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Abstract

Deep generative models allow the synthesis of real-
istic human faces from freehand sketches or semantic
maps. However, while being flexible, sketches and se-
mantic maps provide too much freedom for manipu-
lation and are thus not very easy to control by novice
users. In this work, we present DeepFaceReshaping, a
novel landmark-based deep generative framework for
interactive face reshaping. To realistically edit the shape
of a face by manipulating a small number of face land-
marks, we employ neural shape deformation to reshape
individual face components. We then propose a novel
Transformer-based partial refinement network to syn-
thesize the reshaped face components conditioned on the
edited landmarks, and fuse the components to gener-
ate the entire face in a local-to-global approach. In this
way, we limit possible reshaping effects within a feasible
component-based face space. Our interface is thus intu-
itive even for novice users, as confirmed by a user study.
Our experiments show that our method outperforms a
traditional warping-based approach and the recent deep
generative techniques.

Keywords: Face Reshaping, Deep Generative Model,
Interactive Editing.

1. Introduction

Facial image editing is an important task of great in-
terests in computer vision and computer graphics and with
various applications in mass media and film industry. The

recent interactive face image editing techniques can be
roughly categorized into two groups from the perspective
of image generation: full generation from conditional in-
puts [11, 24, 54] and partial manipulation based on image
completion [32, 20]. While they achieve impressive results,
these methods all require users to provide quality inputs
similar to edge or semantic maps of real images. Sketches
or semantic maps are flexible but provide too much degree
of freedom for manipulation. For example, poorly drawn
sketches would easily lead to unsatisfactory results. Such
tools are thus not very friendly for users with no or little
drawing skill.

On the other hand, previous studies have explored the
parametric space of 3D human faces for various applica-
tions [4, 26]. The underlying space of faces can help tol-
erate errors of input sketches for sketch-based face image
synthesis [6] or 3D face modeling [12]. Requiring casual
inputs only is a nice feature when users have a rough idea
of a target result. However, it also means that precise con-
trol is not very easy with such tools. This motivates us to
require users to give minimal but accurate inputs and rely
on the underlying shape space of faces to complete desired
effects.

In this work, we present DeepFaceReshaping, a novel
deep generative framework for generating desired reshap-
ing effects of an input face image by manipulating only a
small number of facial landmarks (Fig. 1). A possible so-
lution to this problem is to first reconstruct a 3D face by
using a global 3D morphable face model [4], then perform
handle-based 3D deformation of the reconstructed 3D face,
and finally warp the input image guided by the deformed
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Figure 1: With our DeepFaceReshaping, novice users can manipulate a small number of facial landmarks to easily get realistic
reshaping effects (Middle and Right) of an input face image (Left). Our generative model can synthesize plausible details
with respect to user edits. The original landmarks are marked in blue, with the deformed landmarks overlapped in red. The
landmarks before and after manipulation are highlighted in the closeups, with the black arrows showing the movement of the
landmarks being manipulated.

3D face, similar to the pipeline for parametric reshaping
of human bodies in images [53]. We show that it is pos-
sible to build similar morphable models in the 2D domain
when a viewpoint is fixed (the frontal faces in our experi-
ments), without using the complicated 2D-3D-2D pipeline.
In addition, since relying on image warping is too limited
to achieve various effects (e.g., to open a closed mouth in
Fig. 1 (Middle)), generative models might be more suitable
for image synthesis.

With the above key observations, we design a two-step
approach: landmark-based neural shape deformation and
local-to-global image synthesis, as illustrated in Fig. 3. In
the first step, we take 2D facial landmarks of real faces in
a dataset as driving examples. Since there exist natural cor-
respondences between semantic landmarks from different
faces, the corresponding landmarks implicitly define feasi-
ble deformation spaces. Given an input image for editing,
we extract its landmarks and apply neural shape deforma-
tion modified from the method by Litany et al. [27] to up-
date the remaining landmarks with respect to a small num-
ber of user-manipulated landmarks. In the second step, in-
spired by Chen et al. [6], we adopt a local-to-global genera-
tive network, which first synthesizes facial components ac-
cording to the updated landmarks and then fuses the synthe-
sized components and the background content into a com-
plete face. We design a self-attention appearance encoder
based on Transformer modules to encode the input image
for preserving the facial attributes and identity.

In summary, our work makes the following two contri-
butions:

• We develop a neural shape deformation method for
interactive shape editing of face images. It not only
supports an intuitive dragging-based interface but also
guarantees the naturalness of facial shape.

