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Abstract

Few-Shot classification models trained with clear
samples have a poor effect to classify the samples from
the real world which carry different scales of noise. To
enhance the model for recognizing noisy samples, re-
searchers usually utilize data augmentation or use noisy
samples generated by adversarial training for model
training. However, the existing methods still have the
following problems: 1. The effect of data augmen-
tation on the robustness of the model is limited; 2.
The noise generated by adversarial training will usu-
ally cause overfitting and reduce the generalization abil-
ity of the model, which is very significate for the Few-
Shot classification; 3. Most of the existing methods can-
not generate appropriate noise adaptively. Given the
above three points, to increase the robustness of the
model and avoid reducing the generalization ability of
the model, this paper proposes a noise-robust Few-Shot
classification algorithm based on Variational Adversar-
ial Data Augmentation (VADA). Different from the ex-
isting methods, VADA utilizes a Variational Noise Gen-
erator to generate adaptive noise distribution accord-
ing to different samples based on adversarial learning
and optimizes the variational automatic noise genera-
tor by minimizing the expectation of the empirical risk,
to improve the robustness of the model and ensuring
its generalization ability. Applying VADA for training
can cause the Few-Shot classification model more robust
when dealing with noisy data, while not losing the gener-

alization ability. In this paper, we utilize FEAT and Pro-
toNet as baseline models, and the accuracy is verified on
common Few-Shot classification datasets, e.g., MiniIm-
ageNet, TieredImageNet, and CUB. After training with
VADA, the accuracy of the models for classifying sam-
ples with different scales of noise increases.

Keywords: Few-Shot learning, Adversarial learning,
Robustness, Variational method.

1. Introduction

The Few-Shot classification algorithm [9,30] aims to uti-
lize a few novel class samples to train the model so that
the model can classify novel class samples. Because each
Few-Shot classification task contains only a small number
of samples, the noisy samples in Few-Shot tasks will greatly
affect the classification effect of the model. In reality, it is
very difficult to ensure that the samples in the task do not
contain noise. Therefore, to better classify noisy samples,
researchers usually apply data augmentation [17, 22, 36]
or utilize noisy samples generated by adversarial training
[6, 23] to train the model in purpose to increase its robust-
ness to noise.

Training with samples generated with data-augmented
samples is the most extensively utilized method to enhance
the generalization ability and robustness of the classifica-
tion model. Generally, most researchers [17, 36] apply spe-
cific types of data augmentation types, e.g., flipping, rotat-
ing, and adding random noise, to generate novel samples
and shift the distribution of samples. During the training
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Figure 1. The first row represents the method of generating noisy
samples with random perturbation. With this method, both the
generalization ability and the robustness can be enhanced, while
the robustness is enhanced slightly. To further increase the ro-
bustness, researchers generate controllable perturbation with the
input samples as shown in the second row. Although this line of
methods can increase the robustness, it would decrease the gener-
alization ability of the model. To combine the advantages of both,
we propose VADA, which is a method that generates controllable
random perturbation via a variable noise generator.

progress, these models sample augmentation methods ran-
domly, which can be invalid for model training. Further-
more, to apply data augmentation more effectively, another
line of methods, e.g., efficient data augmentation network
(EDANet) [4] applies automatically selected augmentation
approaches to achieve optimal performance. Although the
above augmentation methods are efficient in providing a
model from overfitting and increasing generalization abil-
ity, their effect of enhancing robustness is insufficient.

Thus, focusing on enhancing the robustness, adversarial
training [7, 35] is proposed as another approach to increase
the noise-robustness of the model. In adversarial training
methods, researchers aim to generate noises according to
the samples to attack the classification model. After attack-
ing, the model is trained to recognize the noised samples.
With the repeating of such adversarial training, the model
becomes harder and harder to be attacked, and thus the ro-
bustness of the model can be significantly enhanced. Such
as the Fast Gradient Sign Method (FGSM) [12], with which
the sample is perturbed by adding a small value along the
gradient direction of its classification loss function, and then
the perturbed samples are input into the model for training.

Although adversarial training can largely enhance the
robustness of the classification model. The existing ad-
versarial training methods still face two major problems:
Firstly, some existing works [19, 21, 27] proposed that the
adversarial training on small datasets may cause an over-

fitting phenomenon called “robust overfitting”. With this
phenomenon, the classification model becomes too robust
and loses generalization ability, whereas the few-shot clas-
sification relies tightly upon it. Therefore, the adversarial
training methods are hard to be utilized in few-shot classifi-
cation directly. Secondly, most existing works are not self-
adaptive, which represents that the attribute of the generated
noise will not change during the training process, while we
hold that the same noise will not benefit the model during
training.

