GSNet: Generating 3D Garment Animation via Graph Skinning Network
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Figure 1. We propose a approach for generating garment animations that can handle garments with multiple topologies and maintain

realistic effects and performance.

Abstract

The goal of digital dress body animation is to pro-
duce the most realistic dress body animation possible.
Although a method based on the same topology as the
body can produce realistic results, it can only be ap-
plied to garments with the same topology as the body.
Although the generalization-based approach can be ex-
tended to different types of garment templates, it still
produces effects far from reality. We propose GSNet,
a learning-based model that generates realistic garment
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animations and applies to garment types that do not
match the body topology. We encode garment templates
and body motions into latent space and use graph convo-
lution to transfer body motion information to garment
templates to drive garment motions. Our model consid-
ers temporal dependency and provides reliable physical
constraints to make the generated animations more re-
alistic. Qualitative and quantitative experiments show
that our approach achieves the performance of state-of-
the-art dressed body animation.



1. Introduction

Generating realistic-dressed body simulations has been a
popular area of research for decades. It can be used in vari-
ous applications, including computer animation, special ef-
fects, virtual try-on applications, the fashion industry, video
games, and VR. The most common approached used in the
past was a physics-based approach [24, 4, 19,27, 28, 33, 34,

], and with the development of deep learning, learning-
based approaches [7, 6, 20, 26, 31, 39, 3,

] are gradually being applied to this field.

The physics-based approach [24, 4, 19, 27, 28, 33, 34,

] treats the garment simulation as a deformable model-
ing problem and then uses kinematic computational meth-
ods to solve the problem. Finally, accurate simulations are
achieved through collision processing. This approach pro-
duces high-fidelity simulations. Although it can be accel-
erated by exploiting the parallelism [12, 23] of GPUs, this
approach is mainly limited to offline simulations. Subse-
quently, the linear skinning approach [14, 15, 18,22, 36, 37]
emerged, connecting each garment mesh vertex to the skele-
ton by a set of blend weights used for linear combinatorial
joint transformations. The garment is attached to the skele-
ton that drives the body’s motion, and the body motion and
the garment motion are driven simultaneously through the
skeleton motion. This approach has also been widely inves-
tigated.

Recently, some learning-based approaches [7, 6, 20, 26,

, 39,3, 11,21, 25,29, 30, 32] have been proposed, most
of which encode the garment as the same topology as the
body and then transform the problem to solve the pose
space deformations, and finally generate the corresponding
animations by a linear transformation. There are also ap-
proaches [7, 26, 39, 3] based on supervised learning, which
can be extended to templates of garments with multiple
topologies. All these approaches transform the problem into
solving pose space deformation and then using linear skin-
ning approaches. Although these approaches increase the
speed of the simulation significantly, however, the motion
of the garment is highly nonlinear, and these approaches
lead to much less realistic results.

In this paper, we propose a graph-based neural network
model GSNet. The state-of-the-art approaches is to learn
the pose space deformation from the data and then solve
the problem with a linear skinning approach. In contrast,
our model is based entirely on neural networks to gener-
ate costume animations. We encode garment templates and
human motion into latent space, then translate the human
motion information into garment motion by graphical con-
volution to generate garment motion consistent with human
motion without linear skinning. Our model is nonlinear so
that we can obtain realistic garment animation effects. In
addition, to compensate for the physical inconsistency in
supervised learning, we define relevant physical constraints
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and use them for training the model to predict configura-
tions that satisfy the physical constraints. We also intro-
duce temporal dependency in the model to make the anima-
tion more realistic. In addition, our approach can be applied
to clothing templates with multiple types of topologies that
are inconsistent with the human body topology (see Figure
1 for some examples), and our main contributions can be
summarized as follows:

e Robustness: Since garment motion is highly nonlin-
ear, using linear skinning to solve it leads to a signif-
icant loss of realism when applied to garments. Our
model is entirely learning-based, so it is highly nonlin-
ear, which can significantly improve our performance.
Moreover, our model maintains good stability after ex-
perimental comparison.

o Physical Consistency: Supervised learning does not
guarantee physical constraints, so we add a physically
constrained network after supervised learning to cor-
rect for garment vertices that do not conform to the
physical constraints. Then we also incorporate the rel-
evant physical constraints. The final generated result
conforms to a realistic effect.

