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Figure 1: Taking a single-view image as input, the first row shows the reconstructed garments by BCNet [23], PIFu [40] and
our IMPLICITPCA; the second row shows our inference from three other views. Our approach achieves high-fidelity details
and avoids collisions with bodies.

Abstract

The emerging remote collaboration in a virtual en-
vironment calls for the need for high-fidelity 3D hu-
mans that can be quickly generated from a single im-
age. To deal with the challenges of estimating rich cloth-
ing details and topologies, parametric models are widely
used as explicit priors. Though global deformation can
be achieved, this line of approach often lacks fine de-
tails from the image. Alternative approaches based on
neural implicit function generate accurate details but
are typically limited to closed surfaces. In addition,
as human avatars are typically required to be animat-
able in telepresence, achieving physically correct re-
constructions, e.g. collision-free, is crucial for realistic
modeling but often ignored in prior works. To solve
these problems, we present ImplicitPCA, a framework
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for single-view garment reconstruction that bridges the
good ends of explicit and implicit representation while
achieving high-fidelity and physically-plausible results.
The key to our approach is a parametric SDF network
that closely couples parametric encoding with implicit
functions. Therefore, the parametric models can en-
joy the fine details brought by implicit reconstruction
while maintaining correct topology with open surfaces.
To ensure physically-correct estimation, we introduce a
collision-aware regression network, with fast collision
detection and penalization, to capture both cloth and
human signed distance fields (SDFs) from the input im-
age. During inference, given an input image with 2D
garment landmarks, an iterative routine is applied to
obtain the optimal parameters by aligning the projec-
tion of the cloth mesh with the 2D landmarks and fit-
ting the parametric implicit fields with the reconstructed
collision-aware cloth SDF. The experiments on the pub-
lic 3D garment dataset and in-the-wild images demon-
strate that our result outperforms the prior works and
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provides an effective tool for reconstructing detailed and
topology-correct 3D garments while avoiding garment-
body collisions.

Keywords: Garment Reconstruction, Implicit and Ex-
plicit Representation, Collision Aware, Parameterized
Generation, Optimization

1. Introduction

Remote and distributed collaboration has become in-
creasingly prevailing nowadays, following the global im-
pact of Covid-19 pandemic and the surge of the metaverse.
Among all the needs of digitizing our real world, clothed
human models with high-fidelity and physical-plausible de-
tails are the most demanding assets in establishing a life-like
virtual environment. While the undressed human is rela-
tively easy to model due to their consistent topology, recon-
structing 3D garments are much more challenging as they
typically contain rich geometry details, e.g. clothing folds,
and can have large variations of styles and topologies.

Various solutions have attempted to address the chal-
lenging problem of monocular garment reconstruction.
Parametric methods [2, 23] represent a deformed garment
in a human-driven manner, relying on the pose and shape of
the underlying body. Clothing databases [37, 2] are often
constructed by offline physical simulation or 3D scanning.
These approaches [23, 10] can generate a garment model
with similar global deformation to the image, but are diffi-
cult to obtain fine-grained details.

An alternative line of research [40, 41, 52] is to directly
construct a pixel-aligned implicit field of clothed human
from an input image. Such methods are difficult to obtain
garments with reasonable structures and control the gener-
ation explicitly. For instance, methods based on signed dis-
tance fields (SDFs) [40, 41, 20] can only generate closed
watertight surfaces. Implicit-based network [52] using un-
signed distance fields are able to reconstruct open surfaces
but could introduce additional artifacts when reconstructing
mesh from the generated point clouds.

To tackle these limitations, we present ImplicitPCA, a
hybrid framework that connects the good ends of both
explicit mesh and implicit functions while being able to
achieve physically plausible reconstructions. The core
of our framework is a proposed parametric SDF network
(PSDF Net) that bridges the PCA encoding of a parametric
model and the implicit representation of high-fidelity recon-
struction. To achieve this goal, we introduce two implicit
modules: human SDF net and garment SDF net, which in-
fer the occupancy field of the undressed human and 3D gar-
ment respectively from a single image. After these three
modules are separately trained in a supervised manner, we
leverage their representational advantages by closely cou-
pling them in a novel optimization scheme at test time. In

particular, to ensure the PSDF Net can generate a paramet-
ric mesh with high-quality geometric details that align with
the input image, we impose a reconstruction loss to encour-
age the output of the PSDF network to be close to that of the
garment SDF net. Additionally, to ensure physically plau-
sible reconstruction, we introduce a collision-aware regres-
sion scheme with fast body-garment collision detection to
avoid intersections between the outputs of human and gar-
ment SDF nets. Finally, to foster a faithful global deforma-
tion, we also propose a landmark constraint to encourage
consistency between the 2D landmarks and the projections
of pre-defined 3D landmarks on the generated mesh.

