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Abstract

We introduce a neural network, MixNet, for learning
implicit representations of 3D subtle models with large
smooth areas and exact shape details in the form of in-
terpolation of two different implicit functions. Our net-
work takes a point cloud as input and uses conventional
MLP networks and SIREN networks to predict different
implicit fields. We use a learnable interpolation function
to combine the implicit values of these two networks and
achieve the respective advantages of them. The network
is self-supervised with only reconstruction loss, leading
to faithful 3D reconstructions with smooth planes, cor-
rect details, and plausible spatial partition without any
ground-truth segmentation. We evaluate our method on
ABC, the largest and most diverse CAD dataset, and
some typical shapes to test in terms of geometric correct-
ness and surface smoothness to demonstrate superiority
over current alternatives suitable for shape reconstruc-
tion.

Keywords: Implicit representation, 3D reconstruction,
Point cloud, Deep learning.

1. Introduction

Implicit Representations using only Multilayer Percep-
tions (MLPs) [21, 24, 7, 11, 9] have gained sustained inter-
est for their simple form and effective expression in the field
of 3D shapes. It has shown an excellent ability to recover
a shape from the unordered point cloud compactly and ef-
ficiently. The superiority of this method is that the network
takes only point clouds, i.e., 3D coordinates, as input di-
rectly without any extra operation, and outputs the corre-
sponding signed distance fields or occupancy fields through
multilayer perceptrons. Then it can be rendered easily by
Marching Cubes [19] or other similar methods. In theory,
as long as the network has been trained well enough, we
can obtain a model that is capable of infinite subdivisions
as each 3D shape is represented by a continuous field.

Since it is quite easy to find various fine features in

Figure 1. Method overview. We represent a better shape as a
combination of two base shapes: IGR [11] (left) can reconstruct
a smooth flat surface, but it cannot recover the shallow hole cor-
rectly. SIREN [28] (right) can represent the topological feature
correctly, but their surface is corrugated. Our method (middle)
combines both smooth planes and correct topological structures.

many man-made and mechanical 3D shapes, reconstruction
of shape features, particularly in the vicinity of small com-
plex topological structures, is one of the difficulties in im-
plicit representation learning. However, coordinate-based
MLPs with ReLU activation networks are incapable of re-
constructing high-frequency details of surfaces, and they
fail almost every time to reconstruct correctly in the re-
gion where the values of implicit representation change sub-
tly (the fine details or small hole structures in thin plates).
Fig. 1 shows that the conventional MLP networks, such as
IGR, fail to fit the small hole-like structures or fine details.

Recent studies have noted this problem and have focused
on improving networks’ ability to represent fine details.
From the perspective of high-frequency signals, these meth-
ods [28, 30, 32] achieve the desired results in the region
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full of fine details, while they lose smoothness in the flat
area. In addition, training these networks is more challeng-
ing because of their tendency to overfit. Another direction
is to partition the space with some guidelines to train net-
works locally [5, 15, 10, 29]. The majority of these methods
focus on spatial structures, usually hierarchical structures,
for better expressiveness and generalizability. Their results
are sometimes dependent on the geometric complexity, as
their local methods usually have hyperparameters related to
them.

Motivated by this observation, in this paper, we propose
a new architecture that makes our network able to recon-
struct shapes separately, i.e., using a ReLU-based MLP to
represent flat areas while using a sine-based MLP to repre-
sent areas with rich details. The final implicit representation
is defined as the combination of two different implicit func-
tions. We prove the feasibility of this combination and make
this process learnable. Intuitively, the new network can
dynamically discriminate the points in the complicated re-
gions without human experience and retain a simple repre-
sentation in the simple regions during the training. Through
experiments and ablation studies, we demonstrate the effi-
cacy and superiority of our method over other state-of-the-
art implicit reconstructions from a point cloud, especially
on CAD-type shapes. Our main contribution includes the
following:

• A novel mixed implicit 3D representation learning
method that is able to fit fine details and flat areas at
the same time.

• The theoretical feasibility of the decomposition of im-
plicit representation and its corresponding learnable
process.

• An extensible framework that can combine the expres-
sive strengths of two types of models.