e Multiple Topologies: Most approaches encode gar-
ments to the same topology as the body. When these
methods are applied to garment templates that do not
have the same topology as the body, the results are very
unrealistic. To obtain realistic results, even for gar-
ments with different topologies from the body, we rec-
ommend encoding the garments into latent space be-
fore generating the animation. This can support mul-
tiple topologies types of garments, greatly enhancing
scalability.

e Temporal Dependency: The state-of-the-art ap-
proaches are based on generating animations from a
single frame, and this approach does not consider the
connection between motions. Our network introduces
temporal dependence, similar to recurrent neural net-
works, where we use the output of the current frame of
the garment as the input of the next frame. This design
allows the result to produce a more plausible wrinkles
effect than other single-frame-based animations.

2. Related Work

In this section, we briefly overview prior work on gar-
ment animation using computer graphics and learning-
based approaches.

2.1. Computer Graphics

Realistic garment animations can be obtained through
physics-based simulations, usually through the well-known



mass-spring model. Much research in this area has fo-
cused on improving the efficiency and stability of sim-
ulations by simplifying or specializing in specific setups
[4, 24, 27, 28, 34] or proposing new energy-based algo-
rithms [19] to enhance robustness, realism, and generaliz-
ability to other flexible materials. As hardware performance
has evolved, other work has proposed to exploit the par-
allel computing power of modern GPUs [33, 40]. These
approaches achieve a high degree of realism at the cost of
high computational costs. Therefore, physics-based simula-
tor is unsuitable when real-time performance is required, or
computational power is limited. On the other hand, linear
blend skinning is the standard approach used in computer
graphics for 3D model animation [14, 15, 18, 22, 36, 37]
applications where performance is a priority. Each vertex
of the object being animated is connected to the skeleton by
a set of hybrid weights that are used for linear combinato-
rial joint transformations. In the field of garment animation,
garments are attached to a skeleton that drives body move-
ment. This approach has also been extensively studied.

2.2. Learning-Based Methods

Recently, learning-based approaches have been proposed
to deal with the motion of garments. Researchers use
learning-based approaches to obtain pose space deforma-
tions and linear skinning to generate garment animations.
Léhner et al. [17] also proposed nonlinear mapping by
combining temporal features processed by RNN for linearly
learning pose space deformations of garments. Later, San-
testeban et al. [3 1] proposed an explicit MLP-based nonlin-
ear mapping method for spatial pose morphing single tem-
plate garments. The main drawback of these approaches is
that the pose space deformation must be learned for each
template garment, which requires new simulations to ob-
tain the corresponding data. To address this problem, many
researchers have proposed an extended human body model
(SMPL [20]) that encodes garments as additional displace-
ments and topologies as a subset of vertices [, 2, 5, 8, 26].
Alldieck et al. [, 2] proposed a single human body and
garment model, first as vertex displacements and then as
texture replacement mappings, to infer 3D shapes from a
single RGB image. Similarly, Bhatnagar et al. [8] learn
the space of body deformations to encode garments, an ad-
ditional segmentation to separate body and garment, and
infer 3D garments from RGB. Jiang et al. [13] propose a
approach to retrieve 3D garments from images and predict
the corresponding mixture weights. The weights of recent
masked vertices were used as the SMPL skeleton for the
markers. Patel et al. [26] encoded several garment types as
a subset of body vertices. They propose a strategy to handle
fabric details associated with high-frequency locations for
different body types and garment styles. Bertiche et al. [5]
encode thousands of garment types to the top of the body by

masking the body vertices. They learned a continuous space
of garment types on which they subsequently adjusted ver-
tex deformations with the pose. Using a human body model
to represent garments allows one model to handle multiple
types.

However, all of these approaches take the parameters of
the linear transformation model from the data and even-
tually use a linear stripping method to obtain the results.
Since the garment motion is highly nonlinear, using a lin-
ear model to solve for it can significantly reduce the realism
of the results. These approaches have another drawback.
Most of them directly encode the garment as one with the
same topology as the body, which greatly limits the useful-
ness and scalability of the model. We propose to encode
garments into latent space and generate garment animations
directly using a completely neural network-based approach,
which will maintain the high performance and stability of
the model and extend the garment types to garments with
different topologies from the human body.