Unlike most parametric models that are generated from
synthetic data, our PCA bases are extracted from MGN
dataset [2] which are obtained from real scanned data.
Hence, we are able to capture more realistic geometry de-
tails as shown in Figure 1. Furthermore, different from
MGN, we are able to achieve more plausible reconstruction
with geometry consistent with the input image and avoid
human-garment collisions thanks to our hybrid framework.
We evaluate our approach on a number of benchmarks.
Experimental results demonstrate that our approach is su-
perior to the state-of-the-art garment reconstruction meth-
ods [23, 10, 52] in terms of physic plausibility and the qual-
ity of geometry reconstruction.

In summary, our key contributions are the following
three folds:

• For the realistic/flexible open garment surface re-
construction and generation, we introduce a hybrid
parametric framework for 3D garment reconstruction,
which can not only tightly collaborate explicit meshes
and implicit fields but also jointly optimize the explicit
garment meshes and implicit fields with the PCA pa-
rameters.

• We propose a novel collision-aware regress scheme for
avoiding the collision, which is able to efficiently de-
tect and optimize the cloth and body geometry in a dif-
ferentiable fashion.

• We obtain state-of-the-art results on garment recon-
struction from single images on the public benchmark
MGN [2] and in-the-wild images in quantitative and
qualitative evaluations.

2. Related Work

Parametric Models. Garment and human digitization
from a single image is very challenging and requires geom-
etry priors due to the ill-posed nature. And the garment and
human contain more complex deformation to describe the
detailed geometry, there are many researches focusing on
the learning on deformation representation [44, 3, 50, 13,
18, 29]. Since human and garment geometry is shown to be



well reconstructed by PCA [31, 53], some parametric gar-
ment representations can generally be used to reconstruct
the human and cloth and can be divided into human-based
and garment-based methods.

Human-based models [42, 23, 30] represent the deforma-
tion of a garment mesh depending on the pose and shape of
the underlying human body statistical models [1, 31, 28].
BCNet [23] introduces a layered garment on top of the
SMPL model [31], as well as a set of learned skinning
weights to improve the garment deformation. CAPE [30]
uses a conditional Mesh-VAE-GAN with a mesh patch dis-
criminator, to dress SMPL bodies with pose-dependent dis-
placement cloth layers. Santesteban et al. [42] presents a
data-driven framework that learns from the offline simula-
tion to enable efficient virtual try-on with 250 fps. How-
ever, since the deformation of cloth heavily depends on the
human shape and pose, these methods are able to generate
the deformation of tight cloth, instead of loose cloth.

On the other hand, garment-based parametric meth-
ods [2, 37, 10] widely utilize the coarse-to-fine strategy
to predict body shape and garment geometry jointly. For
example, Bhatnagar et al. [2] present Multi-Garment Net
(MGN), which predicts the global deformation and the de-
tail displacement via two disentangled PCA coefficients
of the pre-defined garment parametric models. Combin-
ing both human-based and garment-based methods, Tailor-
Net [37] jointly learns a neural model, which achieves the
detailed prediction of cloth by controlling the pose, shape,
and style of template-based garments. Furthermore, to
achieve a template-free method, SMPLicit [10] uses a para-
metric implicit function network with unsigned distance
fields for garment generation with flexible topology. Para-
metric models provide well-defined geometry priors for gar-
ment reconstruction/generation. However, it is very chal-
lenging to reconstruct realistic and fine-grained garment de-
tails that are aligned with input images.

Neural Implicit Methods. The implicit representation
has a great success in 3D shape representation and gener-
ation due to its flexible topology. For types of implicit func-
tions, there are two main streams: binary signed distance
function (SDF) [33, 38, 9, 15, 40, 11, 45] and continuous
SDF [5, 34, 35, 24, 39] for closed surfaces, and unsigned
distance function (UDF) [8, 47, 46, 52] for arbitrary shapes.