2. Related work

Neural implicit representations Neural implicit repre-
sentations have recently been proven to have great promise
for 3D modeling due to their global continuity that is not
tied to a specific resolution and concise presentation, which
makes them easily extendable for other applications. These
pioneering works [21, 24, 8] use MLP networks to regress
the ground truth SDFs or volume radiance values. SAL [1]
and SALD [2] learn an implicit shape representation di-
rectly from raw data by introducing the sign agnostic dis-
tance. IGR [11] then proposes to train MLP networks with-
out knowing the ground truth SDF by regarding the net-
works as implicit functions. BSP-Net [6] generates com-
pact low-poly meshes via binary space partitioning. These
works have a simple structure and can reconstruct aestheti-
cally pleasing but are often lacking in detailed models.

Hierarchical neural implicit representations Many
works then resort to hierarchical structures to improve the
expressiveness of fine details and generalizability of more
scenarios. LDIF (Local Deep Implicit Functions) [10] pro-
poses a 3D shape representation that decomposes space
into an organized set of learned implicit functions to obtain
higher reconstruction accuracy. DeepMLS [18] introduces
implicit moving least-squares (IMLS) surface formulation
into deep neural networks for inheriting both the flexibility
of point sets and the high quality of implicit surfaces. SAIL-
S3 [34] learns a local implicit surface network for shared,
adaptive modeling of the entire surface. ConvOccNet [25]
combines convolutional encoders with implicit occupancy
decoders, enabling structured reasoning in 3D space. By
subdividing the whole space into some subspaces, these
methods alleviate the difficulty in expressing details to some
extent but might meet the problem that the model complex-
ity and computation cost increase when the desired geomet-
ric resolution increases.

High-frequency representations in neural networks As
many works [27, 31, 26, 3, 22, 17] have shown that deep
networks tend to learn lower frequency functions, better
methods are sought to resolve this issue. SIREN [28]
shows remarkable progress in detail reconstruction by re-
placing classical ReLU-like activation with periodic activa-
tion. NeRF [22] also demonstrates that using position en-
coding [30] before passing low-dimension inputs directly
to the network enables better fitting of data that contains
high-frequency variation. Furthermore, SAPE [13] presents
a spatially adaptive progressive encoding scheme, which
enables MLP networks to better fit a wide range of fre-
quencies without sacrificing training stability or requiring
any domain-specific preprocessing. In addition, IDF [32]
applies a coarse-to-fine frequency hierarchy to represent a
complex surface as a smooth base surface plus the displace-
ment along the base’s normal directions. These approaches
have their own characteristics and address the problem from
the perspective of frequency.

3. Method

We propose a method for representing a shape by inter-
polating two distinct implicit fields, one of which is learned
by conventional MLP networks and the other by SIREN
networks, and the values of interpolation are learnable as
well. This combination can combine the benefits of these
two types of networks to reconstruct smooth flat surfaces
with intricate details.

In this section, we first illustrate the poor performance
when representing the shape with only a single kind of net-
work in Section 3.1. Then we formally define the decompo-
sition of implicit neural representations through a construc-
tive proof in Section 3.2 . Finally, we introduce the network



Figure 2. Comparison of expressive power. Different expressive powers of conventional networks and SIRENs. After adding the reflec-
tion lines, it is clear that conventional networks such as IGR can reconstruct a better smooth plane but are deficient in detail expression,
while sinusoidal networks such as SIRENs and FFN have the opposite appearance. Top: Reconstruction results. Middle & Bottom: The
front & back of results after adding reflection lines.

architecture that combines the advantages of both conven-
tional MLP networks and SIREN networks, as well as the
responding training strategies in Section 3.3.

3.1. Expressive Power of Single Model

The MLP structure is widely adopted in 3D reconstruc-
tion work [11, 1, 21, 24, 28, 30, 9] due to its simple struc-
ture and satisfactory results. These methods employ either
conventional activations or sinusoidal activations. In some
recent work [26, 30, 33], it has been proven that both have
expressive limitations. We would like to explore the char-
acteristics of each activation in this part.

Conventional MLP An increasing number of works [22,
30, 4, 13, 33] have found that having conventional MLP net-
works Fθ directly operate on low dimensional inputs such
as coordinates leads to poor performance at high-frequency
variations in the areas where there are rich details or topo-
logical deformation. The spectral bias [17, 30, 14, 3, 17] of
the network’s output shows that the training loss does not
decay evenly and independently, but instead decays more
rapidly, corresponding to the larger eigenvalues of the neu-
ral kernel. As a result, the conventional MLP networks con-
verge extremely slowly for those high-frequency details or
topological changes.

