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Abstract

In recent times, facial-expression recognition (FER)
primarily focuses on images in the wild that include
factors, such as face occlusion and image blur, rather
than on laboratory images. The complex field environ-
ment has brought new challenges to FER. To address
these challenges, this paper proposes a cross-fusion
dual-attention network. The network comprises three
parts—a cross-fusion grouped dual-attention mecha-
nism to refine local features and obtain global infor-
mation; a C2 activation function construction method
is proposed, and the new activation function is a piece-
wise cubic polynomial with three degrees of freedom, it
not only requires less computation, but also has better
flexibility and recognition ability, which can better solve
the problems of slow running speed and neuron inac-
tivation; and a closed-loop operation between the self-
attention distillation process and residual connections to
suppress redundant information and improve the gener-
alization ability of the model. The recognition accuracy
on the RAF-DB, FERPlus and AffectNet datasets were
92.78, 92.02, and 63.58%, respectively. Experimental re-
sults showed that this model could provide a more effec-
tive solution for FER tasks.

Keywords: Facial expression recognition, Cubic poly-
nomial activation function, Dual-attention mechanism,
Interactive learning, Self-attentional distillation.

1. Introduction

The study of human emotional states is an interdisci-
plinary research field spanning psychology and computer
science, and it is a fundamental undertaking in developing
emotional intelligence. Facial expressions are the most nat-
ural and powerful external expression of a person’s emo-
tional state, such as their calmness, happiness, anger, sad-
ness, fear, disgust, and surprise, and are key to human non-
verbal communication. With the continuing technological
developments, the research on facial-expression recognition
(FER) has deepened, which has had a major impact on many
facets of life, such as public security, lie detection, driving-
fatigue detection, intelligent medical treatment[11], and se-
curity monitoring, amongst others[20, 38].

Traditional FER primarily used manual features and
shallow-learning methods[44, 33], directional gradient[36],
sparse representation[42], and non-negative matrix
decomposition[1]. In recent years, with the wide appli-
cation of deep learning in computer vision, convolutional
neural networks (CNNs)[4, 24, 51, 29] have almost com-
pletely replaced traditional methods and achieved excellent
results in image classification, attitude estimation[47],
attribute learning, image segmentation, and other fields.
Compared with traditional facial recognition methods,
deep learning can extract deeper features and is more
flexible in abstract representation of images. With the
emergence of several better-performing networks—such
as residual networks (ResNets) and recurrent neural net-
works (RNNs)—in various computer vision tasks, many
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researchers have applied these networks to FER tasks,
making excellent progress[13, 12, 50, 30].

In recent studies, the self-attention mechanism has been
widely used in various computer vision tasks[26, 21, 41,
49]. It can imitate how people pay attention to the key po-
sitions within an image and extract key information from
these key positions to complete various tasks. For example,
the vision transformer (ViT)[10] model can be applied to
image classification. However, in the FER field, networks
that are similar to the ViT model cannot be directly used
owing to the limited sample size. Aouayeb et al.[3] success-
fully transferred the ViT network into the expression recog-
nition task by adding the squeeze and excitation (SE) block.
The FER-VT[17] method sends feature maps of different
scales into the same Transformer model to complete infor-
mation fusion. Although the above methods expand the
size of the operation window, they also introduce too many
invalid connections, which reduces the model’s ability to
obtain global information. The dual attention Transformer
network[31, 37, 9, 14] complements each other in feature
refinement and global information acquisition. The parallel
computing strategy used in this paper not only embodies the
powerful feature extraction ability, but also avoids the mas-
sive information loss caused by serial computing. More-
over, we designed a cross-fusion feature extraction module
based on the dual-attention mechanism to better complete
the information interaction in different dimensions. To sum
up, the contributions of this paper are as follows:

(1) We proposed a cross-fusion dual-attention Trans-
former based on spatial dimension and channel dimension.
Local interaction in the spatial dimension completes feature
refinement, and a global receptive field is provided in the
channel dimension. The cross-fusion dual-attention Trans-
former realizes the mutual complementation of the feature
information of different dimensions, thereby improving the
accuracy of the respective features.

(2) We designed a construction method of activation
functions to solve the problems in commonly used acti-
vation functions, such as neuron deactivation, the large
computational overhead brought about by the power func-
tion, and the existence of non-differentiable points. At the
same time, a new C2 continuous activation function is con-
structed for the interactive learning mechanism in this pa-
per, which improves the ability of the interactive learning
mechanism to integrate different features.