By using SDF for clothed human reconstruction, Saito et
al. proposed PIFu [40] and PIFuHD [41], which are able to
digitize highly detailed clothed humans with highly intri-
cate shapes, hair styles, and texture in a unified way. The
higher-fidelity performance is further raised by the higher
resolution of input images and extra normal maps. Mean-
while, ARCH [21] learns a semantic deformation field us-
ing the parametric 3D body estimator to represent arbitrary
shapes, but this method requires a body mesh as input,

and is thus challenging to extend to garments with multiple
components. Geo-PIFu [19] extends PIFu [40] by utilizing
3D information from a latent voxel representation to enrich
the feature representation for a high-resolution reconstruc-
tion. However, Geo-PIFU is computationally intensive for
both training and testing due to its adopted volume repre-
sentation.

UDF is a powerful tool for cloth human reconstruction
due to its ability to represent high-quality open surfaces.
The pioneering works works NDF [8] and DUDE [47] use
neural networks to predict unsigned distance fields to rep-
resent arbitrary surfaces without any closed surface data.
They leverage the multi-scale techniques [8, 7] and normal
vector field prediction [47] to enhance surface details. How-
ever, it is nontrivial and challenging to predict UDFs from
an ambiguous 2D image for garment reconstruction, due to
the lack of 3D space information. Different from the above
approaches, AnchorUDF [52] optimizes the gradient direc-
tion of UDF via the extra set of 3D anchor points to obtain
strong 3D context information for the distance fields.

Recently, there are some works focusing on novel 3D
open surface representations, e.g., 3PSDF [4], WNF [6],
HSDF [48]. Their tasks are reconstructing open surfaces
with arbitrary topologies from sparse point clouds. As an
application of 3PSDF [4], they show an example of re-
constructed garments from a single-view image in T pose.
While our method focus on various garment reconstruction
tasks. The garments are often open surfaces but limited cat-
egories, and the topology is more restrict. Thus, a method
relies on both explicit parametric models and implicit fields
can get two good ends. Zhu et al. proposed an approach,
called ReEF [54], to register a template mesh to semantic,
shape and boundary implicit fields predicted from image by
an optimization scheme. This method requires annotated
datasets, well initialization and highly-correct correspon-
dence for registration. Instead, we propose a hybrid rep-
resentation that jointly collaborates the parametric models
and flexible implicit fields via PCA parameters to predict
layered 3D clothed human reconstruction with high-fidelity.
Another important difference between our approach and the
aforementioned methods is that the latter focuses only on
cloth human reconstruction while our approach achieves a
parameterized generation of clothed human via the PCA co-
efficients.

Body-Garment Collision detection & Response. De-
spite the great success of the above methods, all data-driven
approaches have a critical weakness in handling body-
garment collisions. Most methods [37, 17, 49, 16] com-
monly design additional loss terms to avoid and penalize
geometric garment-body penetrations at training time, but
such methods require extensive post-processing steps to fix
collisions that occur during inference. To address this chal-
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Figure 2: The architecture of our proposed garment reconstruction pipeline from a single-view image. It consists of three
major modules: parametric SDF net, human SDF net, and garment SDF net. We train each network separately and use an
optimization scheme to maintain high-fidelity detailed garments which avoid collisions with bodies.

lenge, Santesteban et al. [43] proposed a self-supervised
loss, which is enabled by their powerful generative space of
garment deformations. In contrast, we introduce a collision-
aware regression network with fast body-garment collision
detection and response, which is designed for the collision
optimization between two SDFs of human and cloth. Our
collision-aware network can be used to efficiently avoid col-
lision in a differential fashion and also enhance the geomet-
ric details of garments according to human shape.

3. Methodology

Our framework consists of three major modules: para-
metric SDF net (PSDF Net), human SDF net, and garment
SDF net. The PSDF Net consumes a 3D query point and a
PCA latent code of the 3D clothing model and infers the bi-
nary occupancy of the reconstructed garment for the query
point. The human and garment SDF nets take a single im-
age as input and predict the occupancy of the undressed hu-
man and the garment respectively. At training time, each
module is trained separately using the ground-truth data in
a supervised manner. This is to ensure all the networks
will learn the realistic shape priors. At test time, to ob-
tain a high-fidelity and collision-free reconstruction, we in-
troduce an optimization scheme that uses the output of the
garment SDF net as the proxy of the main PSDF network to
bridge the implicit representation and the parametric encod-
ing. In particular, we use a reconstruction loss to encourage
the outputs of the garment SDF net and the PSDF net to
be close to each other. A novel collision loss is introduced
to avoid the self-intersections between the predicted occu-
pancy fields generated by the human and garment SDF nets.
As the PSDF Net is fully differentiable, the self-supervised
losses can provide gradient flows to optimize the latent PCA
coefficients to obtain a high-quality and collision-free para-
metric encoding. In addition, a landmark loss is also pro-

posed to foster the consistency between the 2D landmarks
and the projections of the 3D landmarks pre-defined on the
parametric mesh generated by the PCA encoding. Once the
optimization converges, the parametric mesh represented by
the optimized PCA code is used as our final reconstruction
result.