On the other hand, the conventional activation’s abil-
ity of plane reproduction cannot be ignored, as shown in
Fig. 2. In the conventional MLP case, owing to the mono-
tonicity of conventional activations, we could consider the
conventional MLP as the combination of many linear re-
gions [12, 23]. Meanwhile, the model’s plane regions in
3D space can also be treated as a linear classification prob-
lem and be separated into many subplanes w.r.t. the linear
regions of the network. From this perspective, the smooth-
ness of the plane fitted by the conventional MLP can be
guaranteed.

SIRENs Sitzmann et al. [28] improved the performance
of the MLP with monotonic activations by using sinusoidal
activations, i.e., replacing conventional activations such as
ReLU-like functions with sin. Similarly, FFNs [30] apply a
Fourier mapping γ(x) = sin(ωx + ϕ) on the low dimen-
sional input before it is sent to a conventional MLP. Gizem
et al. [33] have proved the defects of these sinusoidal net-
works that the expressive power of sinusoidal networks is
restricted to a linear combination of certain harmonics of
the feature mapping. Furthermore, the network’s width and
depth are finite; therefore, we can only obtain a finite fre-
quency approximation, which results in poor plane recovery
quality.

Here, we employ a straightforward example to illustrate



this. To show its intuitiveness, we reduce the dimension of
this problem to 2 dimensions. Consider a 2D implicit field
f(x) : R2 → R, where the isosurface is defined similar to
that in 3D as Sτ = {x|f(x) = τ} . Now we define a pic-
ture whose pixel values vary uniformly from the border to
the center, and we extract the 2D isosurface Sτ marked with
a black line as shown in Fig. 3. From the definition above,
we obtain a rectangular isosurface. To simulate the situation
of finite frequencies, we now convert it to the frequency do-
main to eliminate high-frequency components and then con-
vert it back to the spatial domain. This time, we can obtain
another isosurface S ′

τ . It is quite evident that S ′
τ , which is

composed of the part of frequency, looks curved relative to
the original isosurface Sτ . This explains why SIREN does
not work very well when representing the plane.

Figure 3. Expression Flaws of SIRENs. Left: The original 2D
implicit field. Right: Implicit field generated after removing high
frequencies. The black line in the figure is the extracted contour,
and the contour on the right is approximated by a threshold.

3.2. Mix Two Models

Before we introduce our network architecture, we first
briefly review the reconstruction problem. The problem of
implicit surface reconstruction can be formulated as the task
of finding an implicit representation F : Rd → R whose
zero level set S = {x|F (x) = 0} is the estimated surface.
Our approximation in various ways can be defined as f(x)
and satisfies f(x) = F (x) + ε(x), where ε(x) is the er-
ror function. According to Section 3.1, this error function
is difficult to eliminate due to the limitations of the number
of network layers and training times. Therefore, we assume
that different types of network activations correspond to dif-
ferent distributions of error functions. It is obvious that us-
ing only one kind of network would prevent us from getting
smooth planes and shape details at the same time.

We now introduce the interpolation function p : Rd →
[0, 1], which is nontrivial when p(x) is not always equal to
1 or 0. And we have

Theorem 1. Differentiable implicit representation F (x)
can be decomposed of two different differentiable functions
f1(x) and f2(x) within an nontrivial interpolation func-
tion p(x), i.e. F (x) = p(x)f1(x) + (1 − p(x))f2(x),

when x ∈ S.

Proof. Assume that ε1(x), ε2(x) are two different differ-
entiable functions, and ε1(x) · ε2(x) < 0 when x ∈ S. Let
f1(x) = F (x) + ε1(x), f2(x) = F (x) + ε2(x), due to
the differentiability of F (x) and ε1,2(x), f1(x) and f2(x)

are still differentiable functions. Let p(x) = ε2(x)
ε2(x)−ε1(x)

,
we can easily obtain that p(x) ∈ [0, 1] and is differentiable.
Therefore, we have

p(x)f1(x) + (1− p(x))f2(x)

=
ε2(x)

ε2(x)− ε1(x)
(F (x) + ε1(x))+

(1− ε2(x)

ε2(x)− ε1(x)
)(F (x) + ε2(x))

= F (x)

(1)

Remark 1. This is a constructive proof, and we have only
demonstrated one form of existence. However, it intuitively
shows that the precise representation F (x) can be ob-
tained by interpolating two crude approximations f1(x)
and f2(x). In addition, the closer f1(x) is to the exact
solution F (x), the closer the p(x) is to 1.