(3) To reduce the high computational cost caused by the
self-attention mechanism, we proposed a grouped mech-
anism and a self-attention distillation to act on the self-
attention mechanism. This process divided attention into
different groups, and used the self-attention distillation in
each group to reduce the spatial dimension of K and V, so as
to reduce the computational cost. Using self-attention dis-
tillation not only improves the ability of the self-attention

mechanism, but also significantly reduces the computa-
tional cost (33%).

2. Related work

FER in the real-world environment: To address the
challenges of FER in the real-world environment, re-
searchers have made great efforts to improve recognition
accuracy under complex background and figure occlusion
conditions. Bourel et al.[6] extracted the spatial degree
features of key parts of the face for classification. PCA-
based methods[45, 18], realized the projection of test im-
ages to training images, using similarity to realize expres-
sion recognition. Hammal et al.[15] used image multi-level
segmentation and sparse decomposition to solve the facial-
expression occlusion problem. Multiple face detectors,
such as the MTCNN[48] and Dlib[2] models, have been
used for facial detection in real-world scenes. These de-
tection algorithms can be used to preprocess the expression
images, after which the detected face regions are sent to var-
ious models for expression recognition. Most researchers
have devised occlusion-aware-based methods to remove the
distractions brought about by complex backgrounds. More-
over, to solve the problems created by real-world scenarios,
more and more multiview- and multiscale-based research
have been conducted. Happy[16] and Majumder[28] pro-
posed that facial expression changes were mainly reflected
in key parts, such as the eyes and mouth. Subsequently, re-
searchers increasingly focused on how to use key parts to
extract key information to increase FER accuracy.

Visual Transformers: Several recent studies have
shown that Transformers have enormous potential in com-
puter vision applications. Several pioneering studies such
as those on the iGPT[7] and ViT methods applied the self-
attention mechanism directly to image pixel or patch se-
quences. Inspired by this, convolutional visual transformers
(CVTs)[27] were the first to apply the Transformer model
to FER tasks. The CVT uses the local binary patterns (LBP)
algorithm to send the facial expression images in two differ-
ent states into the ResNet network to obtain smaller feature
images, with the Transformer model being used to complete
FER. The mask vision transformer (MViT)[22] generates a
mask based on the Transformer model for filtering complex
backgrounds and the occlusion of facial images.

3. Methodology

To better solve the FER task in real-world environments,
a more concise and effective dual-attention mechanism is
proposed . Considering the large size of the feature map
will seriously increase the computation of the self-attention
mechanism, the network first uses the ResNet model for
high-dimensional mapping of facial expression images, thus
acquiring high-dimensional feature maps of a smaller scale.
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Figure 1. Dual-attention mechanism.

The overall flow of the network is depicted in Figure 1
and Figure 2. The left side of Figure 1 depicts the overall
structure of the dual attention mechanism. Self-attention is
used to realize facial expression recognition, which solves
the problem of small receptive field of convolutional neu-
ral network. The introduction of self-attention mechanism
with different dimensions makes up for the deficiency of
traditional single dimension in global interaction. The par-
allel algorithm directly applies double attention to the orig-
inal input, overcomes the defect that self-attention in the
channel dimension only enhances the result of spatial di-
mension self-attention, and makes the model more sensitive
to the surrounding environment. Compared with the tradi-
tional self-attention mechanism, parallel dual attention can
be better applied to facial expression recognition in real en-
vironment. The right side of Figure 1 depicts the flow of
self-attention in different dimensions. Input Q, K and V
are obtained by linear variation and self-attention distilla-
tion, and then self-attention is calculated. In the face of
the problem that expression data is difficult to collect, the
grouping method and the addition of self attention distilla-
tion avoid using the GAN network to generate data, greatly
reduce the calculation cost of the model, and improve the
problem that the traditional self attention mechanism can
not work well on small data sets.

Figure 2 is the overall structure of the cross-fusion dual
attention network in this paper. The main part of the model
is composed of two layers of dual attention and an inter-
active learning mechanism. The information sharing is ac-
complished by exchanging K between the two layers of dual
attention, breaking the information occlusion caused by par-
allel operations. In order to improve the feature fusion abil-
ity of the interactive learning mechanism for dual attention,

we design a C2 continuous activation function PCP (x)
composed of three-segment cubic polynomials, which has
better feature fusion ability. Compared with other com-
monly used activation functions in the ablation experiment,
it is proved that PCP (x) can achieve higher recognition
accuracy in the expression recognition task.

