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Abstract

Recent years have witnessed the emergence of vari-
ous techniques proposed for text-based human face gen-
eration and manipulation. Such methods, targeting at
bridging the semantic gap between text and visual con-
tents, provide users with a deft hand to turn ideas into
visuals via the interface of text and enable more di-
versified multimedia applications. However, due to the
flexibility of linguistic expressiveness, the mapping from
sentences to desired facial images is clearly many-to-
many, causing ambiguities during text-to-face genera-
tion. To alleviate these ambiguities, we introduce a local-
to-global framework with two graph neural networks
(one for geometry and the other for appearance) em-
bedded in to model the inter-dependency among facial
parts. This is based upon our key observation that the
geometry and appearance attributes among different fa-
cial components are not mutually independent, i.e., the
combinations of part-level facial features are not arbi-
trary and thus do not conform to a uniform distribu-
tion. By learning from the dataset distribution and en-
abling recommendations given partial descriptions of
human faces, these networks are extremely suitable for
our text-to-face task. Our method is capable of gen-
erating high-quality attribute-conditioned facial images
from text. Extensive experiments have confirmed the su-
periority and usability of our method over the prior art.

Keywords: Image Generation, Text-based Interaction,
Human Faces

1. Introduction

How does a certain character in a novel look like visu-
ally? This is a common question raised by readers when
they are immersed into the content of a novel and won-
der more details behind the text. Can we reconstruct the
faces in the novel simply from textual descriptions [29] Al-
though it sounds impossible in the past, this depiction-to-
visualization procedure has the potential to become reality
now, enabled by the fascinating progresses of human face
generation and manipulation methods as well as natural lan-
guage processing techniques. Inspired by this, in this work,
we aim at visualizing such depiction by building an inter-
face for converting the textual descriptions to human faces,
and introduce a recommendation mechanism for proposing
coherent faces given partial descriptions.

Efforts have been devoted to the field of text-based im-
age generation in previous years, but not until recently do
such methods begin to apply to facial images. Thanks to the
visual-linguistic joint representation ability of CLIP [24], a
series of works (e.g., [21, 40]) derive in this domain. By
attempting to bridge the semantic gap between the visual-
linguistic joint latent space of CLIP and the latent space of
the state-of-the-art face generation model, StyleGAN [12],
such methods are capable of generating and editing face
images with specific attributes that are semantically con-
sistent with the given text prompts (e.g., glasses, hairstyle,
emotions and expressions), and have achieved impressive
results. A concurrent study from [10] also provides a pow-
erful tool for interactive editing of face images using text
as hints. They model the mapping from the textual editing
instructions to the editing directions in the StyleGAN latent
space as a semantic field.

Different from previous works, our work sheds light
on a text-guided face generation process rather than using
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        …… It was impossible to see more charm in 
beauty than in that of Marguerite...Set, in an 
oval of indescribable grace, two black eyes, sur-
mounted by eyebrows of so pure a curve that it 
seemed as if painted; veil these eyes with lovely 
lashes, which, when drooped, cast their shadow 
on the rosy hue of the cheeks; trace a delicate, 
straight nose, the nostrils a little open, in an 
ardent aspiration toward the life of the senses; 
design a regular mouth, with lips parted gra-
ciously over teeth as white as milk; colour the 
skin with the down of a peach that no hand has 
touched, and you will have the general aspect of 
that charming countenance. The hair, black as 
jet, waving naturally or not, was parted on the 
forehead in two large folds and draped back 
over the head, leaving in sight just the tip of the 
ears, in which there glittered two diamonds, 
worth four to five thousand francs each. ……

/   oval face   / /   straight nose   //   arch eyebrows   / /   parted mouth   / /   black hair   /

La dame aux camélias
( Alexandre Dumas fils, 1848) END-TO-END

SEQUENTIAL

TEXT INPUT

She has oval face, arch eyebrows, straight nose, parted mouth and black hair.