However, although Theorem 1 proves that F (x) can be
decomposed, the assumption ε1(x) · ε2(x) < 0 used in the
proof is too restrictive. This requires that our two approxi-
mations f1(x) and f2(x) must have opposite signs near the
ground truth surface, which is very difficult to guarantee in
practical estimation. Therefore, we relax the conditions and
define a new approximation

F̂ (x) = p̂(x)f1(x) + (1− p̂(x))f2(x) (2)

where

p̂(x) = max{0,min{ ε2(x)

ε2(x)− ε1(x)
, 1}} (3)

f i(x) = F (x) + εi(x), i = 1, 2 (4)

Theorem 2. If f1 and f2 are different approximations of
F (x) on S. F̂ (x) defined by Eq. (2) is a better approxima-
tion than f1(x) and f2(x).

Proof. The conclusion is equivalent to proving the error of
F̂ (x) is smaller, i.e.

∣∣∣F (x)− F̂ (x)
∣∣∣ ≤ |F (x)− f1(x)|

and
∣∣∣F (x)− F̂ (x)

∣∣∣ ≤ |F (x)− f2(x)|.
When x ∈ S, F (x) ≡ 0, and f i = εi(x).
When ε1(x) · ε2(x) < 0, similar to Eq. (1), we have∣∣∣F (x)− F̂ (x)

∣∣∣ = 0 ≤ min{|f1(x)| , |f2(x)|}. (5)



Figure 4. Overview of our network. Given a point cloud as input, we first send it to three different networks. The base network and fine
network are responsible for fitting the shape from different features, BaseNet for smooth plat regions and FineNet for complex diverse
regions. PNet is responsible for the proportion of both BaseNet and FineNet at the same point. Finally, we use the weight obtained by PNet
to sum the two network outputs and obtain the implicit function of full space.

When ε1(x) · ε2(x) ≥ 0, if ε2(x) > ε1(x) ≥ 0, then
ε2(x)

ε2(x)−ε1(x)
> 1, so ˆp(x) ≡ 1, we have∣∣∣F (x)− F̂ (x)

∣∣∣ = |f1(x)|

≤ min{|f1(x)| , |f2(x)|} = |f1(x)|
(6)

Similarly, we can prove the other cases.

Therefore, we are able to obtain a better approximation
of the target representation by combining two different ap-
proximations with p̂(x). When x ∈ S, F (x) is always
equal to 0, and we can solve this equation to obtain p̂(x)
explicitly. However, note that the reconstruction from point
cloud is an ill-posed problem, we can only cover the points
sampled from the real isosurface S and for those points that
exclude the sample point clouds, it is almost impossible to
know the true values, much more the values of p̂(x). Oth-
erwise, although the expression of p̂(x) is given by Theo-
rem 2, the fractional form composed of f1(x) and f2(x)
is unfavorable for backpropagation. Accordingly, we intro-
duce another approximation denoted as p̃(x) : R3 → [0, 1]
to fit this interpolation function so that the combination of
f1 and f2 is closer to F (x), which is defined as follows:

p̃(x) = arg
p̃(x)

min
x∈S

∣∣∣F̂ (x)
∣∣∣. (7)

This definition is quite similar to Theorem 2. Mathemat-
ically, if we solve the values of p̃(x), we also obtain the
optimal F̂ (x) and vice versa. Therefore, we transform the
problem of solving p̂(x) into finding the best approxima-
tion F̂ (x) There are two benefits of this transformation: a)

it aligns calculations with the ultimate goal ; b) the learn-
able p̃(x) further alleviates the problem when querying the
points out of the ground truth point clouds.

3.3. Network Design and Training

We propose to model f1(x), f2(x) and p̃(x) with three
different networks denoted as Fbase, Ffine and P . Fbase

is responsible for a smooth base surface, Ffine is respon-
sible for the complex geometric details and P is responsi-
ble for the value of interpolation, as shown in Fig. 4. We
will select different types of networks according to vari-
ous needs. Generally, we choose conventional networks for
Fbase and SIRENs for Ffine, which is based on the view of
Section 3.1. For more details about the selections of these
types of networks, we show them in Section 4.3.