3.1. Parametric SDF Net

We first introduce our Parametric SDF Net (named PSDF
Net), which aims to learn the explicit mesh and implicit field
jointly using a common space of PCA.

Given a set of N garment meshes M =
{M1,M2, . . . ,MN} with the same connectivity, we
perform PCA [12] to obtain the first K principal compo-
nents B = {B1, B2, . . . , BK} and the corresponding scores
S for each garment mesh. The number of K is determined
according to the percentage of variance (here we set it to
99%) to retain the geometry details while removing the
noise. This formulation satisfies:

PCA(M) 7→ {B,S} (1)

After that, each explicit garment with open surface can
be represented as a linear combination of B with scores
S = (s1, s2, . . . , sK). Our PSDF Net aims to learn a map-
ping from the PCA scores S to the binary SDF (1 inside
/ 0 otherwise). Given the sample point p = (x, y, z) near
the surface and the PCA score S = (s1, s2, . . . , sK), PSDF
Net learns a function fPSDF : (p, S) 7→ 0/1, which aims to
map (p, S) to an occupancy value 0/1, means outside/inside.
Our network architecture is illustrated in Figure 2, which
consists of multi-layer perceptrons to classify whether the
sampled point p is an insider or outsider of the surface. Note
that since garment meshes are often open surfaces, we en-
close its open boundaries with the plane for sign distance
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Figure 3: The architecture of PIFu-based Human and Gar-
ment Prediction Network. For each branch, we use the
pixel-aligned features to predict the occupancy values and
use MarchingCubes to extract the explicit meshes.

calculation [22] of sampled points. And the basis of PCA is
extracted from the real scanned dataset – MGN [2], which
contains lots of garments meshes with more rich and realis-
tic geometric details.

We design a two-branch SDF prediction network for
the garment and human reconstruction from a single im-
age. Figure 3 presents the network architecture of the PIFu-
based Human and Garment reconstruction. The detailed
network architecture is adapted from the PIFu [40]. Given
a single image I with a single person, a human parsing ex-
tractor [27] is applied to obtain the pixel-wise segmenta-
tion of garments labels automatically. Then, we pass them
into different branches to predict their occupancy respec-
tively, and finally the iso-surfaces are extracted by March-
ingCubes [32]. Here, we model two functions, including
Human SDF Prediction fhuman and Garment SDF Predic-
tion fgarment. These two functions take the pixel-wised
feature and give 3D position X in the camera space as in-
put, and predict the binary occupancy of the sampled point
X . We formulate it as follows:

fhuman : (fH , X) 7→ 0/1

fgarment : (fG, X) 7→ 0/1
(2)

where the fH and fG are the pixel-wised feature of the seg-
mented human image and segmented garment image via its
corresponding image encoder, and 0/1 means that the sam-
pled point is outside or inside. So, we can obtain the 3D
human and 3D garments from an input single image I .

3.2. Collision-Aware Regression

The pixel-aligned approach is memory efficient and able
to obtain high-fidelity 3D cloth and body geometries for the
target subjects. However, directly predicting cloth and body
implicit functions from an image may cause intersections
between these two models since it is not collision-aware.
As for some datasets, such as MGN [2], the ground truth
data even is not body-garment collision-free.

We can obtain the SDFs [SDFG, SDFH ] of the garment
and human by Eq. 2 in Sec. 3.1, we propose a collision-

[SDFG, SDFH]

[1, 1][1, 0]

[0, 1] [0, 0]

Human SDF: SDFHGarment SDF: SDFG

Collision Area

Figure 4: Body-garment collision detection via two signed
distance fields. [SDFG(X) < 0.5, SDFH(X) > 0.5] indi-
cates a collision at sample X .

aware regression to optimize the SDF values of the garment
and human to minimize the collision for the realistic and
reasonable garment reconstruction.