Figure 1. We present a novel pipeline for text-driven face generation, supporting intuitive control over the part-level geometry and appear-
ance of generated facial images using text as the only input (Right-top, manually simplified from a novel paragraph on the Left.). Our
pipeline inherently supports both end-to-end text-to-face generation (Right-middle) and sequential generation (Right-bottom), as illustrated
here.

texts to guide the editing process of human faces, and we
explicitly model the geometry and appearance features in
the pipeline in a disentangled way, rather than an entan-
gled representation as a StyleGAN latent feature, bringing
more flexibility for part-level control. Moreover, we are en-
abling more attributes to be controlled via text, while pre-
vious methods only generate poor editing results on these
attributes, as illustrated in our experiments. To this end,
we propose a multi-stage framework comprising four parts,
namely Text Parsing Module, Feature Extraction Module,
Graph Recommendation Module, and Global Generation
Module. The Text Parsing Module maps sentence inputs
into attribute-value pairs, thus providing a simple yet ac-
curate way of finding key textual hints. The Feature Ex-
traction Module is responsible for disentangling the geom-
etry and appearance features for each facial component, fol-
lowed by a Graph Recommendation Module, which learns
the inference relationship among facial components. Fi-
nally, the geometry and appearance features optimized by
the Graph Recommendation Module are transformed into
photo-realistic images by the Global Generation Module.

We summarize our main contributions as follows:

• We enable detailed part-level attribute-conditioned
face generation from textual descriptions, enabling
more controllable attributes than previous methods.

• We incorporate graph neural networks (GNN) into the
generation process of face images, enabling geome-
try and appearance recommendation upon given con-
ditions from text.

2. Related works

2.1. Neural Face Generation and Editing.

The prosperity of deep neural networks has demon-
strated their capability in the literature of human face gen-
eration and editing. To generate face images with high fi-
delity, Karras et al. [12] propose StyleGAN and a series of
its variants [13, 11]. These models are capable of generating
high-resolution photo-realistic faces by randomly sampling
from a latent distribution pZ(z) and are robust to noisy in-
puts, thus inducing an abundance of follow-up works (e.g.,
[20, 1, 33]), which explore the properties of its intermedi-
ate latent space W to implement conditional face generation
and editing. While StyleGAN-based methods could bene-
fit from the unprecedented generation ability of StyleGAN
and generate photo-realistic human faces, non-StyleGAN-
based methods are deft in this domain as well. For exam-
ple, Chen et al. [3] propose a structural framework to disen-
tangle the geometry features from the appearance features,
using sketch as intermediary. Lee et al. [15] adopt seman-
tic masks as an intermediary for flexible face manipulation
while preserving identity and fidelity.

Although these methods are promising in generating
and/or manipulating human face images, they do not im-
plicitly take into account the inherent coherence among the
appearances and geometric features of facial components,
thus being incapable of understanding high-level seman-
tics and structures of human faces, let alone recommend-
ing and generating faces with geometrically coherent and
appearance-consistent human faces. In contrast, our work
explicitly models the relationship among facial part geome-



try and appearance (respectively) using graphs and achieves
easier control over the geometry and appearance features.

2.2. Text-guided Graphics and Vision.

Text enjoys wide applications in human-computer inter-
action, with recent advances in vision and graphics having
integrated text as an interface for image generation and ma-
nipulation. Previously, text-based image generation meth-
ods [31, 19, 23, 4] focus on generating simple-structured
images like birds, using the CUB200 dataset [35], and flow-
ers, using the Oxford-Flower-102 dataset [19], etc. These
methods generally lack thorough analysis over the target
data distribution (in their cases, birds and flowers, etc.; in
our case, human faces), therefore being unable to improve
the quality of the generated images. Based on large pre-
trained models, DALLE/DALLE2[25, 5] are able to gener-
ate complex and semantically abundant images from pure
text inputs, achieving phenomenal effects on text-based im-
age generation.

Recent progresses on text-guided graphics and vision are
largely facilitated by the strong visual-linguistic represen-
tation ability of CLIP. CLIPasso [34] utilizes CLIP image
encoder to measure the semantic and geometric similarity
between input real images and abstracted sketches, bene-
fiting from the rich semantics within the CLIP text-image
joint latent space. CLIPstyler [14] incorporate CLIP for im-
age style transfer, where the desired style is specified via
text inputs. Sangkloy et al. [27] design a image retrieving
system using both text and sketch as query. With the help
of this system, users could conduct fine-grained retrieval
which could not be achieved using any of the two modalities
alone. 3D content creation field also benefits from CLIP,
with Text2Mesh [17] being a representative work. The pro-
posed method predicts per-vertex color and positional off-
sets from the input template mesh, and use a differentiable
render to propagate the CLIP 2D semantic supervision to
3D.