• We propose a novel Transformer-based partial refine-
ment network for the local-to-global network archi-

tecture to convert landmarks to realistic facial im-
ages. Our approach achieves clear improvements com-
pared to the state-of-the-art conditional face generation
methods.

2. Related Work

In this section we discuss the related works for interac-
tive face generation and editing.

2.1. Face Generation with Deep Generative Models

In recent years, Generative Adversarial Networks
(GANs) [10] have achieved impressive results in image gen-
eration, especially conditional face generation. Based on
conditional GANs [28], Pix2Pix [18] and Pix2PixHD [43]
were pioneering frameworks trained on paired data and
solved various image-to-image translation problems. Since
then such generative backbones were extended for various
tasks [29, 24, 54, 42, 41, 6]. For example, Sangkloy et
al. [35] used hand-drawn sketches and user-specified sparse
color strokes as input to control properties of generated re-
sults. However, due to the data-driven nature, their frame-
work tends to overfit to the edge maps and requires high
quality of test sketches. To address this issue, DeepFace-
Drawing [6] allowed the generation of realistic face images
even from rough or incomplete sketches by projecting input
sketches to the underlying manifolds of face components.
Due to manifold mapping, DeepFaceDrawing does not pro-
vide precise control of synthesized results. In contrast, we
aim to provide a novel face editing interface with intuitive
and precise control.

To further control the styles and details of face gener-
ation, plenty of works have been done to explore the style
space of human face. Most notably, Karras et al. [21, 22] in-
troduced a style-based architecture as StyleGAN, which has
a disentangled latent space showing great control capability
of style. SPADE [29] used spatially-adaptive normalization



Figure 2: Editing results of our method, which can be used to achieve various effects such as lowering hairline (a), face
reshaping (b, c, d, e), and smile adjusting (e, f, g).

to control over both semantics and style to enhance the se-
mantic information of an input layout. SEAN [54] further
improved SPADE by introducing per-region style encoding,
which achieves style control of facial images at the level of
segmentation masks. Their strategies of style control and
image generation have shown great potential in deep image
synthesis and are exploited by our framework.

2.2. Transformer Networks for Face Generation

Based on a self-attention mechanism, the original Trans-
former [40] was designed for natural language process-
ing (NLP) tasks. Inspired by the ability of Transformer
to capture the long-term correlation between complex se-
quential inputs, researchers have recently successfully ap-
plied Transformer to various computer vision tasks, in-
cluding face image generation [30, 19, 8, 17].For exam-
ple, Esser et al. [8] used an autoregressive transformer ar-
chitecture to model the codebook learned by a CNN en-
coder for high-resolution image synthesis. Jiang et al. [19]
built a GAN completely free of convolutions, using only
pure transformer-based architectures. These works are pi-
oneers to incorporate Transformer in image generation and
inspired us to extend such a Transformer architecture in our
generative networks for face image editing.

2.3. Neural Face Editing

Face editing and synthesis have been an active research
topic in computer graphics and computer vision. From a
historical perspective, the existing face editing methods can
be divided into two major classes: classic image process-

ing algorithms and deep generative methods. Traditional
approaches often rely on image warping and texture ren-
dering [25, 39, 23, 46]. For example, Averbuch-Elor et
al. [3] animated a still face image by using confidence-
aware warping and adding details and hidden regions from
a driving video to the input image. Our approach does not
require a driving video as input and focuses on interactive
editing of a single image instead of video-to-image trans-
fer. Han et al. [13] and Zhao et al. [52] both performed
deformations on 3D reconstructed meshes and re-rendered
the deformed textured meshes to obtain caricatures. In con-
trast, our goal is to synthesize realistic faces with respect to
user-manipulated landmarks.

The recent deep generative models show a better abil-
ity to generate realistic images than traditional approaches.
There are generally two categories of approaches for image
editing through generative networks: one is to control the
latent code in generative networks and the other is to edit the
input of conditional networks. For example, Xiao et al. [47]
proposed a model to exchange the latent codes of two faces
to transfer their face attributes. The style-based architecture
StyleGAN mentioned in Section 2.1 leads to many follow-
up works (e.g., [37, 33, 31, 2]). However, these methods
operate on a pre-defined set of attributes and do not support
direct and precise geometry-level controls.

