
FilterGNN: Image Feature Matching with Cascaded Outlier Filters and Linear
Attention

Jun-Xiong Cai
Tsinghua University

Being, China
caijunxiogn000@136.com

Tai-Jiang Mu*

Tsinghua University
Beijing, China

taijiang@tsinghua.edu.cn

Yu-Kun Lai
Cardiff University

Wales, United Kingdom
yukun.lai@cs.cardiff.ac.uk

Abstract

Cross-view matching of image local features is a fun-
damental task for visual localization and 3D recon-
struction. In this paper, we propose FilterGNN, a
Transformer-based graph neural network (GNN), aim-
ing to improve matching efficiency and accuracy for
visual descriptors. Based on high matching sparse-
ness and coarse-to-fine co-visible area detection, Fil-
terGNN utilizes cascaded optimal graph matching filter
modules to dynamically reject outlier matches. More-
over, we have successfully adapted linear attention for
FilterGNN with post instance normalization support,
which significantly reduces the complexity of complete
graph learning fromO(N2) toO(N). Experiments show
that FilterGNN only takes 6% time cost and 33.3% mem-
ory cost against SuperGlue under large-scale input size,
and achieves competitive performance for various tasks,
such as pose estimation, visual localization and sparse
3D reconstruction.

Keywords: Image Matching, Transformer, Linear At-
tention, Visual Localization, Sparse Reconstruction

1. Introduction

Finding pixel-wise correspondences from image pair is
an essential step for camera pose estimation which has been
widely used in Structure-from-Motion (SfM) [33], Simulta-
neous Localization and Mapping (SLAM) [22, 13], Visual
Localization [30], etc. Most existing methods require two
phases: local feature extraction and feature matching. Great
efforts [9, 6] have been devoted to feature extraction us-
ing deep convolutional neural networks (DCNNs) over the
past decade. Recently, some Transformer [44] based meth-
ods [31, 3, 36, 38, 39, 12] have been proposed to greatly
improve the matching ability against traditional strategy of
nearest neighbor (NN) search. Meanwhile, the extra com-
putational cost remains as the main challenge for practical
use in real-time applications.

*Corresponding author.

Attention-based graph nerual networks, such as Super-
Glue [31], mainly benefit from the Transformer’s support
for irregular data and the aggregated global context through
the pair-wised attention mechanism. Specifically: a) Self-
attention, exhaustively calculating correlation of any two
keypoints extracted from the same image, is used to ag-
gregate the inner-view global context. b) Correspond-
ingly, cross attention is applied on the complete bipartite
graph composed of two keypoint sets grouped by source
images to learn cross-view information. c) Slightly dif-
ferent from bipartite graph matching, local feature match-
ing task has a large number of non-matchable keypoints.
Therefore, reasonable rejection mechanism is required for
an optimal matching layer to detect them. With the refine-
ment of local descriptors by complete graph based attention,
SuperGlue has achieved significant performance gains on
many pose estimation [41, 2] or visual localization bench-
marks [32, 47, 40]. However, the fully-connected attention
mechanism (as shown in Fig. 1(c)) brings in a computa-
tional complexity of O(N2d)1, which is much higher than
NN search.

Efforts to reduce attention computation go in two main
ways. The first is to build a sparse graph from the inputs.
Due to the discrete and unordered nature of image local
features, traditional methods such as spatial neighbor at-
tention [25, 24, 15], which relies on ordered sliding win-
dows, cannot be directly applied. More appropriate solu-
tions focus on building subgraphs by sampling [3], projec-
tion [45, 5] or clustering [36], reducing the computational
complexity toO(kNd), with k being a small constant. Usu-
ally, these methods would inevitably bring about the loss of
information at the size dimension, and the ratio between k
and N should be carefully chosen. The other way is to de-
sign linear kernel functions to make approximation to fully-
connected attention [5, 14, 10]. However, the previous work
ClusterGNN [36] has reported the incompatibility of linear
approximation on cross-attention, resulting in a significant
drop in matching accuracy.