We adopt the loss from SIREN, which is designed to
directly learn SDFs from oriented point clouds by solving
the eikonal equation with boundary constraints on the on-
surface points. The specific form of loss is

Lrecon(F ) =λ1

∑
x∈P

|F (x)|

+ λ2

∑
x∈P,n∈N

(1− < ∇F (x),n >)

+ λ3

∑
x∈Ω

(|∥∇F (x)∥ − 1|)

+ λ4

∑
x∈Ω\P

exp(−100 · F (x)),

(8)

where P is the input point cloud, N is the normal w.r.t. P ,
Ω is the input domain (usually set to [−1, 1]3), and λ1,2,3,4

are the weights of these losses respectively. Here, the first



and second term of Lrecon are the surface fitting loss and the
normal fitting loss, the third term is Eikonal loss proposed
by IGR, and the last term is penalization loss of off-surface
points.

When x ∈ S, the target value of F (x) is determined to
be 0, which implies the constraint of f1 and f2. As men-
tioned above, p(x) ∈ [0, 1], if we want a stable improve-
ment, when at the same point f1 and f2 better satisfy:

f1(x) · f2(x) ≤ 0 (9)

In other words, Eq. (9) guarantees a stable improvement
while the values of p(x) determine the magnitude of im-
provement. Therefore, we add a new loss term based on
Eq. (9) to slightly increase the anisotropy between the two
subnetworks:

Lsign = λ5

∑
x∈P

max(Fbase(x) · Ffine(x), 0) (10)

We implement a two-stage progressive training via sym-
metrically diminishing/increasing learning rates and loss
weights for the base/entire networks. Specifically, in the
first stage, we calculate the loss:

Lstage1 =κ · Lrecon(Fbase)

+ (1− κ)(Lrecon(F ) + Lsign)
(11)

κ =
1

2
(1 + cos(π

t− T

1− T
)) (12)

where Lrecon(Fbase) is the loss of merely the base network,
Lrecon(F ) is the loss of the entire network, T ∈ [0, 1] is
the assigned training percentile, t ∈ [T, 1] is the current
training progress, and κ is called cosine annealing [20]. In
the second stage, we only use the loss

Lstage2 = Lrecon(F ) + Lsign (13)

to optimize the networks.

4. Experiment

In this section, we present the results of our method. We
first evaluate the effectiveness of our network on the task
of single object reconstruction using the ABC dataset [16]
and some famous shapes and then compare them with other
state-of-the-art methods to demonstrate our advancement.
Then, we evaluate various design components in an ablation
study. Finally, we visualize the output of each part of our
network to validate our design.

Our implementation is based on PyTorch, and all experi-
ments were done on a desktop PC with an Intel Core i7 CPU
(3.6 GHz) and a GeForce 3080 Ti GPU (16 GB memory).

4.1. Implementation Details

Network Details Three subnetworks of our method have
the same MLP structure, and they have 4 hidden layers with
256 neural units each. What different is that the BaseNet
Fbase uses Softplus as activation while the FineNet Ffine

and PNet P utilize sin as activation. We also adopt geo-
metric initialization from IGR and the initialization scheme
from SIREN. For different types of shapes, we choose a
different ω0 in the first layer to obtain a better reconstruc-
tion quality. We train our models for 4000 epochs using
the ADAM optimizer with an initial learning rate of 10−3

and decay to 10−4 for conventional MLP, and an initial rate
of 10−4 and decay to 10−5 for SIREN. All models utilize
cosine annealing [20] after the 20% training process of the
first stage and during the whole training process of the sec-
ond stage. The weight descent of our loss function has a
similar process to the learning rate.

Dataset We examine our method mainly on CAD shapes
due to their large smooth area and complex topological
structure. For this reason, most models in this paper come
from the ABC dataset and are randomly sampled 250000
points with normals as the input point cloud. We also test
our model on some famous shapes that include detailed ge-
ometric textures such as Bunny, Dragon, and Bimba.

Evaluation Metrics The quantitative metrics used in this
paper for shape reconstruction are symmetric Chamfer Dis-
tance (CD) and Normal Consistency (NC). Specifically, we
randomly sample a set of 25000 points from the extracted
surface X and the ground-truth surface XGT respectively
for the calculation. In all tables that appear in this paper,
the value of CD (Chamfer Distance) is scaled by 105, and
the value of NC (Normal Consistency) is scaled by 102.