3.1. Dual-attention mechanism(DAM)

With the widespread application of sparse attention
mechanisms, most researchers have chosen to reconstruct
the input image into the form of RP×C , by dividing the spa-
tial dimension into patches and adding positional coding,
where P denotes the number of patches and C denotes the
number of channels. However, the unique two-dimensional
information of images can be destroyed, so the refinement
of local features becomes an important challenge. To ad-
dress these problems, this paper divides the reconstructed
images into groups, conducting a separate self-attention
mechanism in each group. Consider that the number of
channels is not corrupted during refactoring, and that each
channel is an abstract representation of the global informa-
tion. In this study, the self-attention mechanism of the chan-
nel dimension and the self-attention mechanism of the space
dimension are operated in parallel to form a dual-attention
mechanism. Similarly, group-based learning is added to the
channel dimension. The dual-attention mechanisms com-
plement each other in the acquisition of local features and
global information, exhibiting strong FER abilities.

Specifically, in the spatial dimension, it can be assumed
that the reconstructed image is divided into Ng groups, each
group containing Pg patches. The operational process of the
overall self-attention mechanism in the spatial dimension
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Figure 2. Overall structure of model.

can be expressed as follows:

As(Q,K, V ) =

Concat(A∗
1(Q1,K1, V1), ..., A

∗
Ng

(QNg ,KNg , VNg )) (1)

where Q,K, V ∈ RP×C can be obtained by a lin-
ear transformation of the input. A∗

1(Q1,K1, V1), ...,
A∗

Ng
(QNg

,KNg
, VNg

) represents the result of self-
attention, Q1,K1, V1...QNg

,KNg
, VNg

∈ RPg×C .
In the channel dimension, it can be assumed that the re-

constructed image is divided into Nw groups, each group
containing Cw channels, so that C = Cw × Nw. The op-
erational process of the overall self-attention mechanism in
the channel dimension can be expressed as follows:

Ac(Q,K, V ) =

Concat(A∗
1(Q1,K1, V1), ..., A

∗
Nw

(QNg
,KNg

, VNg
)) (2)

where Q,K, V ∈ RP×C can be obtained by a
linear transformation of the input. A∗

1(Q1,K1, V1),
..., A∗

Nw
(QNg

,KNg
, VNg

) represents the result of self-
attention, Q1,K1, V1...QNg ,KNg , VNg ∈ RP×Cw .

Equations (1)-(2) illustrate that all spatial locations are
taken into account when calculating channel-dimensional
self-attention, which enables it to have the ability to interact
globally. In subsequent ablation studies, we also confirmed
that channel-dimensional self-attention pays more attention
to the face as a whole and the connection of facial expres-
sions to the surrounding environment. The spatial dimen-
sion of self-attention is limited to different spatial locations
to complete local interactions, which makes it more sensi-
tive to key locations such as eyes and mouth. The two co-
operate with each other to enhance the perception of facial
expressions. At the same time, in order to realize the timely
sharing of information when the two dimensions are pro-
cessed in parallel, we use the crossover method to complete
the information transfer between different dimensions. We
will go into details in the next subsection.

3.2. Cross-fusion attention mechanism

Expression images from real-world environments can be
complex and diverse. People express the same emotion very
differently. Moreover, there are many similarities in the ex-
pression of different emotions. Consequently, the simple
application of neural networks to facial expression images
cannot accurately distinguish minute nuances, resulting in
low recognition rates. In the dual self-attention mechanism,
self-attention of the spatial dimension pays more attention
to the key regions related to facial expression. Contrast-
ingly, self-attention of the channel dimension pays more at-
tention to global information. Both types of information
are important for FER. To make better use of information
from different dimensions, we designed the cross-fusion
dual self-attention model as shown in Figure 2. In the previ-
ous research of cross fusion, additional data support is often
needed to complete the cross between features generated by
different data. In this paper, we adopt a more concise im-
plementation method, which directly adds cross-fusion in
the operation process of two different dimensions of self-
attention mechanism. Experiments show that our design is
effective.