Specifically within the face generation and manipulation
community, Patashnik et al. [21] introduce three CLIP-
based approaches under this direction, all targeting at ma-
nipulating inverted StyleGAN images. Xia et al. [39] yet
map multi-modal inputs including text into the fixed W
space of StyleGAN, forcing the embeddings of multiple
modalities to be as close as possible to the inverted w ∈ W
of their corresponding real face image. Jiang et al. [10]
model the mapping between text features and StyleGAN la-
tent editing directions using an MLP, by which they attempt
to solicit the most salient editing direction corresponding to
the textual hints. Their approach is deft at editing global at-
tributes such as age, beard, smiling emotion, etc., instead of
editing part-level geometry and appearance features as we
do.

The above-mentioned methods, while having achieved

impressive results in manipulating human faces, often rely
too much on the representation ability of large pretrained
models such as CLIP and StyleGAN. Thus they compro-
mise detailed semantic control over each component of hu-
man faces, i.e., some attributes in the StyleGAN latent space
are highly entangled (as mentioned in [39]). Our work,
built upon a local-to-global framework, is able to translate
semantic descriptions to part-level visuals with geometry
and appearance compatibility, thus supporting disentangled
control for each part while also taking the overall coherence
into consideration. Also to note that most of the controllable
facial attributes enabled by our method do not overlap with
those enabled by previous works, and editing/generating
these attributes using previous methods yields less satisfy-
ing results, as shown in Sec. 4.
3. Methodology

Given an input sentence s describing a human face, we
aim to generate a photo-realistic facial image Ifinal with
details in accordance with the descriptions in s. To elimi-
nate potential abuse of our work, the input adjectives used
to describe the face are restricted within a range (see more
discussions the supplementary materials). Due to the diver-
sity of linguistic descriptions, the mapping from sentences
to faces is clearly many-to-many, bringing about more am-
biguities when s contains fewer detailed specifications for
each facial part. Therefore, we suggest a recommendation
mechanism to infer the features of facial parts that are not
specified in s from specified ones, aiming at a seamless
combination of part features during global generation. Note
that the input sentence s could also be several separate sen-
tences, as long as they together describe the same face.

This requires us to learn the inter-dependency and in-
trinsic compatibility among facial parts, from both geome-
try and appearance perspectives. This requirement in turn
leads us to design our whole pipeline in a local-to-global
manner. Specifically, during training and inference, we di-
vide a facial image into five parts, namely part ∈ P :=
(leye, reye, nose, mouth, bg), where bg stands for back-
ground. See Fig. 2 for more details. Network details are
included in the supplementary materials.

3.1. Pipeline

3.1.1 Text Parsing Module

By assumption, the input sentences contain certain patterns
which are suitable for extracting attribute-value pairs di-
rectly using a regular parser [38]. The parser is used to
acquire semantic descriptions for each facial part, including
geometry descriptions and appearance descriptions, as pre-
viously mentioned. Specifically, given the input sentence(s)
s, the parser P will produce a set of attributes P(s) that are
used to index into the database for finding the corresponding
geometry and appearance features for the subsequent gener-



TEXT INPUT
She has an oval face, with arch 
eyebrows, straight nose, parted 
mouth and black hair.
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Figure 2. Overview of our pipeline. Our pipeline follows a local-to-global manner. The Text Parsing Module parses one or multiple
sentences s describing the same face into a set of keywords, which are used for conditionally sampling features for face generation from
a property pool. The features in the property pool are extracted in advance using the Feature Extraction Module, which is trained to
disentangle geometry from appearance for each facial component. The Graph Recommendation Module contains two graphs, Appearance
Graph and Geometry Graph. They learn the coherence among facial components from appearance and geometry perspectives, respectively,
and thus are able to propose recommendation for unspecified facial parts in s. Finally, the Global Generation Module is used to fuse the
part-level feature maps into a generated face image Ifinal. During inference, the input sentence s is parsed into keywords indexing into
the property pool to get corresponding part features. The part features are optimized by the Appearance Graph and Geometry Graph , after
which the optimized features are sent into the part-level decoders ({Decr}) in the Feature Extraction Module to get the feature maps. The
feature maps are fused at fixed positions and translated into real image Ireal by the Global Generation Module.

ation process. In our implementation, we parse the sentence
s using the off-the-shelf spaCy [8] library by analyzing the
dependency tree and part of speech of the words.