In this paper, we propose FilterGNN, which effectively
1N represents the input size; d is the number of feature dimensions.

1

(a) (b)

𝒬

𝒦

𝒱

𝑁,𝑁

𝑁, 𝑑

𝑁, 𝑑

𝑁, 𝑑

𝑇
ℱ
𝑁, 𝑑

𝒬

𝒦

𝒱
𝑑, 𝑑

𝑁, 𝑑

𝑁, 𝑑

𝑁, 𝑑

𝑇

ℱ
𝑁, 𝑑

𝑁, 𝑑

𝑑, 𝑁

S

φ

Φ

Linear Attention

Standard Attention

(c)

Figure 1. (a) Visualization of our proposed hierarchical filtering. Keypoints in red, yellow and green are discarded layer-by-layer, and (b)
the remaining keypoints (blue) are used for the final feature matching with our FilterGNN. (c) Standard and linear attention. Q ⊗ KT

yields a computational complexity of O(N2d), where ⊗ means matrix multiplication and (φ, ϕ) represents kernel functions with linear
complexity. The dimensions of matrices are shown in orange.

combines the above two ways for comprehensive optimiza-
tion of feature matching. Previous works [31, 36] detected
non-matchable points only at the final optimal matching
layer. Our FilterGNN, instead, exploits hierarchical out-
lier filters to dynamically reject invalid outliers, which are
interspersed between attentional aggregation blocks. As
shown in Figure 1, the low-level filter can quickly reject
the isolated keypoints outside the co-visible area according
to the basic descriptors; and the high-level filter is respon-
sible for accurately removing outlier matches according to
refined descriptors considering sparsity, visibility and geo-
metric distribution consistency.

To further accelerate matching, we approximate the
fully-connected attention with linear attention, by consid-
ering the following aspects: i) Residual attention block
of SuperGlue [31] may lead to excessive variance ampli-
fication which affects the convergence speed and perfor-
mance. Therefore, a reasonable normalization layer is rec-
ommended, especially for training from scratch. ii) Con-
sidering the potential huge domain gaps between the in-
put image pair, such as orientation, scale and lighting, we
adopt instance normalization [43] instead of layer normal-
ization [1] in the vanilla Transformer [44]. iii) We found
that the training gradient of linear attention is not as good
as that of standard attention. Since the attention layer does
not require extra learnable parameters, rather than training
from scratch, we finetune linear attention by using the pre-
trained weights from standard attention. This not only pre-
serves high matching performance, but also makes the train-
ing converge faster.

The main contributions are summarized as follows:

1. We propose a cascaded optimal graph matching filter
module which can dynamically reject non-matchable
keypoints. It not only reduces the computational cost
but also provides a better feature distribution space for
highly correlated keypoints.

2. We further propose an efficient and effective linear
GNN architecture with post instance normalization,
significantly reducing the computational complexity
from O(N2d) to O(Nd).

3. Extensive experiments on various computer vision
tasks demonstrate the applicability of our method,
which achieves competitive results compared to state-
of-the-art (SOTA) methods while being significantly
more efficient.

2. Related Work

Image Feature Matching. Traditional pipelines mainly
focus on robust interest point detection and visual descrip-
tor computation. SIFT [19] is a scale-invariant handcrafted
feature, which is widely used in the pose estimation task
of SfM and Multi-View Stereo (MVS). ORB [28] focuses
on efficiency which is mainly applied in SLAM. In recent
years, deep convolutional neural networks (CNNs) have in-
spired many learning-based image feature extraction works,
such as D2Net [9], SuperPoint [6] and ASLFeat [20], etc.,
whose matching ability has significantly surpassed that of
handcrafted ones. They describe the content of local re-
gions, and often perform data augmentation on scale, rota-
tion, and imaging perturbations, to achieve orientation in-
variance [46] or affine invariance [21].