Specifically, the output Al
s ∈ RP×C of the upper layer of

the spatial dimension is mapped to two image matrixes, Ql
s

and V l
s , through two linear transformations, and the output

Al
c ∈ RP×C of the upper layer of the channel dimension

is mapped to the image matrix Kl
c through a linear trans-

formation, before sending Ql
s, Kl

c and V l
s into the spatial

dimension of the next layer for self-attention. The opera-
tion is similar in the channel dimension, the attention result
of which can be expressed as follows:

Al+1
s = As(Q

l
s,K

l
c, V

l
s )

Al+1
c = Ac(Q

l
c,K

l
s, V

l
c )

(3)

3.3. Self-attentional distillation

The self-attention mechanism expands the attention win-
dow to the whole image, greatly increases the compu-



tational overhead, and produces severe smearing phe-
nomenon, causing many redundant combinations in K and
V. Excessive useless information introduces serious inter-
ference to the feature extraction process, resulting in de-
clining model performance. This paper proposes that the
self-attention distillation mechanism acts on keys and val-
ues, achieving a reduction of scale in the spatial and chan-
nel dimensions. Dominant features can be extracted using
this operation to form a feature map with a focused advan-
tage in subsequent self-attention, suppressing interference
from redundant information and reducing noise generation.
Moreover, to reduce the loss of middle- and high-frequency
information caused by the self-attention distillation mecha-
nism, a residual connection can be used to fuse the original
V with the results of the self-attention process. The inter-
action of self-attention distillation and residual connection
constructs an independent closed-loop operation, which ef-
fectively reconstructs the lost information.

Specifically, in terms of the spatial dimension, two con-
volution layers with a kernel size of three are constructed.
The first layer completes the mapping of the channel num-
ber from a high dimension to a low dimension, which is a
dynamic process to realize the extraction of dominant fea-
tures. The second layer completes the mapping of the chan-
nel number from a low dimension to a high dimension, thus
maintaining the same dimension as the original input. Fi-
nally, max pooling is used to reduce the number of patches
in the keys and values. The overall calculation process can
be expressed as follows:

Dists(K) = MaxPool(Conv3+(Conv3−(K)))

Dists(V ) = MaxPool(Conv3+(Conv3−(V )))
(4)

where Conv3− denotes the convolution operation with a
convolution kernel size of three (used to reduce the num-
ber of channels), Conv3+ denotes the convolution opera-
tion with a convolution kernel size of three (used to increase
the number of channels), and MaxPool denotes the max
pooling.

In terms of the channel dimension, the convolution op-
eration with a convolution kernel size of one is used to re-
duce the number of channels in a single group, after which
the convolution operation with a convolution kernel size of
three is used to enhance the connection between channels
to learn more reliable high-quality features. To guide the
model to focus on the acquisition of global information,
max pooling is abandoned in the channel dimension so that
the number of patches in each group remains unchanged.
The overall calculation process can be expressed as follows:

Distc(K) = Conv3(Conv1(K))

Distc(V ) = Conv3(Conv1(V ))
(5)

where Conv1 and Conv3 denote convolution operations
with convolution kernel sizes of 1 and 3, respectively.

GAP Linear

Figure 3. Interactive learning mechanism.

3.4. Interactive learning mechanism(ILM)

Because activation functions, such as Sigmoid and
Tanh, have exponentiation operations, the calculation
speed slows, and the ReLu activation function has non-
differentiable points and neuron-death problems. To solve
these problems, We designed a C2 continuous activa-
tion function composed of three-segment cubic polyno-
mial curves, called piecewise cubic polynomial function,
or PCP (x) for short, so as to increase the ability of the
interactive learning mechanism to feature fusion. The con-
struction method of PCP (x) is as follows.

First, the interval [-1,1] is divided into three intervals by
points x1 = −1, x2 = 0, x3 = xL and x4 = 1, and the cor-
responding function values on the four points x1, x2, x3, x4

are P1, P2 = 0, P3, P4 = 1 respectively , the first derivative
at point x2 is defined by:

dP2

dx
= sL

P2 − P1

x2 − x1
(6)

where xL is a pending parameter.
The first derivatives at points x1 and x4 are both 0,

dP1

dx = dP4

dx = 0. In this way, we can construct the Hermite
cubic interpolation function in the interval [xi, xi+1], i =
1, 2, 3:

Pi(x) = F0(x)Fi+G0(x)
dPi

dx
+F1(x)Fi+1+G1(x)

dPi+1

dx
(7)

where

F0(x) = (xi+1 − x)2 (2 (x− xi) + h) /h3

F1(x) = (x− xi)
2(2(xi+1 − x) + h)/h3

G0(x) = (xi+1 − x)2(x− xi)/h
2

G1(x) = −(x− xi)
2(xi+1 − x)/h2

h = xi+1 − xi

(8)