In order to enable fine-grained user control, conditional
inputs are needed. Portenier et al. [32] and Jo et al. [20]
adopted an image-completion strategy to achieve sketch-
guided local editing. To have an overall control of facial
shape and style, Gu et al. [11] learned feature embeddings
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Figure 3: Illustration of the proposed DeepFaceReshaping framework. Given an input image Iin, its facial landmarks are first
detected via a face alignment method and connected into a 2D triangle mesh Min. The landmarks are divided into components
and then updated by neural shape deformation with respect to the user-manipulated mesh M ′

usr through optimization in the
latent space, resulting in Mout, which is rendered as a landmark graph Lout. Lout is then split into component-level sub-
graphs. The sub-graphs and the corresponding component regions in Iin are sent to the partial refinement modules (one for
each component) for component-level feature embedding. For brevity, we show the detailed partial refinement module for the
“eyebrows and eyes” component only. Finally, the global fusion module takes as input the concatenated partial refinement
vectors of individual face components and generates a desired image Iout fused with the background.

for every face component of source images, and combined
them with a target mask feature to generate a final output
through a mask guided sub-network. Lee et al. [24] de-
signed MaskGAN to learn style mapping and translated se-
mantic masks into face images. Yang et al. [48] presented
a sketch refinement strategy to handle face editing using
sketch. Chen et al. [5] presented a structured disentangle-
ment framework for sketch-based face editing and achieved
realistic editing effects. Although these methods have ac-
complished conditional editing, the quality of results is still
highly dependent on the quality of input sketches or seman-
tic maps as well as the drawing skills of users.

3. Methodology

In this section, we describe our approach for landmark-
based interactive deep face reshaping, which consists of
two steps, namely, neural shape deformation and local-to-
global face generation, as illustrated in Fig. 3. In the first
step, our system first detects the facial landmarks, denoted
as Pin, for a given face image Iin and connects the de-
tected landmarks to form a 2D triangle mesh Min, which
consists of multiple semantic polygons corresponding indi-
vidual face components. The mesh Min is then encoded
by a graph-convolutional variational autoencoder (VAE).

We iteratively perform latent optimization to align the in-
dividual face components with the user-manipulated mesh
M ′

usr component by component. The deformed compo-
nents are combined into the corresponding triangle mesh
Mout, which is rendered as a landmark graph. In the sec-
ond step, Iin and Lout are first decomposed into facial com-
ponents, then processed by the corresponding partial refine-
ment modules, and finally fused by a global fusion module
to generate a desired image Iout. Ideally, Iout should have
the same facial appearance and identity as Iin and respect
Lout.

3.1. Neural Shape Deformation

The landmarks of a facial image define the geometric
shape of the face, and the landmark collection from a dataset
of faces defines the plausible face deformation space. In-
teracting with these landmarks in this deformation space is
intuitive to explore the valid face geometric variations. We
formulate the deformation in the 2D space, instead of going
through a more complicated 2D-3D-2D process [12, 13]. To
naturally support local edits and capture the detailed geom-
etry variations, we propose to use a component-level defor-
mation strategy. Specifically, we decompose the landmarks
of a face into four components with connected meshes:



“face outline”, “eyebrows and eyes”, “nose”, and “mouth”,
denoted as e = {1, 2, 3, 4}. We perform neural shape
deformation component by component and use the user-
manipulated landmark(s) belonging to a specific component
as the constraint(s) to deform that component. It should
be noted that the “face outline” is highly affected by the
changes of internal components, so we calculate this part
based on the landmarks of the entire face.

For intuitive landmark-based face editing, we employ
a neural shape deformation method by Litancy et al. [27],
which originally operates on 3D meshes to solve the prob-
lem of shape completion. We adapt this optimization-based
method to the 2D domain with a 2D triangle mesh. We
first calculate the mean landmarks of our face dataset as the
template where a Delaunay triangulation is generated to de-
termine the graph connection and is used to form meshes.
We then train a graph-convolutional VAE on the mesh col-
lection of our face dataset to create the latent space, which
parameterizes the embedding of the natural face shapes. At
inference, the user-manipulated landmarks are given as a
partially missing mesh M ′

usr. The original mesh Min is
encoded for initialization, and the optimization of the la-
tent code z is performed in the latent space to minimize the
dissimilarity between the user-defined mesh M ′

usr and the
counterpart in the generated output shape:

argmin
z∈space

||dec(z)Π−M ′
usr||2, (1)

where dec is the decoder for VAE and Π is a matrix to select
the points in dec(z) in the same indices of M ′

usr.