3.1.2 Feature Extraction Module

This module serves for local geometry and appearance dis-
entanglement. It takes as input real images of facial com-
ponents Irpart (r standing for real) belonging to a whole
image I , and outputs their corresponding geometry fea-
tures fgeo

part and appearance features fapp
part. We omit all

the subscript part in the rest of this section when there is
no ambiguity. We propose our Feature Extraction Mod-
ule for explicitly disentangling geometry and appearance
features of facial images, using sketches as intermediary
[3]. For each facial part, we first train an auto-encoder
AEs := (Encs, Decs) (s standing for sketch) over the
sketch domain using L1 reconstruction loss as supervision,
after which we get the part-level sketch feature defined as
fs := Encs(Is) ∈ R512. This geometry feature is fur-
ther utilized to guide the disentanglement of the geometry
and appearance features of real image Ir. This is done by
another auto-encoder AEr := (Encr, Decr), whose ar-
chitecture is inspired by [22]. AEr extracts geometry and
appearance features from Ir simultaneously, enabling us to
formulate fapp and fgeo as two vectors, rather than the fea-
ture maps used in [3]. Using vectors rather than feature

maps is a necessary formulation since the graph networks
in Graph Recommendation Module could not take feature
maps as input. The geometry feature of Ir is defined as the
latent vector fgeo ∈ R512 acquired by the fully connected
layer after the last encoding block, and the appearance fea-
ture of Ir is defined as the linear combination of IN parame-
ters of encoding blocks. Formally, fapp =

∑
i wi(µi ⊕σi),

where ⊕ represents vector concatenation, µi and σi are the
mean and standard deviation of the i-th layer’s feature map,
and {wi} are learnable weights. To achieve disentangle-
ment, we force fgeo to be aligned with fs, which is encoded
by the pretrained sketch encoder Encs.

3.1.3 Graph Recommendation Module

With the disentangled geometry and appearance features,
we propose two graph neural networks, one for recommend-
ing compatible geometry features for unspecified parts (Ge-
ometry Graph), and the other for unifying the appearance of
generated face image from part-level (Appearance Graph).
For the inference procedure, please refer to Sec. 3.2.

Geometry Graph Our key observation here is that the
geometry features of different facial parts should share an
intrinsic coherence, i.e. not all the combinations of facial
geometry form compatible faces [42]. For example, the
eyes of the same face should be largely symmetric, while



the size of mouth and shape of jaw will both influence the
contour of the whole face, etc. We formulate the recommen-
dation problem as a conditional sampling and prediction
of unspecified facial parts, and model the inter-dependency
of geometry features among different facial parts as a 5-
node (one node represents one facial part) bipartite graph
Ggeo := (V geo, Egeo) during each step of inference, where
V geo contains the geometry features of 5 nodes and Egeo

comprises the edges from every node of specified/predicted
parts to every node of unspecified/unpredicted ones. For-
mally, let Ps denote the text-specified/predicted subset of
P , we have

V geo := {fgeo
part | part ∈ P} (1)

Egeo := {egeox→y : fgeo
x 7→ fgeo

y |x ∈ Ps, y ∈ P\Ps} (2)

where each edge egeoxy in Egeo is implemented as an MLP.
We denote the output of Geometry Graph as {f ′geo}.

Appearance Graph With this appearance graph, we aim
to achieve controllable style fusing for appearance features
from different source images. We observe the fact that the
appearance of one facial part may largely tell what other
parts look like. That is, for example, if we know that
the eyes of a face have a light/dark skin color, we will
have enough confidence to reason that the whole face has a
light/dark color. This inter-dependency of appearance fea-
tures among different parts is modeled using a 5-node com-
plete graph Gapp := (V app, Eapp), formally,

V app := {fapp
part | part ∈ P} (3)

Eapp := {eappx→y : fapp
x 7→ fapp

y | x, y ∈ P, x ̸= y} (4)

We model every edge eappxy ∈ Eapp as a unified EdgeConv
[37] function which is shared across different edges to up-
date the node features during every propagation. The out-
puts of Appearance Graph are denoted as {f ′app}.