To solve the problems mentioned above, we propose a
Variational Adversarial Data Augmentation (VADA) Algo-
rithm which considers both the robustness and generaliza-
tion ability of the classification model. With our VADA, we
apply a Variational Noise Generator (VNG) to generate self-
adaptive noise distribution for each sample (shown in Fig.
1). Then the noise is sampled from the generated distribu-
tion and added to the original sample to form the perturbed
sample. Because the noise is sampled from a distribution
according to the input sample, the controllable randomness
can enhance both the generalization ability and the robust-
ness. To obtain noise that can influence the accuracy of the
classification model, we utilize adversarial training as the
training strategy: The VNG is trained to fool the classifica-
tion model while the classification model is trained against
the fooling. During utilizing VADA, we suppose that ap-
propriate noised samples are generated as the input of the
classification model in each epoch of the training process
as data augmentation. After training with our VADA, the
adversarial robustness of the classification model will be
enhanced without sacrificing the generalization ability. To
validate the effect of our VADA, we conduct extensive ex-
periments on popular Few-Shot classification datasets, e.g.,
MiniImageNet, TieredImageNet, and CUB. Utilizing our
VADA, the testing accuracy against the different scales of
noise raises on all the datasets.

The major contributions of this paper are summarized
below.

• We propose a Variational Noise Generator (VNG) to
generate noises that can perturb the classification per-
formance of the Few-Shot model. VNG can generate
proposal noises according to the input samples adap-
tively.

• We propose a Variational adversarial data augmenta-
tion (VADA) algorithm with our proposed VNG to en-
hance the robustness of Few-Shot models. Our VADA
can enhance the adversarial robustness while not sac-
rificing the generalization ability.

• We conduct extensive experiments to verify the effect
of VADA on popular Few-Shot datasets. After training
with our VADA, the Few-Shot model becomes more
robust against different scales of noise.



In this paper, we organize the subsequent of this paper
as follows: We introduce the related works in Section 2.
In Section 3, we introduce the details of VADA, which is
mainly about the Variational Noise Generator. After intro-
ducing our VADA, the experimental results with our VADA
are shown in Section 4. Finally, we construct the conclusion
and prospect in Section 6.

2. Related works

In this section, we introduce the existing works which
are related to our VADA, e.g., the adversarial robustness
and the Variational Auto-Encoder.

2.1. Adversarial Robustness

Adversarial Robustness represents the ability of models
against adversarial attacks. In former studies, researchers
solve the robustness against adversarial attack problems
with dual optimization [23]. During the optimization pro-
cess of the adversarial training, a perturbation δ is searched
to change the decision of the classification model:

max
||δ||≤ϵ

L(Fϕ(x+ δ), y) (1)

where Fϕ is the classification model with parameter ϕ, L
is the objective loss function of the model, and ϵ is a const
which limits the size of the perturbation δ.

After the perturbation, the empirical adversarial risk,
which is the objective function of the classification model,
is represented in the following min-max setting:

min
ϕ

max
||δ||≤ϵ

Ex∼p(x)[L(Fϕ(x+ δ), y)] (2)

The Projected Gradient Descend (PGD) is a typical
method with this min-max setting. The PGD utilizes a
multi-step FGSM to upgrade the noise, which is computed
with the following iterative method:

δ := P (δ + α∇δL(Fϕ(x+ δ), y)) (3)

where P is a projection over the ball of interest.
So far, many works [5, 11, 33, 34] aim at improving ro-

bustness by utilizing PGD to generate adversarial pertur-
bation. In the field of Few-shot classification, Goldblum
et al. [11] apply PGD in the inner loop of meta-learning,
while computing gradient and updating the model in the
outer loop with the adversarial query data. Zhang et al. [34]
utilized PGD to generate samples to minimize the distance
between classes as the perturbation.

Although adversarial training like PGD can generate ef-
fective noise easily with backpropagation, the noise gener-
ated this way has a shortcoming: Once the parameter of the
classification model is determined, the noise is determined.
Thus, this noise can let to robustness overfitting because of
its certainty.