Visual Metrics In this paper, we used not only numeri-
cal evaluation criteria but also visual criteria. We add re-
flection lines to judge the quality of a surface. Reflec-
tion lines, which are repeated infinite, non-dispersive light
sources parallel to some line, can reveal surface flaws, par-
ticularly discontinuities in normals, indicating that the sur-
face is not C2, i.e., the changes of normals. A simple visual
phenomenon is that the flatter the plane (the normals change
more regularly), the more orderly the reflection lines we can
see. Therefore, the neater reflection lines indicate the higher
quality of the reconstructed surface.

4.2. Comparison of Surface Reconstruction

We compare our approaches with several baseline meth-
ods: 1) IGR [11] uses 8 hidden layers with 512 neural units
and has a single skip connection from the input to the mid-
dle layer. 2) SIREN [28] uses 4 hidden layers with 256 neu-



Figure 5. Visual results of CAD-type models. Every reconstruction result has two types of visualization. The above is the direct rendering,
and the below is the rendering results after adding reflection lines, which makes it clear that our MixNet has both structural details and
smooth planes. The names of these models, from top to bottom, are mould, hole and part.

ral units. 3)FFN [30] uses 8 hidden layers with 256 neural
units. Additionally, we apply a skip connection in the mid-
dle layer as in IGR. 4) IDF [32] both the base and the dis-
placement nets have 4 hidden layers with 256 neural units
each. All these methods above use the code and training
configuration provided by their papers.

The CAD-type shape reconstruction results are visual-
ized in Fig. 5. As we can see, compared with IGR, our
approach is able to reconstruct the shape details and topo-
logical characteristics correctly. As for SIREN, FFN, and
IDF, their extracted surfaces may contain spurious compo-

nents and reconstruct a bumpy surface, which can be seen
clearly after we add the reflection lines. Note that it is non-
trivial to resolve this issue for their results: the incorrect
shape reconstruction is hard to repair, and the quality of
the bumpy surface may be improved by some smoothing
method, but it is harder to smooth precisely the region that
we want to smooth. It is more likely to clean up both bumpy
surfaces and shape details. Table 1 shows that our MixNet
also achieves the best numerical performance among all the
compared methods in the CAD-type shapes.

We also test our model on other types of shapes, as



Figure 6. Visual results of general models. Every reconstruction result has two types of visualization. The above is the overall view,
and the below is the zoom-in view or view from another perspective. The Dragon and Camera illustrate the detail recovery ability of our
method. The Bimba illustrate the consistent reconstruction quality of our method whenever the input shapes have more details or have less
details, where IDF and FFN produce undesired textures on the right cheek.

shown in Fig. 6. All these methods have good visual qual-
ity. But the zoom-in figures show that our MixNet recovers
more details than IGR, SIREN, and FFN. Although IDF has
the same level of accurate detail expression, its overfitting
always results in substantial bumps in the flat area, which
diminishes the elegance of the shapes. Compared with IDF,
our method is not as good for texture representation, such
as the leather texture of the camera, but IDF would generate
undesired textures in some originally smooth areas. For ex-
ample, the area outside the folds of dragon’s scales, the lens
cap of camera, and the face of bimba, the original model is
smooth, but the model reconstructed by IDF is textured. In

other words, our method does not generate redundant in-
formation due to simple inputs. Table 2 demonstrates our
steady improvement among these general shapes.

4.3. Ablation Study

Types of subnetworks We have done an ablation study on
the selection of types of networks for each subnetwork, and
we have tested the performances of different network com-
binations on different types of shapes, as shown in Table 3
and Fig. 7. The selection that Fbase selects conventional
MLP, Ffine and P select SIREN seems the best combina-
tion in numerical results and visualization of both CAD-



Method
(
CD
NC

)
Hole Mould Part

IGR 29.94 14.61 19.42
90.14 88.50 90.11

SIREN 25.55 10.84 14.68
94.69 92.58 92.27

FFN 24.47 10.19 13.88
95.08 92.38 92.32

IDF 21.41 10.41 13.63
95.25 91.77 91.71

Ours 21.18 9.99 13.52
95.55 92.74 92.70

Table 1. Numerical results on implicit reconstruction from CAD-
type models. Our MixNet has much lower Chamfer distance than
IGR.