There are three undetermined parameters xL, P1 and sL
in equation (8). When the values of parameters xL, P1 and
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sL are given, P3 and dP3

dx (x3) in equation 8 can be calcu-
lated by the following method. To ensure that PCP (x) is
C2 continuous, the second derivative at point x2 is defined
by d2P1

dx2 (x2), such that P3 and P3 and dP3

dx (x3) can be cal-
culated by the following system of equations:

d2P2

dx2
(x2) =

d2P1

dx2
(x2)

d2P2

dx2
(x3) =

d2P3

dx2
(x3)

(9)

From the above construction process, PCP (x) is C2 con-
tinuous. The definition of PCP (x) is as follows:

PCP (x) =



P1 if x < −1
P1(x) if − 1 ≤ x < 0

P2(x) if 0 ≤ x < xL

P3(x) if xL ≤ x < 1

1 if x > 1

(10)

Properly adjusting the values of the three parameters xL, P1

and sL in PCP (x) can improve the accuracy of the algo-
rithm, thereby enhancing the ability of the interactive learn-
ing mechanism to feature fusion.

Note: Since Pi(x)(8) is applied repeatedly in the model,
it takes too much computational cost to directly calculate
Pi(x) using Equation 8. For this reason, we write Pi(x)(12)
in the following form:

Pi(x) = ax3 + bx2 + cx+ d (11)

where a, b, c and d are the coefficients obtained by simpli-
fying Equation 8, respectively.

Calculate a, b, c and d in Pi(x)(8) before each iteration,
so that Pi(x)(8) can be calculated using the following for-
mula:

Pi(x) = ((ax+ b)x+ c)x+ d (12)

In this way, only 3 multiplications and 3 additions are
required to calculate Pi(x), which significantly reduces the
amount of computation. The calculation by Equations 8 and
9 requires 4 divisions, 17 multiplications, 4 subtractions and
3 additions.

On the basis of PCP (x), this paper proposes an interac-
tive learning mechanism, as shown in Figure 3. The global
average pooling of individual feature vectors in the channel
dimension is first used to integrate the global spatial infor-
mation, after which the feature vector is mapped through a
feedforward neural network. We refer to the mapping re-
sults as implicit dynamic vectors. Finally, the eigenvector
and implicit dynamic vector are cross-multiplied to com-
plete interactive learning. The global average pooling uses
the mean value of the feature map to forcibly demarcate its
importance, directly giving each channel its actual meaning,
and then we feed the result of the global average pooling to
the input in the form of weights to enhance the input fea-
tures. In the interaction process, since the activation func-
tion can compress the negative area to a smaller negative in-
terval, the interactive information can be identified, and the
non-interactive information can be suppressed to an inactive
state, so that it can better integrate with other dimensions of
information.

Specifically, the generation process of implicit dynamic
vectors and the overall operational process of the interactive
learning mechanism can be expressed as follows:

CA(X) = PCP (Linear(GAP (X))) (13)

CAM(X) = CA(X)×X (14)

INTA(XA, XB) =

PCP (Linear(CA(XA)))× CBM(XB)
(15)

ILM(As(Q,K, V ), Ac(Q,K, V )) =

INTA(As(Q,K, V ), Ac(Q,K, V ))+

INTA(Ac(Q,K, V ), As(Q,K, V )) (16)

where PCP denotes the activation function, Linear de-
notes the full connection layer, and GAP denotes the global
average pooling.

4. Experimental Results

This section includes the dataset, experimental environ-
ment, and experiment implementation details. Some sam-
ples are shown in Figure 4. The effectiveness of the pro-
posed model is compared with commonly used methods of
recent years. Subsequently, the improvement of each part
of the model is investigated using ablation experiments.

4.1. Datasets

We evaluated our method on three commonly used facial
expression datasets: the AffectNet, RAF-DB, and FERPlus
datasets, which were collected in a real-world environment,
subject to different degrees of light and occlusion.



Methods Year RAF-DB AffectNet FERPlus
SCN[39] CVPR 2020 87.03 60.23 89.39
RAN[40] TIP 2020 86.90 - 89.16
EfficientFace[52] AAAI 2021 88.36 59.89 -
DMUE[34] CVPR 2021 89.42 - -
FDRL[32] CVPR 2021 89.47 - -
DAN[43] arXiv 2021 89.70 62.09 -
ARM[35] arXiv 2021 90.42 61.33 -
CSGResNet[19] ICASSP 2022 88.59 61.03 88.94
AMP-Net[25] TCSVT 2022 89.19 61.32 89.37
POSTER[53] arXiv 2022 92.05 63.34 91.62
Ours - 92.78 63.58 92.02

Table 1. Comparison on RAF-DB, AffectNet, and FERPlus datasets

Confusion matrix based on AffectNet data set Confusion matrix based on FERPlus data set

Figure 5. Confusion matrix based on AffectNet and FERPlus.