3.2. Local-to-Global Face Generation

Given the deformed landmark graph, one direct way for
transferring the deformation to the input image is to adopt
image warping techniques, e.g., based on Moving Least
Squares [36]. These methods can retain the information
of the input images as much as possible, but they cannot
synthesize new details that are missing in the input image
(e.g., the teeth when the originally closed mouth is opened,
as shown in Fig. 4). Inspired by recent image genera-
tion works [8, 6, 22], we tackle this problem by employ-
ing a local-to-global style-based image generation strategy
instead of direct warping. As shown in Fig. 3, the input
face image Iin and the landmark graphs after manipulation
Lout are decomposed into four parts which are the same
as the parts described in 3.1, and sent to the partial refine-
ment modules to generate facial components separately. We
then fuse them with the background condition into an entire
image via a global fusion network. The outermost facial
landmarks are used to mask out the frontal face region. To
reconstruct the background region, we fill the foreground
region with a random noise pattern in a similar way as [38]
and encode the masked image for the fusion network.

Figure 4: Comparison between our deep generative method
and an image warping approach based on moving least
squares (MLS) [36]. (a) Input face image. (b) Landmarks
before (in blue color) and after (in red color) manipulation.
(c) Result of MLS [36] by using the deformed landmarks.
(d) Our result. The superiority of our method is reflected in
dealing with complex structures like the inner side of mouth
with teeth and eyeballs.

3.2.1 Framework Architecture

Partial refinement modules. We design this module based
on conditional GANs and Transformer encoders, as illus-
trated in Fig. 3. A special consideration we need to take is
to keep the identity of the input face during generation, no
matter how the landmarks are changed. We expect to train
our network on static high-quality images without motion
blur, which frequently occurs in video frames. Due to the
lack of such data (i.e., paired images before and after ma-
nipulation), directly training a network to keep the identity
is not feasible. We thus adopt a similar style control strategy
used in many face image generation methods [24, 21, 50].

The partial refinement module consists of a backbone
generation network and an appearance condition network.
The input condition landmarks go through the backbone
of down-sampling, SaResNet blocks, and up-sampling.
SaResNet blocks are Resnet blocks that use Sandwich batch
normalization [9]. To control the appearance and improve
the quality of the generated faces, the partial refinement
module must sufficiently learn the appearance informa-
tion of the input face. Recent applications of Transform-
ers [8, 19, 17] in image generation inspired us to utilize
a Transformer to capture the high-level information of ap-
pearance, since they contain no inductive bias that prior-
itizes local interactions in contrast to CNNs. To develop
a memory-friendly Transformer-based appearance encoder,
instead of building on individual pixels, we first encode the
input image through convolutional blocks into codes of high
dimensions. The codes are split as a flattened sequence of
h · w indices, where each patch of the sequence is treated
as a “word” of style. The sequence is then combined with
the learnable positional encoding and sent to a Transformer
encoder to extract conditional information which is used in



Figure 5: A screenshot of our landmark-based face reshap-
ing interface. Users can select and drag the automatically
detected facial landmarks on the left canvas and quickly get
reshaping results in the middle.

the Sandwich batch normalization layers in the backbone.
Inspired by StyleGAN [21] and SEAN [54], we also inject
noise tensors scaled by learnable parameters to the input of
ResNet blocks in the backbone for the enhancement of tex-
ture reconstruction.
Global fusion module. Given the embedded features of
different components, there are various approaches for uni-
fying these features into a realistic image. Our solution is to
concatenate the partial features right before the last convo-
lution layer of the up-sampling blocks of the partial refine-
ment modules, since these features have the same shape and
size as the input component images and can thus be concate-
nated directly according to the coordinates of the partial in-
puts without further alignment. To better maintain the con-
textual information of different components, this module is
designed as a U-net [34] like structure. As illustrated is
Fig. 3, given the embedding features with different shapes,
we expand the features of smaller sizes to the same size by
copying each feature to a zero tensor with the same shape
as the input image. Then all the features are concatenated in
the dimension channel and are convoluted to synthesize the
final output with the encoded background image. The en-
coded background feature after each convolution layer has
the same dimension as the input to the corresponding up-
sampling layer and is merged progressively.