3.1.4 Global Generation Module

We base our Global Generation Module on the commonly
adopted image-to-image translation model pix2pixHD [36],
which takes as input the optimized appearance feature
{f ′app} and the part-level geometry features {f ′geo}, and
outputs the final synthesized image Ifinal. {f ′app} and
{f ′geo} are first sent through the {Decr} mentioned in Sec.
3.1.2, after which we spatially combine the feature map of
the second-last layer of {Decr} as indicated in Fig. 2. The
combined feature map is then fused into a photo-realistic
image Ifinal using Decglobal consisting of a sequence of
ResBlocks [7].

3.2. Graph Recommendation Mechanism

We formalize the inference logic of Graph Recommen-
dation Module in this subsection.

Graph Recommend

GEOMETRY GRAPH

Graph Recommend

Attribute-conditioned
Manifold Projection

Figure 3. Illustration of the graph recommendation for Geome-
try Graph. We iteratively perform attribute-conditioned manifold
projection to generate compatible geometry features for the whole
face.

3.2.1 Geometry Graph

The inference procedure of Geometry Graph follows a step-
by-step manner, where we start from deciding the geometry
feature for bg. If fgeo

bg is specified in the input sentence s,
we conditionally sample a geometry feature from our prop-
erty pool using the specified attributes as condition. If fgeo

bg

cannot be directly inferred from the input sentence s, i.e. no
key in P(s) is relevant with the face contour, we randomly
sample a geometry feature for fgeo

bg from our property pool.
Then fgeo

bg is used to predict compatible geometry features
for all the other parts. Generally, the predicted feature for
an unspecified part is forwarded as follows,

f̂geo
part =

1

|Ps|
∑
x∈Vs

egeox→part(f
geo
x ), part ∈ P\Ps (5)

where Ps is the specified/predicted subset of P as men-
tioned in Sec. 3.1.3. When deciding the next part geom-
etry feature, for example fgeo

nose, we already have a predicted
one from fgeo

bg , which we denote as f̂geo
nose. Therefore, if

nose is not specified, we directly use f̂geo
nose as fgeo

nose. Other-
wise, we could sample from all the geometry features in our
database which satisfy the specified attributes for nose, and
apply manifold projection to f̂geo

nose over the sampled sub-
set of database. We call this process attribute-conditioned
manifold projection, abbreviated as A. Formally, the pre-
diction logic for fgeo

nose can be formulated as follows,

fgeo
nose =

{
f̂geo
nose, if nose is not specified

A(f̂geo
nose), if nose is specified

(6)

After the two iterations above, fgeo
nose and fgeo

bg have been
decided, which will be fixed and used to predicted the rest
undecided part geometry features like what has been done
for predicting fgeo

nose. Iterations terminate until all the part-
level geometry features have been decided. We denote the
output of Geometry Graph as {f ′geo}.
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Figure 4. Illustration of the graph recommendation for Appear-
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3.2.2 Appearance Graph

The Appearance Graph learns the relationship among the
appearance features of different facial parts. Since the ap-
pearance features of different parts do not lie on the same
manifold, we extend each fapp ∈ R512 to f̂app ∈ R2560

during both training and inference to expect {f̂app} belong
to the same space. Intuitively, one could interpret f̂app as a
vector belonging to the direct sum of five part-level appear-
ance feature space . The extended dimensions and miss-
ing part-level appearance features are padded with zeros as
default. {f̂app} are used to perform message-passing up-
dates, during which process the data flow between every
pair of nodes unify the appearance features from different
facial parts. Finally, after several rounds (5 in our imple-
mentation) of message-passing, we acquire the optimized
appearance features for each part: {f ′app}, f ′app ∈ R512

by extracting the corresponding slices of {f̂ ′app}, which are
optimized by Appearance Graph from {f̂app}. To be more
specific, we have

f̂app
part[i× 512 : (i+ 1)× 512] = fapp

part (7)

f ′app
part = f̂ ′app

part [i× 512 : (i+ 1)× 512], (8)

where i is the index of part in P .