Graph Matching Filter Module(GMF)

GMF1 GMF2 GMFH

Dual-SoftMax
Loss

Matches
NN Search

FilterGNN

ℱ𝐴
𝑙

𝒫𝐴
𝑙 MLP

ℱ𝐵
𝑙

𝒫𝐵
𝑙

Linear Attentional GNN

𝑁

𝑀

· · ·

· · ·

Self Attention

· · ·

· · ·

Cross Attention ෨ℱ𝐴
𝑙

Score Matrix

Dustbin

Top-K
Filter

Top-K
Filter

ℱ𝐴
𝑙+1

𝒫𝐴
𝑙+1

ℱ𝐵
𝑙+1

𝒫𝐵
𝑙+1

Positional Encoder

Norm

෨ℱ𝐵
𝑙

× 𝐿

Shared Shared

MLP Norm

· · ·

· · ·

· · ·

Figure 2. The FilterGNN architecture. FilterGNN uses cascaded optimal Graph Matching Filter (GMF) modules (Section 3.2) to effi-
ciently filter out isolated keypoints for better feature matching. Each GMF module, acting as a mini SuperGlue [31] Block, refines the
descriptors F of the input keypoints set X = (F ,P) using a shared Positional Encoder (Section 3.2.1) and L stacked Linear Attentional
GNN layers (Section 3.2.2). A Top-K Filter is adopted to remove the k keypoints with lowest matching probabilities, gradually reducing
the size of the keypoint set. The score matrix of each GMF is then expanded with an extra dustbin dimension to detect outliers, and it gen-
erates matching loss through the Dual-Softmax operator [26] for training. Final correspondences are generated by performing traditional
Nearest Neighbor search on the remaining, distilled keypoint sets (XH

A ,XH
B) after H GMFs.

Recently, Sarlin et al. [31] proposed SuperGlue, which
exploited a Transformer based graph neural network to ag-
gregate inner-global and cross-view information from key-
point sets of image pairs. Since the goal of the feature
matching network is to refine the descriptors, the source
and target image features can be used directly as inputs.
SuperGlue improves the Transformer architecture of en-
coder (stacked self attention modules) and decoder (stacked
cross attention modules) with alternately stacked self- and
cross- attention modules. However, SuperGlue suffers from
a quadratic computational complexity of O(N2d), making
it impractical to be directly applied to real-time systems.

Efficient Transformer-based Architecture. The Trans-
former architecture has achieved success both in natural lan-
guage processing [7] tasks and computer vision tasks [8].
The inputs (texts or images) for these tasks have regular
structures, from which sparse graph patterns can be eas-
ily built. Sparse Transformer [25, 4] performs the atten-
tion computation only in text subsequences within a shift
local block. Similarly, SwinTransformer [18] adopts a slid-
ing window mechanism to compute the multi-level local at-
tention efficiently by making use of high sparsity of local
window. Linformer [45] performs linear projection on the
dimension of input size, which also requires the ordering of
the input elements. Obviously, such methods cannot be di-

rectly generalized to cross-image matching tasks, because
there is no reasonable way to predefine the order and spatial
adjacency of input sparse keypoints.

SGMNet [3] simulates seed downsampling through at-
tentional pooling, with a computational complexity of
O(kNd), which is affected by the the number of seeds k, es-
pecially for large-scale inputs. Following SGMNet, Suwan-
wimolkul et al. [39] proposed neighborhood attention with
an additional pairwise neighbor layer. ClusterGNN [36] and
RoutingTransformer [27] divide the complete graph into
multiple subgraphs in terms of semantic similarity by clus-
tering, and then only perform self-attention within each sub-
graph. Their ideal time complexity of GNNs is O(N1.5d).
These methods focus on building appropriate sparse graphs
from the input complete graph to simplify the attention
computation.