3.2.2 Training Strategy and Loss Functions

To train our network, we take a two-stage training strategy.
First, the partial refinement networks are trained with the
corresponding partial images. After the training of the lo-
cal networks is converged, the embedded features are com-
bined in the approach mentioned in Section 3.2.1 to train
the global fusion network. To discriminate the output of the
generator, we adopt the multi-scale discriminator used in
Pix2PixHD [43]. We adopt the following loss terms to train
the partial refinement and global fusing networks:
Adversarial loss: We use a two-scale PatchGAN discrimi-

Figure 6: Two sequences of progressive (from left to right)
editing and synthesis results. The first and third rows are the
corresponding landmarks graphs. We highlight the recent
changes of the landmarks in red. Our framework allows
flexible editing of individual facial components.

nator D to match the distributions between generated results
and real images in both the partial refinement and global fu-
sion networks:

LA(G,D) = E[logD(Lin, Iin)]

+ E[1− logD(Lin, G(Lin, Iin))], (2)

where D(L, I) is the output of discriminators and G(L, I)
is the output of generators.
Feature matching loss: To achieve more robust training of
all the partial refinement modules and the global fusion net-
work, we adopt the multi-scale discriminator feature match-
ing loss used in Pix2PixHD [43]:

LFM (G,Dk) = E
T∑

i=1

1

Ni
[||D(i)

k (Lin, Iin)−D
(i)
k (Lin, Iout)||1],

(3)
where T is the number of layers, Ni is the number of ele-
ments in the i-th layer, and k is the index of discriminators
in the multi-scale architecture.
Lab color loss: To control the color tones of generated re-
sults, we measure the chromatic distance in a and b channels
of images converted into the CIE LAB color space:

Lc = ||Lab(Iin)ab − Lab(Iout)ab||1. (4)

Identity control: We calculate the cosine similarity be-
tween the ArcFace [7] embedding features of the input
and output images to measure identity mismatch. Since
these features are embedded by the whole face recognition
network of ArcFace [7] and cannot be applied during the



discrimination of local face components, we also use the
high-level feature loss with the pre-trained VGG19 model
to boost local details in both the local and global training
procedure, as shown in Eq. 6, where R stands for the pre-
trained network ArcFace[7].

Llocal
ID =||VGG(Icin)− VGG(Icout)||1 (5)

Lglobal
ID =||VGG(Iin)− VGG(Iout)||1

+ λid(1− ⟨R(Iin),R(Iout)⟩). (6)

Total loss: For the training of the partial refinement
network, the total training loss is combined as: L =
LA(G,D)+λFMLFM (G,Dk)+λcLc+λIDLlocal

ID , where
λFM = 10.0, λc = 1.0, and λID = 10.0. For the training
of the global fusion network, the total training loss is com-
bined as: L = LA(G,D) + λFMLFM (G,Dk) + λcLc +

λIDLglobal
ID , where λFM = 10.0, λc = 1.0, and λID = 1.0.

4. Experiments

In this section, we compare our proposed technique to
the state-of-the-art methods, both quantitatively and quali-
tatively. We also present the results of an ablation study.

4.1. Setup

Dataset and data preparation. We evaluate our model on
the CelebA-HQ dataset [45], which consists of 30K face
images. First, we adopt the face alignment algorithm used
in the data cleaning of the FFHQ dataset [21] to fix the
locations of facial components and remove the faces with
yaw angle out of the range [−15◦,+15◦] to focus on the
front view. Next we obtain dense facial landmarks of 772
points via Face++ Dense Facial Landmarks API [1]. Since
the landmark labels cannot present the existence of eye-
glasses, we exclude the face images with eyeglasses from
the dataset. Finally, 18K images are remained and divided
into a training set and a testing set at the ratio of 9:1.
The landmarks are then connected as 2D triangle meshes
and converted into semantic maps in the same form as
CelebAMask-HQ [24]. To ensure a fair comparison with
the other methods, all the training and testing images used
for comparisons are resized to 256× 256 resolution.
Implementation details. For the input image size of dif-
ferent facial components, in our following experiments we
set 512 × 512, 128 × 320, 160 × 160, and 192 × 192 for
“remainder”, “eyebrows and eyes”, “nose”, and “mouth”,
respectively. As for networks settings, we use the Adam
optimizer with a learning rate of 0.0001. We use instance
normalization for down-sampling and up-sampling layers.
Please refer to the supplementary material for more details.

For the deformation interface, We obtain dense facial
landmarks of 772 points but in practice we only use 193 of
them by selecting points at an interval of three for deforma-
tion and landmark graph rendering. This not only reduces