As shown in Figure 4, the impact zone of body-garment
is easily detected by defining the collision condition of two
implicit functions as:

Collided at X : SDFG(X) < 0.5 and SDFH(X) > 0.5.
(3)

where the X is the position of the sampled points. If the
point satisfies the above condition, the garment and hu-
man have collided at position X . Based on the observation,
we design a novel collision penalty on the signed distance
function to minimize the interpenetration between the SDF
SDFG of Garment and the underlying SDF SDFH of Hu-
man. We formulate it as follows:

Lcollision =
∑

X∈Ω(SDFG(X)− SDFH(X))T (SDFG(X), SDFH(X)) (4)

T (x, y) =

{
1, if x < 0.5 and y > 0.5

0, otherwise
(5)

where the T (·) is a collision detection function. Ω is a set
that contains sampled points in the space.

Different from previous methods which commonly
search the nearest corresponding points on body shape for
each point on the garment, our collision condition scheme
effectively reduces the complexity of detecting collision
points from O(n2) to O(n). In Table 4, we show the ef-
ficiency comparison with BCNet [23] for the collision de-
tection. From the table, we can clearly see that our method
achieves fast speed and outperforms the SOTA – BCNet on
collision detection by a large margin, which ensures that our
framework can predict the 3D garments and humans from a
single image effectively and efficiently.

3.3. Optimized Garment Reconstruction

Our goal is to reconstruct realistic and high-fidelity gar-
ments from a single-view image. However, it is very chal-
lenging to obtain ground-truth data since we need both real-
world images and the corresponding garment meshes. Ear-
lier works either build their own datasets with synthetic data



generated by physical simulation [23] or by using captured
data with or without segmented labels [2, 51]. The former
simulated dataset often cannot capture the details in the real
environment. Meanwhile, the scanned dataset typically has
limited garment variations as it is expensive and cumber-
some to obtain large-scale 3D real data.

Hence, we introduce an optimized garment reconstruc-
tion pipeline based on the above modules with fixed train-
ing parameters without requiring a large number of train-
ing data. Formally, as illustrated in Figure 2, given an
input image I and an initialized PCA weight z0 (i.e. the
weight of PCA is randomly selected in training data), we
can obtain the human SDF SDFH , garment SDF SDFG,
initial garment mesh Mz0 and corresponding garment SDF
fPSDF (z, ·). To optimize the z0 to the optimal z, we define
the following target:

• Erecon: mean square distance between parametric gar-
ment SDF fPSDF (z, ·) and the garment SDF SDFG,
aims at reducing the difference between the predicted
garments by the parametric SDF Net and the regressed
garment implicit function by Garment SDF Net, i.e.
Erecon = ||SDFG(I,X)− fPSDF (z, X)||22;

• Ecollision: minimize the collision between the
predicted garment SDF fPSDF (z, ·) and hu-
man SDF SDFH in Sec 3.2, i.e. Ecollision =∑

X∈Ω(fPSDF (z, X)− SDFH(I,X))T (SDFH(I,
X), fPSDF (z, X)), where Ω is the set of sampled
points;

• Ereg: regularization term to penalize unrealistic re-
construction, i.e. Ereg = ||z||22;

Apart from the above three energy terms, we also introduce
the landmark loss to penalize landmark projection consis-
tency error from the input image:

Elandmark = ∥π(LM3D)− LM2D∥22 (6)

where LM3D represents the 3D landmarks on the mesh gen-
erated by PCA, the indices of the 3D landmarks are the
same since we use a template garment. LM2D represents
2D ground truth landmarks that are manually labeled. π(·)
is a projection function with a given camera pose. The esti-
mation of camera parameters is adopted from PIFu [40].

Finally, we can obtain the optimal PCA weight z by min-
imizing the formulation:

Erecon + ω1Elandmark + ω2Ecollision + ω3Ereg (7)

where the ω1, ω2, ω3 are the weights to balance the opti-
mization procedure. In our all experiments, we empirically
set them as ω1 = 1.0, ω2 = 0.1, ω3 = 5.0.

4. Experiments & Evaluations

We first illustrate our network training and implementa-
tion details. Then we evaluate our proposed approach on
three tasks: garment reconstruction from a single image,
garment generation and interpolation via PCA parameters,
where we show the superiority of our proposed methods on
the large garment datasets from MGN [2], compare to the
other strong baselines including SMPLicit [10], PIFu [40],
BCNet [23], and AnchorUDF [52]. We further benchmark
the performance of the garment reconstruction from the in-
the-wild images. In the end, ablation studies are conducted
in order to validate our key designs.