Katharopoulos et al. [14] propose a linear approximation
for the attention layer using a kernel function. As shown
in Figure 1, the computational complexity is reduced by
changing the order of matrix multiplication. Many follow-
up works [5, 10, 35] have designed different kinds of ker-
nel functions for different tasks. We draw inspiration from
these kernel function approximation based methods to make
significant progress on the image matching task.

3. FilterGNN Architecture

3.1. Overview

Given two keypoint sets (XA,XB) from a pair of images
(A,B), the feature matching is to find the correspondences
M = {(i, j)} that make the 3D positions of features X (i)

A

and X (j)
B as close as possible. The input X is composed

of keypoint descriptors D and positions P = {(u, v, c)},
where (u, v) is image coordinates and c represents the cor-
responding keypoint detection score.

Typically, we can build the similarity score matrix di-
rectly using the cosine distances of the visual descriptors,
and generate the correspondences through nearest neigh-
bor search. Currently, most visual descriptors, such as
SIFT [19], SuperPoint [6], D2net [9], etc., only encode lo-
cal context. However, in long-term visual localization sys-
tems, there are many interference factors, such as light-
ing conditions, camera poses, repetitive structures (build-
ings, checkerboards, etc.), that cannot be effectively han-
dled through local descriptors.

Our proposed FilterGNN thus aims to refine the local
visual descriptors for feature matching. As shown in Fig-
ure 2, our FilterGNN applies optimal Graph Matching Fil-
ters in a cascaded manner to the keypoint sets to filter out
non-matchable keypoints step-by-step, along with refining
the descriptors by aggregating global context through atten-
tion cascaded like SuperGlue. Each GMF is dedicatedly
designed with a novel linear attention GNN. In this way, the
final correspondences can be efficiently and accurately gen-
erated by performing traditional nearest neighbor search on
the remaining, distilled keypoint sets.

3.2. Graph Matching Filter (GMF)

Our Graph Matching Filter, similar to a lightweight Su-
perGlue, consists of a shared Positional Encoder, a Linear
Attentional GNN and a Top-K Filter. Among them, Posi-
tional Encoder is the operator to extract geometric content,
and Linear Attentional GNN is designed to aggregate global
information. After refining the input feature descriptors, we
remove a fixed proportion of non-matchable points accord-
ing to their cross-image matching scores.

3.2.1 Positional Encoder

The definition of the Positional Encoder module is as fol-
lows:

F̃ = σ(D ⊕mlppe(P)), (1)

where σ represents the instance normalization [43] and ⊕
means matrix addition. D contains the feature descriptors.
mlppe is the position encoding MLP that performs high-
dimensional embedding of the input image coordinates P .

FeedForward

𝒳𝑙

C

𝒳𝑙+1

FeedForward

Linear
Attention

𝒳𝑙

𝒳𝑙+1

Norm

Norm

𝒬

𝒦

𝒱

𝑁,𝑀

𝑁,𝑑

𝑀,𝑑

𝑀, 𝑑

𝑇 ℱ
𝑁,𝑑

𝒬

𝒦

𝒱
𝑑, 𝑑

𝑁,𝑑

𝑀, 𝑑

𝑀, 𝑑

𝑇

ℱ
𝑁, 𝑑

𝑀, 𝑑

𝑑,𝑀

S

S

S

Standard
Attention

(a) (b) (d)

(c)

1

5

3

15

18

1

5

6

5

1

1

6

Figure 3. (a) Original attention block in SuperGlue. (b) Our pro-
posed linear attention block with post-norm. (c) Standard atten-
tion. (d) Linear attention. The red numbers indicate the variance
during the operation. The variance multipliers of both the Feed-
Forward layer and Attention layer are assumed to be 5.

Here, instance normalization is equipped to control the vari-
ance of the output features.