In contrast to previous approaches that encode homolog-
ical garments with body homology, the recent DeePSD [7]
extends garment types to multiple topologies. This dramat-
ically improves the applicability and expandability of this
domain. We follow a similar basic idea but propose a fully
neural network-based model for learning. In addition, our
approach considers temporal dependence and can handle
animated models that produce high realism and more del-
icate wrinkles.

3. Methodology

In this section, we describe specifically how our GSNet
generates garment animations from human motions, and
Figure 2 shows a general overview of our approach. Next,
we overview each module in our model in individual chap-
ters.

3.1. Garment Model

Similar to state-of-the-art approaches of learning-based
[5, 10, 26, 31, 35], we exploit and extend existing human
body models [9, 20]. More specifically, we construct our
human body representation based on the popular SMPL
[20] human body model. SMPL [20] encodes the body by
deforming the manipulated human template based on shape
£ and pose 0, related deformations learned from the data.
Then, we define our garment model as:

Gt:W(T,Gt_l,S(67et)) (1)

where G; € RV*3 is the predicted deformed target gar-
ment mesh and N is the number of garment template ver-
tices, G;_; € RV*3 is the garment vertex attribute of the
previous moment and T € RV *3 is the garment outfit, S(-)
is used to obtain information on key joints of human body



with body shape 3 € R'? and body motion §; € R™ from

SMPL [20] model. Our goal is to train W (+) as defined in
Eq 1.
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Figure 2. An overview of our approach, we use the Garment En-
coder (Section 3.2) to process garment with multiple topologies.
Then, we use Deep Skinning (Section 3.3) to aggregate body mo-
tion information to garment attributes to get garment deformation
attributes. Finally, the Physical Regression (Section 3.4) helps to
correct the vertices that do not conform to the physical constraints.
The final result is obtained.

3.2. Garment Encoder

The goal of the garment encoder is to handle garments
of multiple topologies. The dominant representation in gar-
ment animation uses a mesh model, which is very similar to
the graph structure. Therefore, we choose graph convolu-
tion [38] to handle problems related to garment animation.
We can easily obtain vertex properties and edge information
in the mesh model. When extracting the garment features
from the garment encoder, we preprocess the edge informa-
tion into a normalized Laplace matrix in order to make the
aggregated features more accurate. The normalized Lapla-
cian matrix is generated by the following formula:

L,=D 2LD 2 2)

where D denotes the degree matrix, and L denotes the stan-
dard Laplacian matrix. Specifically, the value of each ele-
ment can be expressed as:

1, ifi=j
1 ipe e
Lij = VT if i,j in edge set 3)
0, otherwise

The initial information € RV*6 of the garment vertex
contains its location in the world space, material, and relax-
ation schedule as properties. We take this information and
pass it to the graph convolution layer for processing, the
whole graph convolution formula can be expressed as:

Xl+1 =0 (LnXlW(l) + bl) (4)

where L, is normalized Laplacian matrix, X;; and X; are
are the feature matrices of the layer [ + 1 and [, W is a
trainable weight matrix for layer [, ; is a trainable bias for
layer .

After three layers of graph convolution processing, we
get the featuresc RY*128 of each vertex. Then, to make
the features more visible, we pass the result to the maxi-
mum pooling layer to get a global featurec R'*'28, Then,
we splice the global feature to each vertex feature to get a
resulte RN 256 that represents the feature of garment in
latent space.A general overview of the clothing encoder is
shown in orange in Figure 2

3.3. Deep Skinning

Deep skinning aims to aggregate changes in body motion
onto a garment and obtain information about the changes
corresponding to it. Similarly, we still choose graph convo-
lution for information aggregation. The most popular body
motion representation model is SMPL [20], which uses 24
vital skeletal joints to represent body motion features. In
this paper, we choose SMPL [20] as our body model, which
only needs to pass shape 3 and pose 6, parameters to ob-
tain the motion information of vital skeletal jointse R?4*16



at time ¢t. After obtaining the body motion skeletal joints,
we take the garment attributes€ RV >3 of the previous mo-
ments ¢ — 1 and pass them to the two fully connected layers
to get the resulte R™>16 with the same dimension as the
skeletal joints, then we construct the set € RNV+24)x16 f
vertices in the graph convolution from the garment vertices
at the moment ¢ — 1 together with the body motion skeletal
joints.