2.2. Variational Auto-Encoder

Variational Auto-Encoder (VAE) [1, 14] is a generative
model which consists of an encoder that projects samples
into a latent vector and a decoder that generates a sample
according to the latent vector. The main idea of Variational
Auto-Encoder is that the latent vector z is sampled from
distribution and the generated sample should be similar to
the original sample:

−Ez∼q(z|x)[log p(x|z)] +KL(q(z|x)||N(0, 1)) (4)

In VAE, researchers assume that the probability of a la-
tent vector can be represented as p(z|x), which can be pre-
dicted with a Bayesian network q(z|x). Then the decoder
aims to keep p(x|z) have the maximum certainty. It can be
noted that the latent vector z has the following performance:
1. It is sampled from a distribution that depends on the input
sample. 2. The distribution can be fitted with the Gaussian
distribution. In another word, VAE grants us the ability to
generate controllable randomness.

Although most of the works [10] apply VAE as an auto-
encoder, some researchers [2] also discover its potential for
noise. In this work, different from other existing works,
the decoder of the VAE is not utilized. Thus, instead of
generating noisy samples with the decoder, we apply the
output of the encoder as the noise, while the output is a
distribution matrix with the same size as the samples and
not vectors in other works.

2.3. The Reparameterization Trick

Although researchers utilize VAE to generate distribu-
tion, sampling from the distribution will cut off the back-
propagation of the gradient, which prevent the encoder from
upgrading. To optimize the encoder, VAE utilizes the repa-
rameterization trick to avoid this phenomenon.

In the reparameterization trick, researchers decouple the
sampling into two steps: 1. sampling ξ from a distribution
p(ξ). 2. Generate z with z = gθ(ξ), where gθ is a function
of ξ. Thus, the learnable distribution is divided into distribu-
tions with no learnable parameter and a learnable function.
Only the function is trained during the optimization process.

3. Variational Adversarial Data Augmentation

We briefly introduce our Variational Adversarial Data
Augmentation in this section, which includes problem def-
inition, objective function, the Variational Noise Generator,
and the training process of VADA.

3.1. Problem definition

In Few-Shot learning, researchers utilize a set of N -
way K-shot Few-Shot tasks Tb which consisted of the
base classes as the training tasks. After training the
classification model with the training tasks, the model
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Figure 2. The total training process of VADA: Our VADA consists of a Variational Noise Generator Gθ and a classification model Fϕ.
The first row represents the training process of the VNG. While training the VNG, we compute the loss function according to the function
(10). Then we utilize backpropagation to upgrade the parameter of VNG while freezing the parameter of the classification model. We
utilize a classical training process to optimize the classification model in the second row. In this process, the VNG is frozen and generates
noisy samples as data augmentation.

is tested with the Few-Shot tasks Tn with novel classes.
And each of the N -way K-shot tasks contains K la-
beled samples in each of the N different base classes.
In this paper, we represent each training task as T =
{(x(1), y(1)), . . . , (x(N∗(K+M)), y(N∗(K+M)))}, in which
the first N ∗ K samples are called support set and the
N ∗K + 1 to N ∗ (K +M) are called query set. With the
noise-robust setting, the samples from the base classes are
clear while the samples from the novel classes carry noises
with different scales. Because the novel classes have no in-
tersection with the base classes, The effect of the model on
the novel classes is tightly related to the generalization abil-
ity. Thus, it is important to enhance the robustness while
keeping the generalization ability.

3.2. Objective function of VADA

Following the function (2), we write our objective func-
tion in a min-max formula:

min
ϕ

max
θ

Ex∼p(x)[L(Fϕ(Gθ(x)), y)]

=min
ϕ

Ex∼p(x) max
p(x̂|x)

Ex̂∼p(x̂|x)[L(Fϕ(x̂), y)]
(5)

where the p(x) is the prior of x, the x̂ = x + δ = Gθ(x)
is the noisy sample which carries noise. Gθ is the attacker
model, which is our Variational Noise Generator. In this
paper, the attacker model targets fooling the classification
model via generating noise which follows the probability

x̂ ∼ p(x̂|x) to maximize the classification loss. And the
classification model is betaken against attacking by mini-
mizing the perturbed loss L(Fϕ(x̂), y).