the inference time for deformation but also facilitates ma-
nipulation for users. We show our interface in Fig. 5.
Existing methods for comparison. We compare our
method with four state-of-the-art open-source methods:
SEAN [54], CoCosNet [51], MaskGAN [24], and Bi-
layer [49], using their official implementations. We also
compare an image warping approach based on moving least
squares (MLS) [36]. The first three works take a reference
image and a semantic mask as the conditional input of net-
works to manipulate the entire face image. We trained them
all on the CelebA-HQ dataset [45], with the same semantic
maps converted from our dense landmarks. Bilayer [49] is
a kind of face reenactment method, which is originally de-
signed to create head avatars from a single photograph but
not to reshape faces. Since it also takes facial landmarks as
input, we compare this method in the manner of visual re-
sults to show the difference between face reenactment and
editing methods.
Evaluation metrics. We reconstruct the images in the test
set and compare the results of the existing methods and ours
under two different perspectives: 1) the structural similarity
(SSIM) [45] and peak signal-to-noise ratio (PSNR) to eval-
uate the reconstruction quality; 2) the learned perceptual
image patch similarity (LPIPS) to evaluate the perceptual
similarities. If the reconstruction results cannot maintain
the characteristics of the input images, it would be difficult
to perform further editing. We thus use the reconstruction
results to measure the performance of the compared gener-
ation networks.

We also evaluate all the methods on the edited images.
For making a fair comparison, we choose to acquire re-
shaped landmarks by randomly reshaping a face image. We
sample a latent vector in the latent space of our VAE (Sec-
tion 3.1) and interpolate it with the latent vector encoded
from a real face image to get the edited latent vector, which
is then decoded to get the reshaped landmarks. The fol-
lowing metrics are used for this evaluation: 1) the Fréchet
Inception Distance (FID) [14] to measure the diversity and
quality of generated images; 2) point-wise accuracy (PwA)
to measure the consistency between the input landmarks
and the detected [1] landmarks of the generated faces; 3)
face verification loss [16] (CurFR) to evaluate the perfor-
mance on identity preservation, which is independent from
our loss function.

4.2. Qualitative Results

We show progressive editing results in Fig. 6. Our
method supports detailed local edits thanks to the partial
refinement modules used in image generation. In Fig. 7,
we show qualitative comparisons with the state-of-the-art
methods. It can be observed that our results are more re-
fined than those by the compared methods, especially in the
regions of eyes and mouth. The added LAB loss Lc is able



Figure 7: Comparisons with the state-of-the-art methods given the same deformed landmarks (the second column). For fair
comparison, the background is added by one copy-paste-blend step for the results of all the face generation methods.

Table 1: Quantitative comparisons with the existing methods. Our method outperforms the compared methods for static
facial image synthesis.

Method SSIM↑ PSNR↑ LPIPS↓ FID↓ PwA↓ CurFR↑
SEAN 0.696±0.152 28.70±4.19 0.273±0.063 45.93 15.21±1.66 0.64±0.17

CocosNet 0.731±0.123 28.85±3.61 0.252±0.053 50.64 12.63±1.47 0.73±0.14

MaskGAN 0.679±0.164 28.79±4.26 0.301±0.077 61.31 12.88±1.73 0.61±0.18

Bilayer 0.630±0.136 28.65±4.17 0.309±0.058 54.55 17.92±1.54 0.67±0.15

Ours 0.761±0.119 29.12±3.46 0.237±0.052 43.97 11.05±1.42 0.78±0.13

to adjust the global hue to better match the input image than
MaskGAN [24] and SEAN [54]. MLS [36] failed to syn-
thesize the hidden regions such as inner mouth. The results
of Bilayer [49] are realistic in the aspect of motion transfer
but lack variations of shapes. CocosNet [51] retains most
regions well but generates blurry teeth. This is possibly be-
cause CocosNet learns the correspondence between the im-
age exemplar and input label but there is no exposed teeth
in the image exemplar.

4.3. Quantitative Comparison

In Tab. 1, we report the quantitative evaluation in com-
parison with the state-of-the-art techniques. We exclude
MLS [36] in this experiment since our purpose here is to
compare the generative ability of deep learning models. It
can be found that our method performs better than the com-

pared methods. Based on visual perception of the results,
we find that FID is more related to the integrity of gener-
ated faces while SSIM indicates the similarity between the
reference images and the reconstructed images as expected.
The difference in terms of PSNR is relatively minor, proba-
bly because our editing area only accounts for a small part
of the whole figure while PSNR does not perform well in
discriminating structural contents in images, as revealed in
the previous studies [15, 44]. Due to the noise in the detec-
tion of landmarks, PwA has more noise than SSIM, LPIPS
and CurFR, but the average values of the compared methods
under PwA are still different.

4.4. Ablation Study

We perform an ablation study both quantitatively and
qualitatively to verify the impact of individual components



Figure 8: Editing results without (a-d) and with (e) landmark optimization. From (a) to (d), the user drags one to four points,
respectively. We render Lout directly from Musr without landmark optimization. In (e), the user drags only one point and
we render Lout from Mout with landmark optimization.