4.1. Implementation Details

Datasets. We primarily use MGN [2] for the majority of
our experiments. The MGN dataset contains five categories
garments and 154 textured garment models. For training,
we adapt the same method as PIFu and rendered 360-degree
images of each garment along the yaw axis and obtained
48240 images in total. For the landmark on the 2D im-
age, we use the same setting as the DeepFashion2 [14]. The
data-splitting are followed from AnchorUDF [52].

Implementation. For our network, we first train on the
PSDF Net and Human/Garment SDF Nets simultaneously.
Our PSDF Net is used to map the parametric explicit gar-
ment mesh and the corresponding SDF into one common
space of PCA parameters. Human/Garment SDF Nets aims
to predict the human SDF and garment SDF from a single
image. After that, we fix all the trainable parameters, and
optimize the PCA parameters z0 to by minimizing all the
introduced energies in Sec. 3.3 of our main paper. Similar
to DeepFashion3D [53], we focus on front-view reconstruc-
tion with single person. Our whole network is implemented
in PyTorch [36]. All the occupancy prediction network is
implemented with MLPs, and the image-encoder for hu-
man/garment is adapt from PIFu [40]. For the training, the
whole network is optimized by Adam optimizer [26], we set
batch size as 8 and use a learning rate that is from 0.0001
and decays by 0.9 every 1000 steps. The PSDF Net will
converge at 2000 epochs, and Human/Garment SDF Nets
takes 200 epochs to converge. Empirically, our network
converges after 1 day. Table 1 shows the detailed run-
time statistics of Garment/Human SDF Net for once image
inference, and the iterative optimization costing of the Para-
metric SDF Net. The optimization stage for garment re-
construction a single image takes 400 epochs to converge.
Note that all the experiments are evaluated on a computer

with an i7-7700K CPU, 64G RAM, and a GeForce GTX
2080Ti graphic card.



Table 1: The timing (second) of each component in the test-
ing stages, averaging in different cloth categories on the
MGN dataset [2]. Notice that the timing of Parametric SDF
Net is the total 400 epoch optimization time-cost.

Components Garment SDF Net Human SDF Net Parametric SDF Net

Timing 0.01 0.01 4.52

(a) Input (b) PIFu (c) SMPLicit (d) BCNet (e) Ours (f) GT

Figure 5: Cloth reconstruction comparison on single-view
images with two implicit function methods PIFu [40]) and
SMPLicit [10], and a mesh template-based method BC-
Net [23].

(a) Input (b) BCNet (c)
AnchorUDF (d) Ours (e) GT

Figure 6: Shape reconstruction comparison with the base-
line methods (BCNet [23], AnchorUDF [52]).

4.2. Garment Reconstruction

We qualitatively and quantitatively compare our method
to other state-of-the-art for single-view garment reconstruc-
tions. Two metrics [52] including the Chamfer Distance
(CD) and average point-to-surface Euclidean distance (P2S)
are used for qualitative evaluation. Table 2 presents the
reconstruction errors for each method. Benefiting from
implicitly-proxied parametric encoding, our method can op-

timize the poses and shapes of humans and garment details,
thus achieving the best performance for garment and human
reconstruction.

Table 2: Chamfer Distance (CD) and Point to Surface
(P2S) errors (×10−3) of garment and human by different
single-view reconstruction methods on MGN dataset. ‘-
’ means that AnchorUDF only reconstructs the garment
mesh. Lower is better.

Methods Garment Human
CD↓ P2S↓ CD↓ P2S↓

BCNet [23] 4.053 4.512 3.808 4.310
SMPLicit [10] 9.012 10.591 3.724 4.179

AnchorUDF [52] 0.635 0.762 - -
Ours 0.494 0.172 0.332 0.364

Figure 5 presents the qualitative comparisons on the gar-
ment reconstruction from a single-view image. Our model
can successfully capture the detailed wrinkles from the in-
put image and achieve realistic garment reconstruction. It
is clear to see that SMPLicit [10] and BCNet [23] fail to
capture the detailed wrinkles shown in the image. Although
PIFu [40] are able to output pixel-aligned high-resolution
results, they are not able to separate human and cloth. In
Figure 6, AnchorUDF [52] predicts the cloth as open sur-
face and enhances the details. Since they are not topology-
aware, the side-view image shows clear artifacts.

(a) Input (b) PIFu (c) SMPLicit (d) BCNet (e) Ours

Figure 7: Garment reconstruction comparison on in-the-
wild images (PIFu [40], SMPLicit [10]), BCNet [23].