3.2.2 Linear Attentional GNN

Linear Attentional GNN consists of L alternately placed
self attention blocks and cross attention blocks. As shown
in Figures 3(a)(b), each attention block consists of an lin-
ear attention layer and a feed-forward layer. And different
from SuperGlue, we place additional normalization layers
after the residual computing, respectively. Inspired by Swin
TransformerV2 [17], we demonstrate the variance change
in Figure 3.

The feed-forward layer is simply defined as a residual
MLP mlpff as follows:

FF (X) = σ(X ⊕mlpff (X)). (2)

For self/cross attention block Ãtt, it takes source features
Fsrc ∈ RN,d and target feature Ftgt ∈ RM,d as inputs and
outputs refined aggregated features by adding the attention
output to Fsrc. Here, M and N represent the numbers of
remaining keypoints of the two images, which are not re-
quired to be equal. The detailed definitions of Ãtt is as
follows:

Ãtt(Fsrc,Ftgt) = σ(Fsrc ⊕Att(Q,K,V)⊗Watt),

Q = Fsrc ⊗WQ

K = Ftgt ⊗WK

V = Ftgt ⊗WV , (3)

where Watt,Q,K,V ∈ Rd,d represents linear projection
weights and ⊗ means matrix multiplication. Q, K and V

correspond to queries, keys and values in the Transformer
architecture. When the source and target are the same (e.g.,
from the same image), Ãtt performs the self attention; oth-
erwise, it represents the cross-attention.

Attention mechanism is the core of our GNN. As shown
in Figure 3(c), for the standard attention mechanism of Su-
perGlue [31] from vanilla Transformer [44]Att(Q,K,V) is
defined as:

Attstd(Q,K,V) = Softmax(
Q⊗KT

√
d

)⊗ V, (4)

where the computational complexity ofQ⊗KT isO(N2d),
which is the bottleneck of the whole method.

And the linear attention [14] through kernel function ap-
proximation is defined as follows:

Attlinear(Q,K,V) = φ(Q)⊗ (ϕ(KT)⊗ V)
φ(x) = ϕ(x) = Softmax(x). (5)

(φ, ϕ) also have other choices. The definition in the equa-
tion above is borrowed from Efficient Attention [35]. Ob-
viously, the entire computational complexity of Attlinear
is O(Nd2). Usually, N is much larger than d. Therefore,
O(N2d) and O(Nd2) can also be represented by O(N2)
and O(N), respectively.

As reported by Shi et al. [36], directly training Fil-
terGNN with Attlinear from scratch does not make the
network converge well. We notice that neither Attstd nor
Attlinear requires extra learning parameters to the net-
work. Therefore, we can adopt a two-step training ap-
proach: firstly, we use Attstd for pre-training until conver-
gence; secondly, we replace Attstd with Attlinear to fine-
tune the network parameters. In this way, our FilterGNN
converges quickly without significant performance degra-
dation. For a more detailed discussion, please refer to Sec-
tion 4.3.

3.2.3 Top-K Filter

For each GMF module, the score matrix S ∈ RN,M is de-
fined as the dot-product between the refined features as fol-
lows:

S = F̃A ⊗ F̃T
B . (6)

We expand S to S̃ ∈ RN+1,M+1 by adding an extra learn-
able dustbin dimension for unmatched keypoint detection
as SuperGlue [31]. Then, We adopt the Dual-softmax [26]
operator to produce optimized matching confidence matrix
C as follows:

C = logSoftmax(S̃) + logSoftmax(S̃T)T . (7)

Finally, we define the matching probability of each key-
point as row-wise/column wise maximum value of C (ex-
cluding the dustbin dimension), and filter out the lowest k

(a)

(b)

(c)

Figure 4. (a) Visualization of matching probabilities: the color of
the keypoints goes from yellow to red as the probability goes from
high to low. (b) Visualization of matching confidence vector of
a matchable keypoint. (c) Visualization of matching confidence
vector of a non-matchable keypoint. The color of the lines from
red to green indicates the confidence from high to low.