AffectNet[8]1: AffectNet is a large outdoor facial ex-
pression dataset comprising over a million facial images
from the Internet. The dataset contains eight categories. It
is important to note that AffectNet’s training and test sets
are extremely unbalanced.

RAF-DB[23]2: RAF-DB is a dataset of facial expres-
sions in real life scenes. The dataset comprises seven cat-
egories. The training set contains 12,271 samples, and the
test set contains 3,068 samples.

FERPlus[5]3: FERPlus relabeled mislabeled images
and removed non-face images from the original FER2013
dataset. Each image in FERPlus had multiple annotators
participating, providing better tag quality than the original
FER2013 dataset. Like AffectNet, the dataset has a total of
eight categories.

1http://mohammadmahoor.com/affectnet/
2http://www.whdeng.cn/raf/model1.html
3https://www.worldlink.com.cn/osdir/ferplus.html

4.2. Experimental Details

The model was implemented using Python 3.7 and Py-
torch 1.7.1. For all training cases, face images were de-
tected using the MTCNN network. During the experiment,
all images were further sized to 224 ×224 pixels. The model
was trained on a single NVIDIA GTX 2080 GPU graphics
card. During the training, the batch size was set to 32, and
the AdamW optimizer with a momentum of 0.9 and weight
attenuation of 1e-4 was used to optimize the model. During
the training process, the model only used the cross-entropy
loss function, giving it good generalization ability.

4.3. Results and Analysis

Here, we compare the proposed model with the most
advanced methods used in recent years on the AffectNet,
RAF-DB, and FERPlus datasets, to prove the superiority
of our method in FER tasks. The comparative results are
shown in Table 1.

On the RAF-DB dataset, compared with the Efficient-



Methods Year Params FLOPs Acc(RAF-DB) Acc(FERPlus)
CVT arXiv 2021 80.1M - 87.61 88.81
DMUE CVPR 2021 78.4M 13.4G 89.42 -
TransFER ICCV 2021 65.2M 15.3G 90.91 90.83
POSTER arXiv 2022 71.8M 15.7G 92.05 91.62
DAN arXiv 2021 28.3M 2.6G 89.70 -
Ours - 16.4M 2.0G 92.78 92.02

Table 2. Comparison on Parameters and FLOPs
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Figure 6. Ablation studies of dual-attention and interactive learning mechanism.

Face, SCN, and other CNN-based methods, the model pro-
posed in this paper exhibits an improvement of approxi-
mately 4%. Compared with the DAN, AMP-Net, and other
attention-based methods, the improvement is approximately
2%. Experiments demonstrate that our proposed model
has more advanced recognition capabilities on the RAF-
DB dataset and provides a more effective solution for FER
tasks. For the AffectNet dataset, based on the data shown
in the table, the identification accuracy of our proposed
method is 63.58%. Compared with the SCN, EfficientFace,
and RAN methods, the improvement rate is approximately
4%, and compared with the DMUE, FDRL, DAN, ARM,
CSGResNet, and AMP-Net methods, the improvement rate
is approximately 2%. For the FERPlus dataset, the improve-
ment rate is over 1% compared to the other methods.

To explore the performance of this model more accu-
rately under different facial expressions, we examined the
confusion matrices in the two datasets, as shown in Figure
5. The confusion matrices describe in detail the recognition
accuracy of each expression and the proportion misclassi-
fied as other expressions, where the diagonal item repre-
sents the recognition accuracy of each expression. As is
evident from the data, the Happy expression is the easiest
to recognize among the eight expressions owing to its large
display range. The recognition rate of Happy in the Af-
fectNet dataset is considerably higher than that of the other
expressions. Apart from Happy faces, the difference in suc-
cess rate was small, primarily because the images in the Af-
fectNet dataset came from the Internet and contained many
error samples. In the FERPlus dataset, the Happy recogni-
tion rate is slightly lower than that of Neutral because Neu-
tral expressions have the largest sample size. Additionally,
the Disgust and Contempt samples in the FERPlus dataset

number the least—just one tenth of the number of samples
of other expressions—and these expressions have similar
appearance characteristics. Consequently, the recognition
accuracy of Disgust and Contempt is substantially lower
than that of the other expressions.