3.3. The Variational Noise Generator

To generate the distribution of the noise, we propose a
Variational Noise Generator (VNG) to solve the maximiz-
ing problem, which utilizes a Gaussian distribution to fit the
original noise distribution. Noticing that the maximizing
problem can be rewritten as a minimizing problem:

max
p(x̂|x)

Ex̂∼p(x̂|x)[L(Fϕ(x̂), y)]

= min
p(x̂|x)

Ex̂∼p(x̂|x)[L(Fϕ(x̂), ȳ)]
(6)

where the ȳ represents the labels except the correct label
y. After rewriting, we can represent the rewritten function
with a negative log-likelihood formula:

min
p(x̂|x)

Ex̂∼p(x̂|x)[L(Fϕ(x̂), ȳ)]

= min
p(x̂|x)

−
∫

p(x̂|x) log p(ȳ|x̂)dx̂

= min
p(x̂|x)

−
∫

p(x̂|x) log p(ȳ, x̂)

p(x̂|x)
dx̂

(7)

Utilizing the distribution generated by VNG p(x̂|x, θ) to



fit the noise distribution p(x̂|x), we obtain:

min
p(x̂|x)

−
∫

p(x̂|x) log p(ȳ, x̂)

p(x̂|x)
dx̂

=min
θ

−
∫

p(x̂|x, θ) log p(ȳ, x̂)

p(x̂|x, θ)
dx̂

−
∫

p(x̂|x, θ) log p(x̂|x, θ)
p(x̂|x)

dx̂

(8)

where the first term of equation (8) can be represented as a
Cross-Entropy (CE) loss Ladv , and the second term can be
written as a Kullback-Leibler divergence Lvar

LV NG = Ladv + Lvar

=−
∫

p(x̂|x, θ) log p(ȳ, x̂)

p(x̂|x, θ)
dx̂

+

∫
p(x̂|x, θ) log p(x̂|x)

p(x̂|x, θ)
dx̂

(9)

The LV NG in equation (9) is the objective function of
VNG, which is consisted of two parts. The Ladv hold that
the generated noise can fool the classifier and the Lvar aims
at limiting the distribution. To optimize the parameter of
VADA with gradient descent, we make an unbiased estima-
tion:

LV NG =
1

N

∑
x

−p(x̂0|x, θ) log p(ȳ|x̂0)

+ KL(N (x̂;x+ µ,Σ)||N (x,Γ))

=
1

N

∑
x

−p(x̂0|x, θ) log p(ȳ|x̂0)

+ KL(N (δ;µ,Σ)||N (0,Γ))

(10)

where the N (x̂;x+µ,Σ) = p(x̂|x, θ) is the distribution
generated by VNG, and x̂0 is a random value selected from
the distribution p(x̂|x, θ), p(x̂0|x, θ) shows the probability
of selecting x̂0 from p(x̂|x, θ). We assume that the noise
distribution to be fitted can be represented as a Gaussian
distribution N (0,Γ), where the variance is expressed as Γ.

With our VNG, we can generate controllable random-
ness according to the input sample x. After training, the
VNG obtains the ability to generate noise distribution which
can most perturb the samples. During VADA, we train VNG
and the classification model alternately.

3.4. Training with VADA

After introducing VNG, we would introduce the training
process of the VADA, which is shown in Algorithm 1.

In this paper, we regard the optimization of the objec-
tive function as a biconvex problem. As shown in Fig. 2,
We train the classification model or VNG while freezing the

Algorithm 1: The proposed VADA algorithm
Input: A set of Training tasks {Tb} which consisted

with base classes, and Validation tasks {Tv}
which consisted with Validation classes. A
Classification model Fϕ, and a VNG Gθ.

Output: The parameter ϕ of classification model
Fϕ.

1 while Epoch ≤ Total Epoch do
2 for Each Tb ∈ {Tb} do
3 /*Optimizing the VNG */
4 if Epoch % Update Frequency == 0 then
5 Generate the noisy samples {x̂(i)} with

equation (12) for each x(i) ∈ Tb;
6 Compute the probability

{p(x̂(i)|x(i), θ)} for pair of x̂(i) and
x(i);

7 Predict the likelihood {p(ȳ|x̂)} for each
x̂(i) via the Classification model Fϕ;

8 Compute the KL divergence between
{p(x̂(i)|x(i), θ)} and N (x(i), 1);

9 Compute the LV NG with equation (10);
10 Update the parameter of VNG θ with

LV NG;
11 end
12 /*Optimizing the Classification model */
13 Generate the noisy samples {x̂(i)} with

equation (12) for each x(i) ∈ Tb;
14 Predict the likelihood {p(y|x̂)} for each x̂(i)

via the Classification model Fϕ;
15 Compute the Lcls via equation (13);
16 Update the parameter of classification model