Table 2: Ablation study on the CelebA-HQ dataset. Our full framework of the local-to-global network with noise injected
leads to the best results. The confidence intervals with 0.95 confidence level are shown in the above table.

Setting SSIM↑ PSNR↑ LPIPS↓ FID↓ PwA↓ CurFR↑
Global w/o Lc 0.661±0.157 28.83±4.55 0.291±0.072 57.18 12.02±1.66 0.66±0.17

Global w/o noise 0.671±0.138 28.89±3.92 0.280±0.064 55.17 12.12±1.57 0.62±0.15

Global w/o Transformer 0.655±0.135 28.87±3.78 0.283±0.055 56.69 13.69±1.61 0.59±0.14

Global 0.676±0.142 28.91±4.40 0.268±0.068 47.20 11.98±1.52 0.68±0.15

Ours w/o LID 0.694±0.123 28.96±3.62 0.257±0.053 46.09 11.52±1.46 0.57±0.16

Ours w/o optimization
0.761±0.119 29.12±3.46 0.237±0.052

51.32 14.94±1.49 0.63±0.18

Ours 43.97 11.05±1.42 0.78±0.13

in our model. We first perform the ablation comparison on
landmark optimization to show how it can help reduce the
number of user operations, as shown in Fig. 8. In (a)-(d),
the results exhibit noticeable artifacts since the face outlines
with the changes only caused by the user-edited landmarks
are unrealistic. In contrast, the landmark optimization (e)
adjusts all the landmarks along the face outline with respect
to the user-edited landmarks. We add the ablation quanti-
tative evaluation in Tab. 2, where “Ours w/o optimization”
refers to the our results directly using Musr (without the
landmark optimization) to render semantic maps. As the re-
construction process does not involve optimization, “Ours
w/o optimization” and “Ours” share the same results in
SSIM, PSNR, and LPIPS. It can be seen that without this
module our method leads to poorer performance in terms of
FID, PwA, and CurFR.

We also perform the ablation comparison on different
settings of generative networks to evaluate the effect of each
module. As shown in Tab. 2, all the “Global” settings, i.e.,
without the partial refinement modules, lead to poorer per-

formance than the local-to-global framework, denoted as
“Ours”. The method of injecting learnable noise also leads
to higher performance. This is also confirmed by visual
comparisons, as shown in Fig. 9. It is obvious that skin col-
ors can be different without the Lab color loss Lc in Eq. 4,
as confirmed by the heat maps. We also compare the per-
formance of the appearance encoders with and without the
Transformer encoder. It can be seen that the version without
the Transformer design has lower scores. The added noise
is useful to improve the synthesis of the detailed texture.

One crucial point of our framework is to maintain the
identity while reshaping a face. Since we believe that the
identity of a face is determined by both the texture and
shape, our goal is more likely to keep the origin texture.
The ability to control identity in our method is basically ac-
complished by the appearance encoder and is ensured by
the identity losses during training. The visual comparison
between the results with and without the identity control
losses in Fig. 9 shows the positive effects of our identity
control.



Figure 9: Ablation study. We show the generated results under different settings and their corresponding heat maps, which
visualize the difference between the generated results and the input images. To focus on the face region, we set the background
regions in the heat maps with the same color. Our full framework achieves the best results with the most accurate changes.
In the other settings, there are more or less undesired changes, such as the change of skin color in “Global w/o Lc”.

Table 3: The statistics of the usability study. The scores
range from 1 (the worst) to 5 (the best). We use the official
checkpoint and interface of MaskGAN [24] for the usability
study.

Aspects
MaskGAN
(Drawing)

DeepFace
Editing

Ours
(Dragging)

Quality 3.64 4.31 4.27

Identity control 3.27 4.46 4.55
Expectation fitness 3.64 4.57 4.45

Usability 3.18 4.12 4.55

4.5. User Study

To evaluate the convenience of our dragging interface
and expectation of reshaping results, we conduct a usability
study and a perceptive evaluation study, respectively.

For the usability study, we compared our dragging in-
terface and two drawing interfaces of MaskGAN [24]
and DeepFaceEditing[5], since they provide well-designed
open-source interfaces and are thus suitable for compari-
son. 10 users (7 male and 3 female) were invited to partic-

ipate. According to their work experience in art, the users
can be divided into three groups: 1 professional user, 3 mid-
dle users and 6 novice users. First they were asked to use
the two compared systems by completing several tasks: en-
larging the mouth and eyes, raising the eyebrows, and re-
shaping the nose and cheeks. Then the users were asked to
give scores on the quality of results, identity control, expec-
tation fitness, and usability. The results are listed in Tab. 3.
In the aspect of quick editing, our system is considered to
be easier to use than MaskGAN. For example, to open the
mouth using their drawing system, users had to erase the
original mask and then draw the upper lip, lower lip and in-
ner mouth. In contrast, this is achieved with a simple drag-
ging operation with our system.