In addition, we need to obtain the edge information be-
tween the garment vertices and the vital skeletal joints.
Since the garment vertices are not directly and explicitly
connected to the skeletal joints, the edge matrix cannot be
generated as a conventional graph convolution like the nor-
malized Laplacian matrix. For this reason, we use neural
networks to obtain the edge information between garment
vertices and skeletal joints. The specific implementation is
to take the resulte RY*256 of the garment encoder and pass
it through three fully connected layers to obtain the outpute
RN %24 a5 the edge information between the garment ver-
tices and the skeletal joints of the body. Then this result is
transformed into a sparse matrixe R(N+24)>(N+24) 'which
is used as the edge information of the graph formed by the
body skeleton joints and the garment vertices.

After obtaining the vertex sete R(NH+24)x16 and the
sparse matrix€ RUVF2Hx(N+24) of edges, we construct a
graph structure from them and pass them to the graph con-
volutional neural network. Similarly, the convolutional net-
work is structured as in Eq 4. After three layers of graph
convolution, we aggregate the body motion information to
the garment vertices. Then we split the graph to obtain the
set of verticesc R™V*128 to the garment and pass it to the
fully connected layer. After four fully connected layers, the
final resultc RY*16 is the deformation attributes of each
vertex of the garment. We take the deformation attributes
and use the homogeneous transformation to generate the
resulte RV *3 as the vertex at the moment ¢ of the garment.

3.4. Physical Regression

After deep skinning, we get the current deformation at-
tributes of the garment, but not all of them conform to the
physical constraints. Therefore, we also set up a physical
regressor to correct those garment attributes that do not con-
form to the physical constraints.

We designed a filter to obtain the garment vertices that do
not conform to the physical constraint with the filter condi-
tion: d;; - n; < 0 where d;; is the vector going from the
j-th vertex of the body to the i-th vertex of the garment, n;
is the j-th vertex normal of the body. The result of the two
vectors is less than 0, which means that the angle between
them is greater than 90°, and there is a situation that does
not satisfy the physical constraint. We form a graph struc-
ture of these vertices with skeletal points and then use graph
convolution combined with unsupervised learning to obtain

the correct vertices that conform to the physical constraint.
The specific process is similar to deep skinning. Finally,
we fuse the corrected vertices with the original ones to ob-
tain the final result G2 *3. This result G7¥ *? is the garment
deformation corresponding to current body motion(/3, ;).

3.5. Loss Function

The loss function is a key component of our learning-
based algorithm. We use different loss terms to train our
approach to get realistic results that conform to physical
constraints.

L2 Loss: The goal of this term is to minimize the
Euclidean error with the data based on physical simu-
lations. This allows the predicted results to conform as
closely as possible to the original similar shape.The L2 loss
on the positions can be expressed as:

Laiata = 3 Vprea = Vb 5)

where V),.¢q is the position on the predicted garment ver-
tices, Vjs 1s the position on the physical simulation-based
vertices.

Physical Loss: L2 loss only ensures that the out-
put results remain similar to the shape of the garment
template. We also need to define some physical con-
straints to make the output results more visually appealing.
Meanwhile, in order to keep a fair comparison with other
approaches, we use the following three loss terms.:

‘Cedge = Z ||6 - 6TH2 (6)

eclk

where F is the set of edges of the given garment template,
e is the predicted edge length and et is the edge length on
the garment template T. L4, enforces the output to have
the same edge lengths as the input template. Then, in order
to yielding locally smooth surfaces, we define a blend loss
Lpiend as

Lbienda = ApA(n)? ™)

where A(+) is the Laplace-Beltrami operator applied to ver-
tex normals n of the predicted output. Ap is to avoid ex-
cessive flattening. To handle collisions against the body, we
define a collision 108s L oiiision aS:

Leotision =y, min(d;; - n; —€,0) ®)
(i,5)€A

where A is the set of correspondences (7, j) between pre-
dicted output and body through nearest neighbour, d; ; is
the vector going from the j-th vertex of the body to the i-th
vertex of the garment, n; is the j-th vertex normal of the



body and € is a small positive threshold to increase robust-
ness. This loss is a simplified formulation that assumes gar-
ment is close to the skin, and penalizes outfit vertices placed
inside the skin.Thus, the whole physical loss Lyhysical 15
defined as:

£physical = £edge + £blend + £collision (9)
which can guide our model to obtain realistic results.

4. Experiments

This section describes our implementation and shows
our results in several complex benchmarks. We not only
perform complex comparisons with current state-of-the-art
learning-based approaches but also with the performance of
popular physics-based simulation approach.