3.3. Training Stages

The training process of the entire pipeline contains three
stages. We introduce them respectively in this subsection.
The training process is totally independent from any at-
tribute label.

Stage I: Training the Feature Extraction Module. As
described in Sec 3.1.2, (fgeo, fapp) = Encr(Ir). During
training, we force the decoder Decr to reconstruct the orig-
inal image, i.e., forcing Irecon = Decr(fgeo, fapp) to be
as close to Ir as possible. Therefore we have the first loss
term Lrecon defined as follows,

Llocal
recon = ∥Ir − Irecon∥1. (9)

To eliminate the interdependence of geometry and appear-
ance features, we align the geometry feature space of real
images ({fgeo}) with that of sketches ({fs}), where fs is
extracted via the pre-trained Encs. Thus, the second loss
term Lalign comes as follows,

Lalign = ∥fgeo − fs∥2. (10)

Further, we utilize the third loss term – adversarial loss
Ladv , in a similar way as [16] do, by employing a discrimi-
nator Disr,

LEnc,Dec
adv = E[(Disr(Irecon)− 1)2], (11)

LDis
adv = E[(Disr(Ir)− 1))2] + E[(Disr(Irecon)2]. (12)

In summary, the training objective for Stage I is formulated
as a minimax game as follows,

min
Enc,Dec

Llocal
recon + λalignLalign + λadvLEnc,Dec

adv , (13)

min
Dis

LDis
adv . (14)

In our implementation, we set λalign = 0.01, and λadv =
0.005.

Stage II: Training the Geometry Graph in the Graph
Recommendation Module. The Geometry Graph mod-
els the geometric coherence among facial parts. This is en-
abled by learning a set of MLP-based mappings between the
latent spaces of every pair of facial components. For each
pair of facial components x, y ∈ V geo, x ̸= y, we force the
MLP exy to map fgeo

x to fgeo
y . Therefore the loss is sim-

ply defined as an L2 loss between the predicted y geometry
feature f ′geo

y := exy(f
geo
x ) and the fgeo

y :

min
exy

∥fgeo
y − f ′geo

y ∥2. (15)

Stage III: Joint Training of the Global Generation Mod-
ule and the Appearance Graph in the Graph Recommen-
dation Module. The Appearance Graph learns the style
inter-dependency among facial components, with which we
want to achieve appearance reasoning when observing par-
tial appearance of a face, and appearance fusing when com-
bining facial components from different sources. Therefore,
we train our Appearance Graph together with the Global
Generation Module using the reconstruction loss as main
supervision. Given the original geometry features {fgeo}
and partial appearance features {Dropout(fapp, p)}, where
Dropout represents Dropout function operating on every
part-level appearance feature and p is the Dropout prob-
ability (p = 0.1 in our implementation), we first com-
pute the optimized appearance features {f ′app} by call-
ing Gapp. Then {fgeo} and {f ′app} are used to com-
pute the local feature maps for each part, which are fur-
ther combined into F ∈ R32×512×512. Finally, we have
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Figure 5. Editing comparisons with state-of-the-art methods. We perform single-attribute editing for each example. In all three exam-
ples, TediGAN [39] fails to produce changes corresponding to the text-specified facial attributes. For StyleCLIP [21], it succeeds in turning
a closed mouth into an opened one, while it also fails on the other two cases. We speculate from an empirical perspective that the success
of editing an opened mouth and the failure of editing eyebrows/nose shape may both ascribe to the entangled nature of the StyleGAN latent
space, as prior arts [1, 10, 9, 26] have already managed to change the mouth openness via StyleGAN latent manipulation but none (to our
knowledge) have succeeded in editing eyebrows/nose in the same way. Overall, our method yields the most satisfying results from both
reconstruction quality and editing effectiveness.

Ifinal = Decglobal(F ). The first loss is L1 reconstruction
loss,

Lglobal
recon = ∥Ifinal − I∥1. (16)

We further employ VGG loss [28] and Lab loss [30] to con-
strain on the visual accuracy of generated images. There-
fore, the training objective for this stage is as follows,

min
Gapp,Decglobal

Lglobal
recon + λvggLvgg + λLabLLab. (17)

We set λvgg = 0.2, λLab = 0.001 in our experiments.