In the recent studies on FER, the Transformer has re-
ceived increasing attention. However, the enormous num-
ber of parameters remains a major limitation in using the
Transformer. Moreover, model parameters (Params) and
floating-point operations (FLOPs) are also two key features
to be considered for fair comparisons. One of the starting
points of this study was to reduce the overall number of
model parameters. To solve this problem, we proposed a
grouped self-attention mechanism and a self-attention dis-
tillation mechanism. Table 2 shows a comparison of the
parameters of the proposed method and other methods, in-
cluding the CVT, DMUE, TransFER[46], POSTER, and
DAN models. It is evident that the number of parameters in
the proposed method is just a quarter of those for the other
methods while maintaining the highest FER accuracy.

4.4. Ablation Study

Performance of dual-attention and interactive-learning
mechanism: To verify that the dual-attention approach
has considerable advantages, we first used a single self-
attention mechanism as a baseline. The baseline was then
compared with the dual-attention mechanism. We then
compared the effects of interactive learning and cross-
fusion dual attention on FER. The differences are shown
in Figure 6(a)–6(d). The experimental results are shown
in Table 3. It is evident that more advanced classifica-
tion accuracy is achieved in FER tasks after the addition
of channel dimension self-attention and interactive learning



Methods AffectNet FERPlus RAF-DB
Baseline 59.73% 89.69% 90.37%
Baseline+DAM 60.44% 90.92% 90.88%
Baseline+DAM+ILM 63.12% 91.55% 91.63%
Baseline+cross-fusion DAM+ILM 63.58% 92.02% 92.78%

Table 3. Performance of dual attention and interactive learning mechanism
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Spatial Self-attention
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Spatial Group 
Self-attention+
Channel Group 
Self-attention

Figure 7. Two-dimensional feature map of some samples.

mechanism in parallel processing, proving the introduction
of dual-attention mechanism to be feasible and effective.
It can be seen from the third and fourth rows in Table 3
that adding interactive learning mechanism to FERPlus and
RAF-DB datasets can bring about 1% improvement, and
can bring about 3% improvement on AffectNet datasets. In
order to better fuse the features from two different sources,
we first consider the impact of one feature on the other, re-
alize the mutual mapping of the two features, and complete
the feature fusion on this basis, instead of simply adding or
splicing. Experiments have proved that our idea is feasi-
ble. In addition, we also designed a new activation function
construction method to make the interactive learning mech-
anism play a better role. In the later comparison of various
activation functions, we can also prove the effectiveness of
our proposed activation function.

To observe the effect of the dual-attention mechanism
on feature extraction and the effect of grouping on FER,

we used the t-SNE algorithm to visualize the expression
features of part of the test set samples in two-dimensional
space. The results are shown in Figure 7. It is evident
that, because of the lack of global information, the recogni-
tion ability of the single-dimensional attention mechanism
is considerably lower than that of the dual-attention mech-
anism in the initial training. The advantages of local key
features emerge in the late training period. For the four ex-
pressions of Happy, Neutral, Surprise, and Fear, because of
the large number of training samples and obvious facial fea-
tures, they can be well recognized in the three conditions,
which is consistent with the information obtained in the
confusion matrix. For expressions with minor differences
between them—such as Disgust and Contempt—the self-
attention mechanism of the spatial dimension finds it diffi-
cult to separate them owing to the small number of training
samples and the difficulty in distinguishing them. After the
addition of the self-attention mechanism of the channel di-
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Figure 9. Various activation functions and their derivatives. The red curve represents the activation function, the violet curve represents the
first derivative, and the blue curve represents the second derivative

mension, there is still some overlap of facial features with
small sample sizes, but it is substantially better than the sin-
gle dimension self-attention mechanism. Moreover, it is ev-
ident that grouping in the dual-attention mechanism can ef-
fectively reduce the redundant connections caused by global
attention and enhance the FER ability of the whole network.
As is evident, the grouped dual-attention mechanism classi-
fies Sadness, Contempt, and Disgust more accurately, with
Sadness being the most obvious.

To study the effect of the fusion mechanism on the atten-
tion regions of facial expressions, we drew attention maps
of the attention mechanism in the channel and space dimen-
sions. As is evident from Figure 8, in the channel dimension
the attention is focused on the overall facial expression and
the interaction with the surrounding environment, while in
the spatial dimension the attention is focused on key parts
such as the eyes and mouth. The effect after fusion is the
collection of key information from the two different dimen-
sions.