4.1. Datasets and Experimental Setup

From all the current public datasets, only CLOTH3D [5]
contains enough garment variability to implement our ap-
proach. It contains about 7.5K sequences, each with a dif-
ferent template in the resting pose. These costumes are sim-
ulated on top of a 3D animated person (SMPL) [20], each
with a different body type. Similarly, we use the SMPL
[20] framework to drive the human and garment motion of
our model. Next, we used the same partitioning strategy
as DeePSD [7] for the dataset to enable a fair comparison,
and we subsampled 50k training frames and 5k test frames.
There was no overlap between the training frames and the
test frames. Models. Each model was trained for 20 epochs
with 12500 steps per epoch using the adam [16] optimizer
with a batch size of 4.

4.2. Qualitative Results

We compared our approach qualitatively with DeePSD
[7], PBNS [6], and TailorNet [26].As seen in Figure 3, our
approach achieves better visual results on garments with
simple topologies when compared to state-of-the-art ap-
proaches. More specifically, we also compare in detail with
each approach individually. In comparison with PBNS [6],
our approach has good results not only on garments with
the same topology as the body but also on garments with a
different topology from the body, and our approach has re-
alistic visual effects. This is due to the garment encoder in
our approach, which abstractly extracts features from gar-
ments with different topologies and encodes them into the
latent space, which gives the model the ability to handle
garments with different topologies. PBNS [6], on the other
hand, simply encodes all garments to be consistent with the
body structure, resulting in a minimal expansion capability.
The experimental results for different topologies are shown
in Figure 4. As shown in Figure 5, compared to DeePSD [7]
and TailorNet [26], for the same garment template, without

physical constraints or post-processing, the penetration rate
of our approach is shallower because we include temporal
dependence in the network, which allows the model to ob-
tain more contextual information. Temporal dependence in
the network leads to more accurate results and lower pene-
tration. As shown in Figure 6, in comparison with DeePSD
[7], the effect generated by our approach is visually more
continuous and vivid in the complete animation sequence
due to the temporal dependence added to our network. In
contrast, the overall animation effect of DeePSD [7] is very
stiff because it only generates the frame based on the action
without considering the temporal context. More specific re-
sults can be observed in our supplementary material.

4.3. Quantitative Results

In addition to the qualitative experiment, we also con-
ducted detailed quantitative experiment. In order to allow
for a fair comparison with the state-of-the-art approaches,
we used the same metrics as the state-of-the-art approaches.
Euclidean error, edge elongation/compression, bending an-
gle between vertex normals, and collision rate between gar-
ment and body vertices. The lower the Euclidean error,
the closer the results will be to ground truth. The three
metrics of edge elongation/compression, bending angle be-
tween vertex normals, and collision rate between garment
vertices and body vertices were used to determine if the re-
sults met the physical constraints. The lower these three
metrics are, the more the results conform to the physical
constraints.

We tested the state-of-the-art approaches separately on
the same dataset, and the results are shown in Table 1, where
we can see that the Euclidean error of our approach is sig-
nificantly lower than that of the other approaches. our ap-
proach also achieves good results in the other three metrics.
In Table 1, we observe that the Euclidean error of PBNS
[6] is much higher than all other approaches, so we per-
form further experiment. We divide the dataset into six cat-
egories with different topologies according to the garment
topology. They are Tshirt, Top, Trouser, Jumpsuit, Skirt,
and Dress. Detailed comparison results are shown in Table
2, and we can find that our approach achieves excellent re-
sults on garments with different topologies. Further, we can
find that PBNS [6] produces a more significant Euclidean
error when dealing with two types of garments, Skirt and
Dress, because most of the topologies of these garments are
not the same as the body topology. PBNS [6] encodes them
to the body for processing, leading to a significant error.
Moreover, we can also observe from either Table | or Table
2 that our approach also has a good advantage over other
approaches in all metrics. This is because our approaches is
entirely nonlinear, making the model fitting ability more ro-
bust and reducing error. The rest of the approaches use the
network to solve for the skinning weights and then combine



(a) PBNS[06] (b) DeePSD[7]

T

(c) TailorNet[26] (d) GSNet(Ours)

Figure 3. Compared to state-of-the-art approaches such as PBNS [6], DeePSD [7], and TailorNet [26], our approach achieves realistic

results on simple topologies such as T-shirts.