keypoints. k is set to γN in this work. It is worth not-
ing that the NN Search of the last layer in Figure 2 is also
a similar process. This step no longer considers the dust-
bin, and directly determines the predicted matches based on
the score matrix. This process is also quite efficient since
the large number of outliers have been filtered out in pre-
vious layers. As shown in Figures 1 and 4, the detected
outliers from GMF are highly related with the co-visibility.
A source image would output different outlier detection re-
sults with different target images

3.3. Loss Function

We adopt a multi-level weighted loss function for H
GMF modules, as

L =
∑
h

whLh, wh = 1− γh, (8)

to achieve fast convergence and ensure stability outlier fil-
tering. γ represents the rejection ratio of each layer, which
is set to 0.1 in this work. The matching loss Lh of the hth

GMF module is defined as:

Lh =− 1

|M|
∑

(i,j)∈M

Cij−

1

|UA|
∑
i∈UA

Ci,m+1 −
1

|UB |
∑
j∈UB

Cn+1,j , (9)

where M represents the groundtruth matching set, and
(UA,UB) represents the non-matchable keypoint sets.
Combined with the definition of C in Equation 7, we hope
that the matching confidence vector of any matchable key-
point is as similar as possible to a one-hot vector (as shown
in Figure 4(b)). That is, the cosine similarity between un-
matched keypoints should be as low as possible. However,
the dimension of features is limited, and as the input size
increases, the angle between non-matching points will be
squeezed smaller, increasing the possibility of mismatch-
ing. Note that our proposed outlier filtering mechanism
can provide a relatively wider feature distribution space for
deeper layers. Therefore, the validity of FilterGNN is theo-
retically guaranteed.

4. Experiments and Discussions

4.1. Implementation Details

Training Dataset. FilterGNN was trained with the
MegaDepth dataset [16], including 195 outdoor scenes with
reconstructed camera poses and depth. We adopted the
same training/validation split of 153/36 as reported in [31].

Visual Descriptor. We used ASLfeat [20], a robust
indoor/outdoor visual descriptor with dimensions of 128,
throughout all experiments. We extract a maximum of 2048
keypoints for each image, and randomly select 1024 for data
augmentation during training.

Architecture Details. All feature representations
(Q,K,V,D,F) share the same dimension of 128 as
ASLfeat. Both H and L is set to 3. The channels of mlppe
are set to (3, 64, 128, 256, 128), and the channels of mlpff
are set to (128, 512, 128). Each linear layer (excluding the
last layer) in both MLPs is followed by a batch normaliza-
tion and a ReLU layer. All the attention layers mentioned
are implemented with 4-heads multi-head attention. Our
model is optimized using Adam with an initial learning rate
of 1×10−4 for first 10 epoch, followed with an exponential
decay of 0.9 for 20 epochs.

4.2. Results

We evaluate the efficiency and performance of our
method by making comparison with state-of-the-art
methods, including SuperGlue [31], SGMNet [3] and
ClusterGNN [36], on various computer vision tasks.
ASLfeatV2 [20] is specified as the input image visual de-
scriptor, which is currently one of the best descriptors ap-
plicable to both indoor and outdoor scenes.

4.2.1 Efficiency

All experiments were run on the same Nvidia GeForce RTX
3090 GPU. To clearly demonstrate the effect of the cas-
caded filter mechanism in FilterGNN, we adopt FilterGNN∗

0

100

200

300

400

500

600

700

800

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im
es
(m
s)

#Features

SuperGlue ClusterGNN SGMNet FilterGNN* FilterGNN

692

541

340

148

42.5

(a) Running time

0

1000

2000

3000

4000

5000

6000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
em
o
ry
(M
B
)

#Features

SuperGlue ClusterGNN SGMNet FilterGNN* FilterGNN

4872

3922

3242

1942

1622

(b) Memory

Figure 5. Running time (a) and GPU memory consumption (b)
w.r.t. the number of input keypoints for different methods.

to represent the corresponding results with standard atten-
tion for comparison.

