity 0.3258 0.1784 0.0233 0.4016
Plane cut 0.5522 0.6640 0.0023 0.4601

Cylinder cut 0.7388 0.7513 0.0027 0.3788
Cone cut 0.6429 0.7359 0.0214 0.4407

Sphere cut 0.4949 0.7212 0.0260 0.3899

Table 2: The recall performance (as a function of rotation
and translation error) on several specific thresholds.

pieces Rerr = 15 terr = 0.15
2 1.0 0.9800
3 0.8700 0.7600
4 0.8100 0.5833
5 0.6907 0.4046
6 0.6283 0.3238

boundary features. For quantitative evaluation, Fig. 6 re-
ports the recall as the ratio of successful alignment, where
a transformation is accepted as positive if the rotation and
translation errors are within the thresholds ξr and ξt. Ta-
ble 1 numerically evaluates the accuracy of boundary pre-
diction. As shown in the figure and table, our PuzzleNet
learns reasonable boundary predictions, and successfully
aligns the shape pieces that have no overlaps or semantic
information.
Multi-piece assembly. The ability of assembling multiple
point clouds is gained by predicting the transformation and
the boundary information simultaneously, and then choos-
ing the most reasonable one from many candidates by com-
paring the distance between the boundaries of each pair. We
train PuzzleNet only on the 4-pieces dataset and test it on
other multi-piece cases. Figures 8 and 6 display the visual
assembling and quantitative evaluation results, respectively.



Figure 7: PuzzleNet can be applied to assemble 3D shapes
that are broken by different cutting approaches, such as us-
ing the realistic breaking simulation method [34].

Table 2 reports the recall performance value on several spe-
cific thresholds. Both of them demonstrate the robustness
of our PuzzleNet against a different number of input pieces.
Furthermore, to test the robustness of PuzzleNet against dif-
ferent cutting types, we select the category of the vase from
ModelNet40 and train PuzzleNet on the dataset constructed
by using our cutting approach (Sec. 5). To prepare the test-
ing data, we simulate the realistic breaking results of the
vase models by using the method proposed by [34] to sim-
ulate the object’s most natural ways of breaking. Thus the
broken way of such models is different from our training
data. Fig. 7 shows the assembling results of our PuzzleNet,
indicating that we still achieve promising outcomes.

6.3. Comparisons

We compare our method against both registration and
shape mating methods. We select a representative global
registration methods, Fast Global Registration (FGR) [48],
and a learning-based low-overlap registration method,
Predator [21]. Then the Neural Shape Mating (NSM) [7]
is used as the competitor that is most relevant to ours. For
a fair comparison, we re-train NSM on our both airplane
and DublinCity datasets. Note that as Predator still relies
on overlap information, we failed to train a valid network
on our dataset. Thus, we use the officially released Predator

Table 3: Quantitative comparison of different methods for
pairwise shape alignment. We test the methods on the
DublinCity dataset and the airplane dataset which is cut us-
ing different 3D cutting primitives.

Dataset Method Riso ↓ tiso ↓ Rmse ↓ Rmae ↓ tmse ↓ tmae ↓

DublinCity

FGR 39.8084 0.8332 770.4874 20.1878 0.2660 0.4169

NSM 29.5259 0.3260 324.4744 14.6914 0.0398 0.1626

PuzzleNet 7.2873 0.0764 30.402 3.6528 0.0028 0.0379

Plane cut

FGR 79.0867 0.9084 4452.1583 41.8482 0.3144 0.4592

predator 71.1062 0.5575 2750.7584 37.3222 0.1331 0.2510

NSM 25.6709 0.4004 252.2779 12.7266 0.0609 0.1958

PuzzleNet 2.2049 0.0251 2.9568 1.0631 0.0004 0.0121

Cylinder cut

FGR 65.2692 0.8421 3590.8886 36.4658 0.2667 0.4215

predator 60.5815 0.5477 1722.9497 30.8506 0.1201 0.2486

NSM 31.4569 0.2999 366.0138 16.0299 0.0326 0.1505

PuzzleNet 1.6524 0.0172 2.3867 0.8269 0.0003 0.0085

Cone cut

FGR 49.1665 0.8197 2081.8663 27.3513 0.2613 0.4062

predator 60.6906 0.6908 1792.4524 31.8404 0.1866 0.3113

NSM 27.2779 0.3786 278.4967 13.7801 0.0560 0.1906

PuzzleNet 3.1074 0.0312 5.2512 1.5822 0.0006 0.0155

Sphere cut

FGR 87.4699 0.7973 4783.8691 43.8576 0.2446 0.3984

predator 65.0936 0.5627 2079.1263 31.7647 0.1359 0.2549

NSM 31.7505 0.3219 376.8902 15.8825 0.0396 0.1617

PuzzleNet 2.2254 0.0199 3.6674 1.0985 0.0003 0.0101

Table 4: Quantitative evaluation of different loss functions
on the effect of transformation estimation. This ablation
study is conducted on the category of airplane cut by using
the plane primitive.