We further evaluate the performance on in-the-wild im-
ages compared with three state-of-the-art methods, BC-
Net [23], SMPLicit [10], and PIFu [40]. We use the
tool [25] in SMPLicit to remove background and a human
parsing extractor [27] to obtain a pixel-wise segmentation
of clothing labels (i.e. upper clothes, pants), automatically.



As shown in Figure 7, the alternative baselines yields got
realistic results, but they could hardly reconstruct the de-
tailed garments, such as the wrinkles on the garments. We
observe that our approach outperforms the alternative ap-
proaches and achieves better performance in terms of visual
quality. In particular, the garments predicted by our method
are more realistic. For various poses, we also conduct an
experiment trained on the publicly available TailorNet [37]
dataset which maintains simulated garments on quite dif-
ferent human poses. We tested on more in-the-wild images
with various poses. As shown in Fig. 8, our method outper-
forms compared works in both human-pose alignment and
garment detail prediction.

(a) Input (b) PIFu (c) SMPLicit (d) BCNet (e) Ours

Figure 8: Cloth reconstruction comparison on in-the-wild images
under arbitrary poses with PIFu [40]), SMPLicit [10] and BC-
Net [23].

Discussion ImplicitPCA v.s. ReEF Both our method
and ReEF [54] are approaches combining explicit and im-
plicit 3D representation of garments for single-view recon-
struction. ReEF [54] register a template mesh to seman-
tic, shape and boundary implicit fields predicted from im-
age by an optimization scheme. There are two difficul-
ties to get high-quality ReEF results. Firstly, learning each
implicit field from images requires annotating large cus-
tomized dataset as they mentioned in the paper. For in-
stance, professional artists annotate the garment boundaries
on the scan surfaces and may link the incomplete bound-
ary segments into smoothed closed curves with their ex-
pertise in garments’ shape. Secondly, the quality of mesh
registration is depending on the initialization and the cor-

respondence between source and target. The initialization
uses 2D pose estimation as guidance for SMPL prediction,
which may fail to align with the shape implicit field in hard
cases, e.g., different human poses. And the shape fitting is
only processed in the subset of mesh vertices, which is a
sparse correspondence. Instead of registering, our method
jointly utilize the good ends of explicit and implicit repre-
sentation to achieve high-fidelity and physically-plausible
results. Explicit mesh representation has clear boundary in-
formation and topology which is used for 2D landmark su-
pervision. Implicit function captures pixel-aligned features
from images efficiently which is used for garment detail re-
construction. This hybrid parametric model enables realis-
tic and topology-correct reconstructions, see more results in
Fig. 8.

4.3. Garment Generation & Interpolation

Figure 9 presents the garment generation via the explicit
PCA parameters. In this figure, we show the visual results
by controlling the first two dimensions of the PCA param-
eters. It is clearly observed that the first two dimensional
PCA parameters can control the orientation and size of the
garments. So, equipped with the explicit PCA parameters,
our framework enables the novel generation of garments
with a given factor. Table 3 shows the number of PCA com-
ponents for different cloth in our experiments.

Table 3: The number of PCA components for different cloth
categories on the MGN dataset [2].

Cloth Categories T-shirt Shirt Short-Pants Pants

# PCA components 35 20 13 20

Figure 9: Top: effect of the first principal component (con-
trolling orientation). Bottom: effect of the second principal
component (controlling size).

Since our framework bridges the explicit parametric
model and implicit fields via PCA parameters, we can get
parametric implicit proxies. In particular, garment genera-
tion and interpolation naturally are achieved with the help
of explicit PCA parameters. In Figure 10 we show some
generated garments by randomly sampling on the PCA pa-
rameters of training data. The results demonstrate that our



Figure 10: Random generation of the shirt, T-shirt, and
pants shapes, where the training data is from MGN
dataset [2]. The first row is the extracted iso-surfaces via
MC, and the second row is the corresponding meshes.

Mesh

SDF

Figure 11: Shape interpolation of T-shirts represented by
SDF and mesh using PCA weights in our method. The first
and last columns are two input shapes.

model is able to generate diversified 3D garments in both
parametric meshes and learned implicit fields.

The interpolation results are further evaluated, which
are shown in Figure 11. We interpolate the PCA parame-
ters from two input T-shirts linearly to control the gener-
ated implicit fields of the garment explicitly. The first row
shows the generated results by PSDF that are represented
as closed meshes extracted via MarchingCubes [32]. The
second row is the corresponding open surfaces for each in-
terpolated parameter. Our approach achieves smooth and
continuous interpolation with detailed wrinkles. These ex-
periments demonstrate the capabilities of our PSDF Net for
achieving high-fidelity inference.