4. Experiments

4.1. Data Preparation

When generating the training dataset (as well as our
database), we only generate frontal faces to eliminate the
negative impacts of occlusion and pose, i.e. we reasonably
use the a priori of face layout and pose. Here, we explain
for short why we only use frontal and occlusion-free faces.
The reason is two-fold:

• Non-frontal faces bring about difficulties for the graph
recommendation module to infer the accurate geome-
try/appearance correlation. For example, an apparent
geometry relation within the human face is the sym-
metry of two eyes. If a face has a big yaw, the sym-
metry would not exist in the image space because this
3D symmetry is not preserved when being projected to
2D.

Attr Face Brows Eyes Nose Mouth
Ours 0.84 0.92 0.87 0.86 0.76

Acc AttnGAN 0.16 0.16 0.24 0.30 0.20
DM-GAN 0.17 0.14 0.22 0.28 .0.22

Table 1. Text-image correspondence accuracy. During evalua-
tion, we change and set the type for each attribute and calculate
the accuracy of this attribute after generation. Results show that
our method succeeds in generating face images satisfying the se-
mantic designations of the input text and surpasses the accuracy of
previous arts [31, 43].

• Non-frontal faces and occlusions would make it dif-
ficult for the detection API to make accurate judge-
ments. Intuitively, for example, if the face has a big
yaw/pitch, the arched eyebrow may look like a straight
eyebrow, which would lead to misjudgement of the
API.

4.2. Results and Evaluations

We conduct extensive experiments to demonstrate the ef-
fectiveness and usability of our system. We evaluate our
method from four aspects: attribute accuracy of the gener-
ated images (Sec. 4.2.1), comparison with the state-of-the-
art text-based image generation techniques on human faces
(Sec. 4.2.2), ablation study (Sec. 4.3), and perceptual study
(see supplementary materials).

4.2.1 Attribute Accuracy of the Generated Faces

To test the accuracy of text-image correspondence of the
generated images (i.e. do the attributes in the generated im-



The man has 
thin mouth, thin 
nose and long 
face.

She has nor-
mal-sized 
mouth, thick 
nose and round 
face.

She has arch 
eyebrow, thick 
nose and oval 
face.

AttnGAN DM-GAN Ours

Figure 6. Generation comparisons with state-of-the-art meth-
ods. Given the same input sentence (leftmost in each example),
our result is significantly better than the other two methods, in
terms of both image quality and attribute accuracy.

ages match the descriptions?), for each attribute, we gener-
ate a batch of 100 images by specifying only one attribute in
the input sentence. Then, these generated images are sent to
the facial attribute detection APIs [2, 6, 18] for re-detection.
We calculate the accuracy for each attribute, as shown in Ta-
ble 1.

4.2.2 Comparison with State-of-the-Arts

Existing text-based works that are relevant to our work can
be categorized into two tracks: text-based image generation
[31, 43, 23], and text-guided face manipulation [21, 39].
Since our work can be adapted to support face manipulation,
we make comparisons for the two tasks.

For the generation task, we compare with [31, 43] by
retraining their models using the official implementations
but with our own dataset, and setting the same sentence
as the input to all three works. Since the original imple-
mentations of [31, 43] both set the maximum resolution to
256×256, we directly use their results under this resolution
for comparison with our results which have a resolution of
512 × 512. This is deemed as a fair comparison by us due
to the fact that generating images with higher resolution is
often considered to be more difficult. Please note that their
models are not specifically designed for text-to-face gener-
ation but rather for a more general text-to-image generation
task, while our model is specifically designed for generat-
ing human faces. Although we explicitly take into account
the prior of human face layout into our model architecture,
we argue that our comparison is better than nothing, since
there does not exist relevant works under the exactly same
settings as ours: text-to-face generation with disentangled

feature control.
For the manipulation tasks, we adapt our pipeline as fol-

lows to support manipulation given an input image I: We
encode I to get {fgeo} and {fapp} using Encr, and then
substitute the features of specified editing attributes and per-
form graph recommendation upon the modified features.
Here we compare with the two existing open-world-text-
based editing methods [39, 32] for editing functionality and
only compare the results of editing single attribute, because
it is intuitive to perform multi-attribute editing by serial-
izing the editing processes of single-attribute editing. We
use the standard optimization-based method in [39] and the
Global Direction method in [21] for comparison.