ϕ with Lcls;
17 end
18 Evaluate the accuracy with Validation tasks

{Tv};
19 Epoch += 1;
20 end
21 return The parameter ϕ with best validation

accuracy.

parameter of the other. During training, We apply the loss
equation (10) to update VNG. For easier adjusting, we fix
the Γ with a small value and change the weight γ to con-
struct a soft formula of equation (10):

LV NG

=
1

N

∑
x

−p(x̂0|x, θ) log p(ȳ|x̂0)

+γ ∗KL(N (δ;µ,Σ)||N (0,Γ))

(11)

We utilize the reparameterization trick to keep the VNG



Figure 3. In this figure, we show the origin and noisy sam-
ples from datasets utilized in this paper. The columns repre-
sent the original sample and the noisy samples with noise scale
ϵ = 2/255, 16/255, 32/255 from left to the right. And the rows
represent different datasets, e.g., MiniImageNet, TieredImageNet,
and CUB from up to down.

gradable. We split the VNG Gθ into two parts: Firstly, we
sample ξ from a distribution N (ξ; 0, 1), Then, Our VNG
generates the mean µ and variance Σ:

x̂ = x+ µ+ ξ ∗ Σ
s.t. µ,Σ = Gθ(x).

(12)

But, for short, we mark the whole process of generating
x̂ as x̂ = Gθ(x). Therefore, the loss function we utilized
for training the classification model is a Cross-entropy loss:

Lcls =Ex∼p(x)[L(Fϕ(Gθ(x), y)]

=
1

N

∑
x

− log p(y|Gθ(x))
(13)

4. Experiments

In this section, we exhibit the experimental results to
evaluate the training effect of our VADA. The subsections
include Dataset Descriptions, Baseline Information, Exper-
imental Details, and Experimental Results.

4.1. Dataset Descriptions

Three popular Few-Shot Datasets are utilized in this pa-
per, e.g., MiniImageNet, TieredImageNet, and CUB.

MiniImageNet [15] is a subset of the ImageNet, which
is one of the most commonly utilized datasets in image
recognition. Its subset, MiniImageNet, is mainly utilized in
the Few-Shot classification field. In MiniImageNet, 60000
images of different objects are included in 100 classes,
which represents 600 images per class. In this paper, we
divide the classes into three subsets which contain 60, 16,

and 24 classes respectively for training, validation, and test-
ing.

TieredImageNet [18] is a larger dataset than MiniIm-
ageNet, which is also a subset of ImageNet. The Tiered-
ImageNet dataset consists of 779,165 images. The images
are divided into 608 classes and 34 higher-level nodes. Fol-
lowing the proposed works [32], we divided the TieredIma-
geNet into training, validation, and testing sets according to
different nodes. Specifically, 20 nodes are included in the
training set while 6 and 8 nodes are in the validation and
testing sets.

CUB [31] is consisted of 200 subcategories and a total
of 11,788 images of birds. Therefore, researchers apply the
CUB dataset for fine-grained visual categorization. In this
paper, we split CUB into training, Validation, and testing
sets according to different subcategories. Following [3,26],
We utilize the same split method, in which 100 classes are
used as the training set, 50 classes are used as the validation
set, and 50 classes are applied as the testing set.

With the above datasets, we make the following settings:
To simulate the training process on the ideal dataset and the
testing process on samples from the real world, the training
and validation sets are selected from the dataset directly and
without adding any noise, and the testing samples are added
different scales of Gaussian noise.

4.2. Baseline Information

In this paper, we utilize widely recognized Few-Shot
classification models, e.g., FEAT and ProtoNet as baselines
to observe how our VADA influence their robustness.

ProtoNet [24] is a classical Few-Shot classification
model. With ProtoNet, the model obtains the prototype of
each class via the support set samples. Then, the distance
between the prototype and samples from the query set is
computed to predict the labels.

FEAT (Few-Shot Embedding Adaptation with Trans-
former) [32] is a recently popular metric-based model. Sim-
ilar to ProtoNet, FEAT utilizes the feature extracted from
the support set to obtain prototypes for each class. Then a
transformer [28] is utilized to adjust the prototypes to gen-
erate a better embedding.

In this paper, we set the hyperparameters of ProtoNet and
FEAT the same as in the original paper of FEAT.