4.4. Ablation Studies

With vs. without collision loss. To evaluate the advan-
tages of our collision-aware module proposed in 3.2, we
separately show the impact of with and without collision
loss on the garment and human reconstruction. In Fig-
ure 12(c), it is observed that our method successfully mini-
mizes the collision between the garment and body shape in
Figure 12(a). Besides, our method can prevent collisions on
the unseen back of the garments, as well as enhance the ge-
ometric details of the garments concerning the body shape.
There are also some post-processing algorithms (e.g. [23])
to handle the collision, but it can introduce some bulges arti-
facts (see Figure 12(b)) by moving the vertex along the nor-
mal direction. Furthermore, our collision detection method
is 104 times faster than the post-processing approach, which
benefited from the parametric implicit proxies (see Table 4).

(a) w/o Lcollision (b) post-process (c) w/ Lcollision

Figure 12: Ablation of collision loss for regression of cloth
and human SDF from a single-view image.

Table 4: Timing of different collision detection methods.
Gp and Hp (×103) are the number of garment and human
points and t(s) is the time cost.

Method Gp / Hp / t Gp / Hp / t Gp / Hp / t

BCNet 6/6/0.492 19/22/2.609 181/384/44.38
Ours 7/7/5.10×10−5 20/20/7.70×10−5 400/400/8.39×10−5

(a) (b) (c) (d) (e)

Figure 13: Ablation of each energy term in the optimization
routine: (a) input image; (b) Elandmark; (c) Elandmark +
Erecon; (d) Eall means the summation of all the optimized
energies: Erecon + Elandmark + Ecollision + Ereg; (e)
Ground Truth.

Table 5: Chamfer Distance (CD) and Point to Surface (P2S)
errors (×10−3) of garment optimization schemes with dif-
ferent energy terms on MGN dataset. Lower is better.

Methods Elandmark Elandmark +Erecon Eall

CD ↓ 23.6 0.624 0.494
P2S ↓ 12.9 0.242 0.172

With vs. without each term in optimization routine.
Figure 13 illustrates the results generated by different set-



tings of terms in the optimization routine. Each setting con-
tains the regularization loss term to avoid instability syn-
thesis. Although the model is constrained with only land-
mark loss term Elandmark generates 3D shapes aligned
well with 2D key points, it leads to posing ambiguity with-
out considering depth information. Furthermore, the model
trained with both landmark and SDF reconstruction loss
terms Elandmark+Erecon generates a trouser in better ges-
tures with more wrinkle details. However, the bottom of the
trouser has apparent bending artifacts. This is due to the
ignoring of collision. The model with full constraints out-
performs others in generating detailed garments with de-
sired gestures closer to the ground truth. The landmark-,
reconstruction- and collision constraints jointly improve the
quality of high-resolution cloth reconstruction. Moreover,
by comparing Chamfer distance (CD) and point-to-surface
(P2S) in Table 5, we observe that the best performances are
achieved only when all energies are fused.

(a) Input Image (b) Reconstruction

Figure 14: A failure case with cloth collision and occlusion
on the 2D image.

5. Conclusions & Discussions

In this paper, we have presented a novel hybrid represen-
tation for 3D cloth and humans, called IMPLICITPCA. We
integrate the parametric-based method and implicit-based
method and introduce an collision-aware regression net-
work with fast collision detection and penalization. Our
experiment indicates that high-fidelity garments following
physical rules can be inferred from a monocular image. We
envision that IMPLICITPCA would benefit a series of Meta-
verse applications, such as virtual try-on and garment edit-
ing.

Finally, although our model achieves state-of-the-art per-
formance in realistic and high-fidelity garment reconstruc-
tion, our method still has some failure cases. As shown in
Figure 14, some poses with cloth collisions result in a lack
of information, thus making it difficult to infer the side-
view of the person. These cases can be very challenging
for our collision-aware module, and the reconstructed cloth
will crash into the person as shown in Figure 14. Hence, for
future work, some priors of poses can be applied to enhance
the quality of garments during extremely challenging cases.
The generalization of our method in garment categories is
also limited by the training dataset. For those garments cat-
egories that are not covered in the training set, the recovery

process can only converge to the most similar category. We
will both extend dataset and explore a typology augmenta-
tion method in the future.
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