4.3. Ablation Study

Graph Recommendation Module is an essential part in
our framework to ensure the quality and realism of the gen-
erated results. To demonstrate its validity for geometry or
appearance recommendation, we conduct an ablation study
with/without graph. Since the Appearance Graph and Ge-
ometry Graph operate separately, we perform the ablation
study in two ways. First, we randomly edit one part of the
face and observe the generated images with/without the Ge-
ometry Graph. Specifically, as illustrated in Fig. 7, we fix
fgeo
bg and keep changing fgeo

eye1 and fgeo
eye2. In this way, the

Geometry Graph is expected to predict fgeo
nose and fgeo

mouth to
form a compatible face. Second, we testify the effectiveness
of our Appearance Graph by swapping the appearance fea-
tures of several facial parts from two faces. We replace the
appearance features of the source person with those of the
target person. With Appearance Graph, such a swapping
operation is expected not to produce any sharp boundaries
on the faces, as shown in Fig. 8. While without Appear-
ance Graph, the swapping operation produces images with
inconsistent color.

4.4. Geometry and Appearance Morphing

The encoder network Encr of our framework could ex-
tract the geometry and appearance respectively from a real
image. The representations of those two features are both
1×512 latent vectors. Our method could do interpolation in
each feature domain. As shown in Fig. 9, the upper left and
the lower right are the given images. Along the vertical axis
is to interpolate the appearance, while along the horizontal
axis is to interpolate the geometry. The intermediate images
between the two corners are the interpolation results, where
the geometry and appearance features smoothly change.

5. Limitations

The motivation of our work originates from an entertain-
ment and interaction setting. Therefore, directly using our
model for applications such as criminal investigation is im-
proper and should involve more dedicated considerations
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Figure 7. Ablation study of the Geometry Graph. We randomly sample facial geometry features to generate face images. The upper
row shows the results generated from geometry features without being optimized by the Geometry Graph, the lower row shows the results
generated using Geometry Graph. Obviously, there exist artifacts on the boarders of different facial parts in the generated faces when the
geometry features are not being optimized by Geometry Graph. On the other hand, when optimized by Geometry Graph, the geometry
features of different facial parts are more consistent with each other and thereby producing more realistic results.

w w/oAppearanceGeometry Paste

Figure 8. Ablation study of the Appearance Graph. Editing the
appearance of the source image (Geometry) using part-level refer-
ence images (Appearance). The Paste column shows the pasted ap-
pearance reference over the source image. As shown in the right-
most two columns, the edited results with Appearance Graphare
much more color-consistent compared to the rightmost column
where the results are generated without incorporating the Appear-
ance Graph.

beforehand. In other words, one of our model’s limitations,
from the application perspective, is that the accuracy and
experimental settings restrict it from being used as a way to
facilitate applications requiring extra accuracy.

Another limitation of our work from the technical per-
spective, is that our model does not perform well on com-
plicated hair styles such as wavy hair, plate hair, bangs, etc.
Thus it could not generate faces with such hair styles. We
refer to the readers to [30, 41] about how to manipulate
complex hairstyles. More details about failure modes are
appended in the supplementary materials.

Last but not least, the generation results of our model

Geometry
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pp
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nc
e

Figure 9. Interpolation via Geometry and Appearance Axes.
The appearance gradually changes along each column, while the
geometry changes along each row.

rely a lot on the dataset/database. The frontal faces used
in our work require extensive works to generate and check
their validity. Limited by the diversity encoded in the Style-
GAN generator, our database inherits such bias. The bias
could be reduced as we are continuing enlarging our dataset.
We will release the code and provide an online system when
the dataset is diverse enough.

6. Conclusion

In this work, we present a local-to-global framework for
generating realistic facial images from pure textual inputs,
enabling linguistic control over the geometry and appear-
ance features of every facial part. We demonstrate the ef-



fectiveness of our method by comparing with the state-of-
the-art text-based editing and text-to-image models as well
as conducting a convincing user study under a real-word
scenario. However, currently our pipeline may not apply to
complex sentences. Generation from sentences with more
fuzzy descriptions is to be adapted in the future.
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