4.3. Experimental Details

In the experiments, we utilize the FEAT and ProtoNet
with Conv4 and Resnet12 [13] as the backbone and test the
accuracy on MiniImageNet, TieredImageNet, and CUB for
both 1-shot and 5-shot settings. We apply different hyper-
parameters in different experiments. In every experiment in
this section, we update the VNG every 4 training steps and
set the updating rate as 0.0001.



Table 1. Percentage Accuracy of noisy data with Standard Deviation on MiniImageNet.

Method Backbone
ϵ = 2/255 ϵ = 16/255 ϵ = 32/255

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FEAT

Resnet12

66.63 ± 0.20 82.21 ± 0.14 61.31 ± 0.21 77.42 ± 0.15 48.83 ± 0.20 66.38 ± 0.17

FEAT+Augment 66.29 ± 0.21 81.29 ± 0.14 61.73 ± 0.20 78.71 ± 0.15 50.10 ± 0.20 70.35 ± 0.16

FEAT+PGD 63.36 ± 0.65 78.36 ± 0.48 58.92 ± 0.66 73.94 ± 0.50 50.25 ± 0.61 66.34 ± 0.53

FEAT+VADA (ours) 66.62 ± 0.20 81.97 ± 0.14 62.15 ± 0.20 78.01 ± 0.15 50.67 ± 0.20 67.58 ± 0.16

FEAT

Conv4

54.72 ± 0.20 71.63 ± 0.16 53.19 ± 0.20 70.22 ± 0.16 48.47 ± 0.20 65.85 ± 0.17

FEAT+Augment 53.86 ± 0.20 70.77 ± 0.16 52.69 ± 0.19 69.40 ± 0.16 48.58 ± 0.20 65.20 ± 0.17

FEAT+PGD 48.64 ± 0.61 63.30 ± 0.54 46.91 ± 0.61 61.86 ± 0.52 45.04 ± 0.60 59.62 ± 0.52

FEAT+VADA (ours) 55.17 ± 0.20 71.88 ± 0.16 53.64 ± 0.19 70.43 ± 0.16 48.96 ± 0.20 66.14 ± 0.17

ProtoNet

Resnet12

63.91 ± 0.21 80.27 ± 0.14 59.88 ± 0.21 77.25 ± 0.15 51.54 ± 0.20 69.57 ± 0.16

ProtoNet+Augment 63.45 ± 0.21 80.05 ± 0.14 60.16 ± 0.21 76.72 ± 0.15 52.41 ± 0.20 69.64 ± 0.16

ProtoNet+PGD 60.17 ± 0.68 78.74 ± 0.47 56.35 ± 0.66 75.18 ± 0.48 49.57 ± 0.63 66.34 ± 0.53

ProtoNet+VADA (ours) 64.05 ± 0.21 80.33 ± 0.14 59.96 ± 0.21 76.81 ± 0.15 52.43 ± 0.20 68.73 ± 0.16

ProtoNet

Conv4

54.59 ± 0.20 71.90 ± 0.16 53.45 ± 0.20 70.06 ± 0.16 48.39 ± 0.19 65.96 ± 0.16

ProtoNet+Augment 51.67 ± 0.20 69.85 ± 0.16 50.90 ± 0.20 68.67 ± 0.16 47.44 ± 0.20 64.67 ± 0.17

ProtoNet+PGD 48.60 ± 0.65 62.92 ± 0.52 47.66 ± 0.61 61.74 ± 0.53 44.05 ± 0.62 58.97 ± 0.54

ProtoNet+VADA (ours) 54.84 ± 0.19 71.59 ± 0.16 53.23 ± 0.19 70.35 ± 0.16 49.35 ± 0.20 66.43 ± 0.17

Table 2. Percentage Accuracy of noisy data with Standard Deviation on TieredImageNet and CUB.

Datasets Methods
ϵ = 2/255 ϵ = 16/255 ϵ = 32/255

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TieredImageNet

FEAT 70.55 ± 0.23 84.44 ± 0.16 69.77 ± 0.23 83.86 ± 0.16 67.14 ± 0.23 82.16 ± 0.16

FEAT+Augment 70.17 ± 0.23 84.90 ± 0.16 68.91 ± 0.23 84.25 ± 0.16 66.08 ± 0.23 82.16 ± 0.16

FEAT+PGD 60.25 ± 0.69 75.83 ± 0.55 58.24 ± 0.69 74.78 ± 0.55 55.77 ± 0.71 71.92 ± 0.56

FEAT+VADA (ours) 70.51 ± 0.23 84.74 ± 0.16 69.84 ± 0.23 84.31 ± 0.16 67.35 ± 0.22 82.47 ± 0.16