Analysis of the validity of the activation function: As is

evident from Figure 9, the Sigmoid function scales the value
between 0–1, and the gradients in this interval are all less
than 0.25, there being a potential hidden danger of gradient
disappearance. The activation function proposed in this pa-
per scales all values between a small negative number and
1, and the gradient in this interval is between 0–1.5. To
solve the problem of neuron deactivation and discontinuous
derivative in the negative part of the ReLu activation func-
tion, we mapped the negative region to a smaller negative
interval. It is evident from Figure 9 that the activation func-
tion used in this paper is at all points continuously differen-
tiable. Moreover, the proposed activation function does not
involve exponentiation, improving the model’s operational
speed compared with that of the Sigmoid and Tanh activa-
tion functions. In terms of recognition accuracy, we com-
pared various activation functions on the RAF-DB dataset,
the experimental results of which are shown in Table 4. As
is evident, the proposed activation function performs better
in FER tasks.

Performance of self-attentional distillation: To verify



PCP Sigmoid ReLu Tanh ILM ACC
� 92.54
� � 92.78

� 91.42
� � 91.78

� 91.98
� � 92.26

� 91.75
� � 91.97

Table 4. Performance of dual attention and interactive learning mechanism

Methods AffectNet FERPlus Params FLOPs
without distillation 63.34% 91.87% 4.2M 0.21G
with distillation 63.58% 92.02% 4.22M 0.14G

Table 5. Performance of self-attentional distillation
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Figure 10. Parameter sensitivity analysis of activation functions

the effectiveness of self-attention distillation, the complete
model was used as the benchmark, and then compared with
the model discarded by self-attention distillation on the Af-
fectNet and FERPlus datasets. The experimental results are
shown in Table 5. It is evident that, after self-attention dis-

tillation is discarded, the operation window expands to the
whole image, the serious trailing phenomenon leading to
an increase of redundant information pairs, the introduction
of excessive noise affecting the generalization of the whole
model. When self-attention distillation and residual con-
nection form a complete closed loop, information commu-
nication across windows is easier, while reducing the loss
of middle- and high-frequency information. It can be con-
cluded that self-attention distillation is worth introducing
into the model. Moreover, it reduces the computational cost
of the model.

4.5. Parameter sensitivity analysis

We performed a sensitivity analysis on variable param-
eters on the activation functions on the RAF-DB dataset.
During the experiment, sL was set to 1.75, 1.85, and 1.95
in three cases, xL was set to 0.19, 0.2, and 0.21, and P1

was set to -0.23, -0.24, -0.25, -0.26, and -0.27 in five cases.
The experimental results are shown in Figure 10. As is ev-
ident from Figure 10, when sL=1.75, the model performs
poorly at xL=0.19, and the performance is average in the
other cases. At sL=1.85, the model performs poorly at
xL=0.21, and when sL=1.95 the model is relatively stable.
When sL=1.85, xL=0.19, P1=-0.24, the model achieves its
highest accuracy.

5. Conclusion

In this paper, a cross-fusion dual attention network based
on spatial dimension and channel dimension is proposed.
The local interaction of the spatial dimension completes
the feature refinement, and the channel dimension provides
the global receptive field. The two kinds of self-attention
features can be complemented by cross-fusion attention, so
that the extracted features contain more effective informa-
tion. The shape of the activation function has adaptive ad-



justment, which can increase the ability of feature extraction
and fusion. It can also be applied to other learning frame-
works to improve its accuracy and reduce the computational
time. The method of constructing activation function pro-
posed in this paper can also be extended to constructing
polynomial activation function of Cn(n > 2) according
to the application, so as to increase the ability of reverse
transfer of activation function and improve the generaliza-
tion ability. Since the attention mechanism often require
high computational cost, this paper puts forward the group-
ing mechanism and self-attention distillation act together on
the self-attention mechanism. By dividing the attention into
different groups, self-attention distillation is used in each
group to reduce the spatial dimension of K and V, which
improves the ability of the self-attention mechanism and re-
duces the computational cost.

Self-attention mechanism is one of the key technologies
in facial expression recognition. In the following research,
we will continue to explore how to construct more effec-
tive self-attention mechanism according to different data
features in facial expression recognition task. At the same
time, we will continue to study the relationship between
self-attention mechanism and activation function. For spe-
cific data, we will try to construct more effective activation
function adaptively, so that it has strong backpropagation
ability, high continuity and low computational cost, so as to
obtain stronger feature extraction ability with small compu-
tational cost.
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