(a) GSNet(Ours)

(b) PBNS[6]

Figure 4. GSNet(Ours) designs a garment encoder that encodes garments with different topologies into the latent space, enhancing
the expansion capability. GSNet(Ours) can handle garments with different topologies, as shown in the left column of each subfigure.
GSNet(Ours) can also handle garments with different topologies from the body, as shown in the right column of each subfigure. PBNS [6]
directly encodes the garment into a structure consistent with the body so that an unreasonable effect can occur.

them with a linear skinning function to obtain the results,
which leads to a less robust ability to fitting.

In addition to the above metrics for quantitative exper-
iment, we also tested the stability and performance of the
model. Figure 7 shows the comparison results with state-

of-the-art approaches, from which we can observe that the
gap between our approach is more stable on the training
and test sets. Through further experiment, we found that
DeePSD [7] training results become worse as the epoch in-
creases. At the same time, our approach can maintain sta-



DeePSD[7]

TailorNet[26]

GSNet(Ours)

Figure 5. GSNet(Ours) introduces temporal dependency so that
the model can obtain more temporal context information and the
prediction results are more and more accurate. State-of-the-art
approaches such as TailorNet [26] and DeePSD [7] are based on
frame-by-frame actions to predict, leading to limited information
acquisition by the model. The generated results could be more re-
alistic and rely heavily on post-processing to repair results.

ble results, and the related data are shown in Figure 8. In
terms of performance experiment, we compared it with the
most popular physical simulator [24]. Our computational
performance is much better than the physical simulator un-
der the same costume template, and related result data are
organized. The relevant result data are organized in Figure
9.

A
£
1
A

(a) DeePSD[7] (c) GSNet(Ours)

Figure 6. GSNet(Ours) introduces temporal dependency, which
help to generate realistic effects as in physical simulations.
DeePSD [7] will have a more rigid effect because it is based on
static method.

(b) Simulation



Table 1. GSNet(Ours) achieves better results in all four evalu-
ation metrics than state-of-the-art approaches. The most obvi-
ous advantage is the Euclidean error evaluation. This is because
GSNet(Ours) processing is based on nonlinearity, which allows for

Table 2. We divide the dataset into six categories according
to different garment topologies and test these six templates.
GSNet(Ours) performs well on garments with different topologies,
demonstrating good stability and expandability.

a more robust fitting of our model and demonstrates an advantage
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Figure 8. Comparison of stability, our approach is less susceptible
to the influence of epoch hyperparameters and more stable. 4.4. Ablation Experiment

In order to determine how much different processes con-
tribute to the outcomes, we conducted ablation experiment.
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Figure 9. In a performance comparison, our approach is six to
seven times more efficient than physical simulation in processing
time per frame using the garment template in Figure 3.

Table 3 shows our results. The majority of other techniques
are static in nature and do not account for the motion factor
of the previous instant. We discovered through ablation ex-
periment that the effect is enhanced by embedding human
motion dependence in addition to embedding garment mo-
tion dependence, which has the largest effect. This implies
that the animation that is generated is significantly influ-
enced by temporal dependence. The output of the experi-
ment shows that, in addition to the motion, only the effect
of time needs to be taken into account when analyzing the
effects of garment motion.

5. Conclusions, Limitations, and Future Work

In this work, we propose a new approach to garment an-
imation, whereas the past approaches relied heavily on lin-
ear skinning. While our approach is completely based on
learning, it eliminates linear skinning. The efficiency is im-
proved, and it uses for a garment with multiple topologies.
We also introduce a temporal dependency in the model, us-
ing the previous results as input for the current moment. In
summary, we have developed a approach that can solve the
animation of garment with multiple topologies, and our per-
formance is ahead of other current approaches.

At the same time, we are aware of our limitations. First,
our treatment of the time dependency is too rudimentary; we
take the previous moment’s output as the next moment’s in-
put directly. For stability, a temporal neural network should
be introduced to compute it. Second, although it does not
affect the visual effect, our approach is not obvious enough
in generating geometric details (wrinkles), and we also ob-
serve how recent studies model fine geometric details (wrin-
kles) based on complexity. We believe that the best way to
deal with garment folds is through normal mapping genera-

tion, and current work in this area seems promising [17, 41].
We set this up as future work.
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