CUB

FEAT 65.47 ± 0.23 79.70 ± 0.17 63.67 ± 0.24 78.11 ± 0.18 57.76 ± 0.24 72.58 ± 0.19

FEAT+Augment 62.58 ± 0.23 78.84 ± 0.17 60.89 ± 0.23 77.13 ± 0.18 55.24 ± 0.23 71.88 ± 0.19

FEAT+PGD 55.63 ± 0.71 71.58 ± 0.58 55.18 ± 0.71 70.20 ± 0.60 50.94 ± 0.70 66.52 ± 0.62

FEAT+VADA (ours) 65.66 ± 0.23 79.46 ± 0.17 64.13 ± 0.23 78.18 ± 0.18 58.01 ± 0.24 72.73 ± 0.19

To train with MiniImageNet, we utilize different γ to
limit the distribution of the generated noise. With the 1-shot
setting of the ProtoNet, we apply γ = 0.1 for Conv4 and
γ = 0.01 for Resnet12. For the 5-shot setting of ProtoNet,
the γ is set to 0.1. With the Feat, we utilize γ = 0.1 to deal
with the training of both 1-shot Conv4 and Resnet12. The

5-shot setting of γ for Conv4 and Resnet12 are appointed as
0.01 and 0.001, separately.

We only utilize Resnet12 for TieredImageNet and Conv4
for CUB. Thus, for 1-shot and 5-shot classification on
TieredImageNet, we set the γ = 0.005 for both, while 0.001
and 0.01 for the 1-shot and 5-shot classification on CUB.



Table 3. Percentage Accuracy of clear data with Standard Devia-
tion on MiniImageNet.

Methods Backbone 1-shot 5shot

Matching Nets [29] Conv4 43.44 ± 0.77 55.31 ± 0.73

Relation Network [25] Conv4 50.44 ± 0.82 65.32 ± 0.70

MAML [8] Conv4 48.70 ± 1.75 63.11 ± 0.92

Meta-LSTM [16] Conv4 43.56 ± 0.84 60.60 ± 0.71

ProtoNet Conv4 54.70 ± 0.20 71.81 ± 0.16

ProtoNet+Augment Conv4 51.87 ± 0.20 70.05 ± 0.16

FEAT Conv4 54.69 ± 0.19 71.94 ± 0.16

FEAT+Augment Conv4 53.86 ± 0.20 70.87 ± 0.16

ProtoNet+VADA Conv4 54.66 ± 0.20 71.86 ± 0.16

FEAT+VADA Conv4 54.73 ± 0.20 71.91 ± 0.16

LEO [20] Resnet12 61.76 ± 0.08 77.59 ± 0.12

Protonet Resnet12 64.12 ± 0.21 80.56 ± 0.14

ProtoNet+Augment Resnet12 63.64 ± 0.21 79.99 ± 0.14

FEAT Resnet12 66.45 ± 0.20 81.67 ± 0.13

FEAT+Augment Resnet12 66.30 ± 0.21 81.40 ± 0.14

ProtoNet+VADA Resnet12 64.04 ± 0.21 80.50 ± 0.14

FEAT+VADA Resnet12 66.37 ± 0.20 81.84 ± 0.14

Table 4. Percentage Accuracy of ProtoNet with Standard Devia-
tion for different regular weight on noisy data in MiniImageNet.

Regular weight 1-shot 5shot

0.1 49.35 ± 0.20 65.62 ± 0.17

0.01 48.89 ± 0.19 66.43 ± 0.17

0.005 47.02 ± 0.20 65.90 ± 0.17

0.001 48.06 ± 0.19 65.99 ± 0.17

After training the models, 10000 tasks from the testing
set are utilized to evaluate the accuracy. The testing samples
are added noise with scale ϵ = 2/255, 16/255, 32/255, as
shown in Fig. 3.

4.4. Results on noisy data

We show the accuracy of our VADA while facing
noisy samples from different datasets, e.g., MiniImageNet,
TieredImageNet, and CUB, to show how data augment or
our VADA enhances the robustness of the models. In both
Table 1 and Table 2, blue represents that the accuracy is
lower than baseline and red color means that the accuracy
is higher than baseline while the bold style shows that the
results are the highest.

As shown in Table 1, we evaluate our VADA with base-
line models on noisy samples from the MiniImageNet. For

Table 5. Percentage Accuracy of ProtoNet with Standard Devia-
tion for different Update Frequencies on noisy data in MiniIma-
geNet.