LMSE LCD LEMD Rmse ↓ tmse ↓ Riso ↓ tiso ↓
X 4.0198 0.0007 1.9487 0.0295

X 9.3231 0.0013 2.8730 0.0422
X 4.6257 0.0005 2.4934 0.0258

X X 3.1079 0.0005 1.7379 0.0281
X X X 2.9568 0.0004 2.2049 0.0251

model with weights trained on ModelNet40, and we com-
pare with it on airplane shapes. Furthermore, we only com-
pare with those methods on pairwise registration/mating,
because they can not handle multi-piece assembly.

Figures 9 and 10 show the qualitative comparison results
on airplane and DublinCity, respectively. Previous registra-
tion methods fail when matching geometric features without
overlapping regions. Instead, they attempt to overlay pieces
by trying to find overlapping point-pairs for further opti-
mization. Compared to NSM, our PuzzleNet achieves more
accurate shape mating results. The quantitative comparison
is provided in Table 3. We outperform all the handcrafted
and learned methods by a large margin in both rotation and
translation prediction.



Figure 8: Visual results of our multi-pieces assembly. We test our approach on CAD models where the number of input
pieces ranges from 3 to 6. For each example, we select two airplanes and two beds, and show the input point clouds, our
assembling results and the ground-truth, respectively.

Table 5: Ablation study of our multi-task neural network on
airplane dataset.

Trans.Branch Bound.Branch Riso ↓ tiso ↓ IoUP ↑ IoUQ ↑
X 2.9178 0.0324

X 0.5653 0.7169
X X 2.2049 0.0251 0.5522 0.6640

6.4. Ablation Study

We present ablation studies to verify the effectiveness of
the designed framework.
Loss functions. We first evaluate the effectiveness of differ-
ent losses used in our network. Without loss of generality,
we use the category of airplane cut by the plane primitive
for conducting the ablation study.

Table 4 shows the accuracy of transformation estimation



Figure 9: Visual comparison of our approach with FGR [48], Predator [21] and NSM [7] for pairwise shape mating. We test
the methods on the category of airplane which is cut using different 3D cutting primitives.

Figure 10: Visual comparison of our approach with FGR [48] and NSM [7] using DublinCity dataset.

of our PuzzlNet which is trained with different combina-
tions of losses. As we can see, the LMSE loss plays an im-
portant role in reducing rotation errors while LEMD achieves
a better translation accuracy. Although using LCD alone

can not obtain satisfactory results, it enhances the capability
of improving both rotation and translation accuracy. Over-
all, the combination of three losses achieves the best perfor-
mance.



Figure 11: An example of a 7-piece assembly, where the
registration error will become larger as the number of input
pieces increases.

Multi-task network. To prove that the two decoders in
Fig. 2 do not affect each other, we train two independent
networks for transformation and boundary prediction, re-
spectively. All networks are trained using the same point
cloud encoder, parameters, and epochs. The performance
of transformation and boundary prediction is summarized
in Table 5. In terms of rotation and translation errors, the
transformation estimation results of our proposed joint net-
work are better than only training a transformation network.
At the same time, we do not reduce the accuracy of bound-
ary prediction too much (see IoUP and IoUQ in Table 5).

Since the two decoders in our joint neural network use
the same point cloud encoder, they can simultaneously have
an influence on the weights of the encoder. Therefore, by
balancing the two decoders, the results of our network are
more stable compared with the two independent networks.
In addition, as we propose an end-to-end solution, our pro-
posed method is also more efficient than training two inde-
pendent networks.

7. Conclusion and Future Work

We have advanced 3D shape assembly by introducing
PuzzleNet, a deep neural network for learning to assem-
ble non-overlapping point clouds by using purely geometric
information. Inspired by puzzle solving, PuzzleNet learns
accurate pairwise alignment by inferring the rigid transfor-
mation and boundary features simultaneously, where two
decoders are carefully designed in a unified network to re-
main unaffected by each other. Benefiting from the bound-
ary feature learning and matching, the multi-piece assembly
can be easily achieved by an iterative greedy algorithm. We
have demonstrated the effectiveness and advantages of our
approach by comparing it with state-of-the-art methods on
synthetic and real-scanned datasets.
Limitations and future work. While producing convinc-
ing results, our framework still has several limitations. First,
our multi-piece reassembling method relies on minimizing
the errors between each pair of pieces locally. Thus, the
deviation will be accumulated in the process of reassem-
bling point clouds piece-by-piece, taking Fig. 11 as an ex-
ample. To tackle this problem, a global optimization ap-
proach is required, which is still not trivial considering the

non-overlap scenarios. Another possible solution for fu-
ture study would be to extend PuzzleNet to learn end-to-
end multi-pieces assembly. Another limitation is that we
may not properly handle pieces with similar cutting bound-
aries. This case can cause ambiguous piece assembly and
requires global information to determine which one is op-
timal. Also, like most learning-based methods for shape
analysis, PuzzleNet is still category-specific and relies on
the pre-collected and labeled dataset. That is to say, the
neural model trained on one category cannot be used for as-
sembling the shapes of another category. In the future, we
would like to study real-world multi-piece assembling by
expanding our dataset with more realistic breaking shapes
of complex and arbitrary cutting boundaries.
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