For the perceptive evaluation study, we conducted an
online questionnaire survey. 20 reshaping results by the
participants and the authors with our tool were collected.
The generation results by CocosNet, MaskGAN, SEAN,
and ours were arranged in groups of four and the orders
in groups were shuffled. Since MLS [36] and Bilayer [49]
are not originally designed for face editing and their results
vary little when the landmarks are not changed greatly, we



Table 4: The summarized results of the perceptive evalu-
ation study. We report the average ranking score of the
four compared methods (1: the best and 4: the worst). Our
method scores better in all the aspects of quality, expecta-
tion fitness, and identity control compared to the other deep
generative methods.

Aspects MaskGAN SEAN CocosNet Ours

Quality 3.01 2.88 2.12 1.99
Expectation fitness 2.43 2.59 2.25 1.73
Identity control 3.08 3.04 1.99 1.89

Table 5: Comparisons of computational cost with the exist-
ing methods. We measure the cost by multiply–accumulate
operations (MACs). Our model has medium computational
complexity.

Method Bilayer SEAN CocosNet MaskGAN Ours

MACs(G) 17.3 343.2 380.2 18.3 48.2

do not include the results by these techniques for fairness
and to avoid confusing participants. The participants were
asked to sort results from high to low in three aspects of gen-
eration quality, expectation fitness, and the ability to control
identity. The results are summarized in Table 4.

4.6. Computational Cost

Since our framework divides the input image into four
components and builds one partial network for each compo-
nent, there is a potential concern that our method might re-
quire substantial computing power. To show the efficiency
of our method, we compare the computational cost of our
framework with the other deep learning methods. Here we
do not compare the computation cost of MLS [36] with
other methods calculated on the GPUs because MLS dose
not involve extensive convolution operations and is mainly
calculated on the CPU. As showed in Table 5, the compu-
tational cost does not increase a lot when we build one net-
work for each component, since the total areas of inner com-
ponents are far smaller than the whole image, the increased
cost for the ”mouth”, ”nose” and ”eyebrows and eyes” is no
more than the cost for the background. Meanwhile, the four
parts can be generated in parallel and thus the computing
time is basically up to the size of the whole image.

5. Conclusion and Discussions

We have proposed a novel deep generative framework
for interactive face reshaping via an easy-to-use dragging
interface. We apply neural shape deformation to the land-
mark graph so that users can provide precise control via
a small number of landmark-based handles while our sys-

Figure 10: Limitations of our work. The input and output
images in the first row show a failure case where the identity
of the in-the-wild image is not preserved well: the areas of
hair and skin are blurry. The input and output images in the
second row reveal the limitation of deformation: the jaw
has been reshaped out of normal range with the inner facial
components unchanged, causing ugly generated results.

tem automatically completes the desired deformation ef-
fects. Our local-to-global generative network produces re-
alistic faces respecting user inputs and the identity of input
face images. The effectiveness of our method and the us-
ability of our interface have been confirmed by extensive
experiments.

Although our model is able to synthesize edited facial
images with high authenticity and details, there are still sev-
eral limitations. First, the deformation is limited to the land-
mark graph domain, and thus our tool cannot be used to di-
rectly edit non-landmark regions like hair and accessories.
A more general deformation domain for 2D facial images is
needed and worthy of further study. Second, our framework
might not cover extreme deformations that are outside the
normal range, as shown in Fig. 10. This can be addressed by
softening the constraints of handle points to restrict the user-
manipulated landmarks to normal ranges. Third, the capa-
bility to preserve the identity of face images in the wild that
are far away from the distribution of the training set is lim-
ited. For example as shown in the supplementary materials,
the identity of the elderly is difficult to maintain, possibly
because of the lack of old people in our training dataset. A
possible solution is to enlarge the variety of training datasets
and optimize the structure of network model. Besides the
above limitations, since our tool does not support the direct
control of details, our tool may have less granularity for pro-
fessional editing compared to professional drawing editing
tools such as DeepFaceEditing [5]. In the future, we are in-
terested in extending neural deformation to the wider forms
of representation beyond facial landmarks.
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