Update Frequency 1-shot 5shot

1 48.25 ± 0.20 66.17 ± 0.17

2 48.18 ± 0.20 65.82 ± 0.17

4 49.35 ± 0.20 66.43 ± 0.17

8 48.41 ± 0.20 65.71 ± 0.17

16 48.58 + 0.20 66.14 ± 0.17

samples that carry noise with scale ϵ = 2/255, the noise
can only slightly reduce the accuracy. Thus, in most cases,
VADA can only lead to a similar accuracy compared with
the baselines, which is 0.07% higher than the baseline aver-
age. But with the increase of the noise scale, this enhance-
ment becomes more obvious. With ϵ = 16/255, our VADA
can increase the accuracy by 0.23% average. The models
obtained the largest improvement when ϵ = 32/255, which
is a serious perturbation. In this condition, our VADA can
increase the accuracy by 0.66% average. The mark ”+Aug-
ment” represents the model trained with samples with data
augmentation, which is the representation of (a) in Fig. 1.
As shown in the table, data augmentation can also improve
the accuracy in some situations, but compared with our
VADA, data augmentation is not a stable enough method
that can improve the robustness and will sometimes hurt
the accuracy. With ”+PGD”, we expose the testing accu-
racy of model which is trained with noisy sample generated
by PGD, which represents the (b) in Fig. 1. In this sec-
tion, we set the PGD as the ϵ = 0.1, the updating step size
as 0.01, and update for 2 steps for each sample. Although
training with noisy samples generated with PGD can im-
prove the robustness of the model, the model becomes too
robust to generalize to novel classes which carry uncertain
noises. In this case, as shown in the table, training with
PGD-perturbed samples can not improve the accuracy of a
few-shot model.

The accuracy of our VADA on TieredImageNet and CUB
is contained in Table 2. With the results, we can recognize
that VADA can improve the 5-shot accuracy better, which
increases by 0.32% on TieredImageNet and improves the
1-shot accuracy by 0.30% on the CUB dataset. Also com-
pared with the data augmentation, our VADA can improve
the accuracy and robustness more stably and does not sacri-
fice the generalization ability.

4.5. Results on clear data

In this subsection, we exhibit the classification accuracy
of baseline models and models trained with VADA. With
the experimental results, we are verifying how our VADA



algorithm influences the generalization ability.
The accuracy of ProtoNet and Feat which were trained

with our VADA are exhibited in Table 3. With the shown
accuracy, it can be recognized that the accuracy of mod-
els trained with our VADA is close to the baseline models.
which represents that our VADA has no obvious negative
influence on the generalization ability. Specifically, the ac-
curacy of the models trained with our VADA changes aver-
agely by 0.00125%.

4.6. Results of different hyperparameters

In this section, we discuss the selection of the hyperpa-
rameters we utilize in the VADA, e.g., the update frequency
and the regular weight γ. In this section, we set the scale of
noise ϵ = 32/255.

In Table 4, we discuss how the regular weight γ influ-
ences the classification accuracy. In this case, we can rec-
ognize that our parameter choice of the regular weight can
lead to the best accuracy. The key point of the adjustment
of regular weight is keeping the balance between the Ladv

and Lvar. Thus, the VNG can generate appropriate noise
which won’t cause robust overfitting.

The results of updating the frequency of VNG are shown
in Table 5. The accuracy fluctuates following the change
in the update frequency. Generally, the update frequency is
not as important as a hyperparameter as the regular weight.
Therefore, we didn’t change the update frequency during
the former experiments.

5. conclusion

The Few-Shot classification models which were trained
with clear samples had trouble recognizing noisy sam-
ples. Thus, to enhance the noise-robustness of the model,
we proposed a novel data augmentation method with the
variational method call Variational adversarial data Aug-
mentation (VADA) algorithm, in which we utilized an
adversarially-trained Variational Noise Generator (VNG)
to generate noise which to followed adaptive appropriate
noise. with our VADA, the robustness of the model could
be enhanced and milder robustness overfitting would be
caused. In this paper, we conducted experiments to verify
the effect of our VADA, which became more obvious with
the raising of the noise scale. However, our VADA is sen-
sitive to regular weight, which is a defect that needs to be
solved. In a further study, we would be working on solving
the existing problems of VADA and exploring other algo-
rithms to improve the robustness of classification models.
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