Method
(
CD
NC

)
Bunny Dragon Bimba Fandisk

IGR 21.80 5.11 11.40 10.52
97.56 91.32 97.90 97.70

SIREN 19.15 4.79 11.94 10.70
97.66 91.89 97.93 97.73

FFN 20.15 4.83 11.87 10.70
97.75 91.85 97.92 97.65

IDF 18.62 4.72 10.89 10.53
97.73 91.31 97.90 97.59

Ours 18.18 4.63 10.67 10.37
97.93 91.77 97.96 97.82

Table 2. Numerical results on implicit reconstruction from general
models. Our MixNet also has a relatively stable improvement.

Figure 7. Comparison of other type combinations. The three let-
ters represent the types of Fbase,Ffine and P , respectively. Here
C denotes conventional MLP, and S denotes SIREN.

type shapes and general shapes.

The addition of Lsign We also tested the impact of the
new-designed loss term Lsign as shown in Table 4. The ex-
periments show that the Lsign is able to lead to a steady
improvement in the numerical standard in most cases. Al-
though the absolute value of the improvement is relatively
small, we think it is mainly because the new addition can
only optimize some combination problems of subnetworks,
but it cannot solve the expressive ability of the subnetwork
(such as MLPs and SIRENs) itself.

4.4. The choice of ω0

We investigated the effect of the size of ω0 on the results.
Since there are two possible places where SIREN might be
used, we tested it separately, as shown in Table 5 and Ta-
ble 6. It can be seen that the larger value of ω0 does not nec-
essarily indicate better expressive ability. In fact, we found
that the larger ω0 necessitates a more careful adjustment of
the learning rate; otherwise, the model tends to collapse,
which means that the outputs of subnetworks like Fbase be-
come messy and are no longer interpretable. Finally, we
found ω0 = 30 to work well for all these shapes tested in
this work.

Figure 8. Visualization of SDF slices. Top left: The reconstruc-
tion result. Top right: SDF slice of FineNet Ffine. Bottom left:
SDF slice of BaseNet Fbase. Bottom right: SDF slice of MixNet
F̂ .

4.5. Visualization of Network

We visualize the SDF value of two subnetworks Fbase

and Ffine which aim to learn coarse shapes and fine fea-
tures respectively, and the final network F̂ which aims to
learn the entire precise shape.



Input Type BaseNet FineNet PNet CD NC

CAD models C S S 9.99 92.74
C S C 10.31 92.34
C C S 10.38 92.30

General models C S S 18.18 97.93
S S S 20.42 97.63
S S C 19.11 97.79

Table 3. Type selection of the subnetworks. Here C denotes conventional MLP, and S denotes SIREN.

Mould Part Bunny Bimba

With Lsign 9.99 13.52 18.18 10.67
Without Lsign 10.04 13.83 18.55 10.84

Table 4. Abalation study of Lsign

ω0 of Ffine 15 30 45 60

Bunny(CD) 20.45 20.04 18.18 19.26
Bunny(NC) 97.68 97.71 97.93 97.78
Bimba(CD) 10.96 10.67 11.25 12.42
Bimba(NC) 97.98 97.96 97.90 92.42

Table 5. Choice of ω0 for Ffine.

ω0 of P 15 30 45 60

Bunny(CD) 18.18 19.45 19.43 19.23
Bunny(NC) 97.93 97.71 97.74 97.80
Mould(CD) 10.40 10.30 10.27 9.99
Mould(NC) 92.24 92.31 92.43 92.74

Table 6. Choice of ω0 for P .

It is clear, as shown in Fig. 8, that subnetwork Fbase con-
tributes to a base smooth surface that almost has a rough
shape, and the subnetwork Ffine contributes to a detailed
SDF around the details or topological structure that is not
captured by Fbase to revise the SDF locally. Outside these
regions, Ffine tends to be 0 almost everywhere. This re-
veals why our model can recover a large smooth plane after
reconstructing the details correctly.

5. Conclusion and Future Work

In this paper, we propose a novel and effective method
for learning 3D implicit signed distance fields from raw
point clouds. The combination of two different networks
enhances the representation power of conventional MLPs
and SIRENs and even outperforms the existing positional
encoding schemes, such as Fourier positional encoding, in
recovering SDFs. Besides, our PNet seems capable of seg-
menting the shape by the frequency contained in the shape
itself. And we believe this automatic frequency partition en-
ables different networks to concentrate on different regions
that are more suitable for their characteristics, significantly

boosting their representational power.
In the future, we would like to explore whether it is

possible to segment the shape by using two different net-
works that have different expressiveness and convergence
such that we can segment by frequency rather than by hu-
man experience and subjective impressions.
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