We first compare the running time and memory usage
of the inference phase on a single GPU for the basic task
of feature matching. Most statistics are averaged with the
same batch size (4 by default). For SuperGlue with 10k
input size, batch size is set to 3 to avoid running out of
memory. As shown in Figure 5, we report the running time
and memory consumption w.r.t. different numbers of input
keypoints (ranging from 1K to 10K). The time complexity
of our FilterGNN is linear with the input feature size and
our method has achieved a significant improvement both in
time and memory consumption compared to the state-of-
the-art (SOTA) methods. Especially, when the number of
input keypoints is 10K, our method only takes 6% time cost
and 33.3% memory consumption against SuperGlue. In the
reports below, we will use 2K, 4K and 6k input points for
different experiments.

NN SuperGlue FilterGNN* FilterGNN

Figure 6. Qualitative examples of YFCC100M. The red and green lines indicate the outliers and inliers, respectively. Rotation error,
translation error and the number of inliers/matches are shown in the upper left corner of each image.

.

Table 1. Pose estimation on the YFCC100M benchmark. The
best result is in boldface and the second best is underlined.

Matcher AUC (↑) P (↑) MS (↑)
5◦ 10◦ 20◦

NN 27.95 45.20 61.17 54.29 14.29
SuperGlue 39.92 59.93 76.03 99.16 15.55
SGMNet 32.22 52.53 70.16 - -
ClusterGNN 35.31 56.13 73.56 - -
FilterGNN 40.91 60.15 75.47 91.26 23.92
FilterGNN∗ 44.25 63.81 78.65 94.46 32.59

4.2.2 Pose Estimation

Camera pose estimation is one of the most important appli-
cations for local feature matching, on which the RANSAC
post-processing is usually adopted to filter correspon-
dences. Following SuperGlue, we evaluate the accuracy
of location estimation on the YFCC100M [41] benchmark,
which contains 4k test image pairs with groundtruth rela-
tive poses and known camera intrinsics. In addition to Su-
perGlue, SGMNet and ClusterGNN, we also take nearest
neighbor search (NN) as the baseline to evaluate the per-
formance of the raw input ASLfeatV2 descriptors. In this
experiment the number of input keypoints is set to 2,048.
As shown in Table 1, We report the success rate by Area
Under Curve (AUC) metric [33, 23, 34] with three differ-
ent thresholds (i.e, 5◦, 10◦ and 20◦), which combine both
rotation error and translation error. We also report the pre-
cision of matches (P) and the ratio between the number of

matches and the input size (MS). All indicators are better
for bigger numbers. Our FilterGNN∗ significantly outper-
forms current SOTA methods, indicating that our cascaded
filter mechanism indeed excludes non-matchable keypoints
and increases the number of matches, thus contributing to a
more accurate pose estimation. Our FilterGNN using linear
attention also achieves very competitive performance com-
pared to SOTA methods, but with less time and memory
consumption, as previously demonstrated. It is worth not-
ing that the high prediction accuracy of SuperGlue [31] is
built on the fewer predicted matches. It can be infer that
SuperGlue [31] is conservative, while FilterGNN is more
aggressive and more capable of solving fine-grained prob-
lems. We also display some qualitative results in Figure 6.

4.2.3 Visual localization

Visual localization is also an important application of image
local feature matching. The typical pipeline contains image
retrieval, image matching, and a Perspective-n-Point pose
solver. Both the number and accuracy of matches do affect
the precision of localization. We integrate FilterGNN into
the official HLoc [30] pipeline and run experiments on the
Long-Term Visual Localization Benchmark [42]. Specifi-
cally, we selected two representative datasets: The Aachen
Day-Night dataset [32, 47] (outdoor) and InLoc dataset [40]
(indoor).

The Aachen Day-Night dataset has 922 query images,
and 824/98 daytime/nighttime images. All images were

Table 2. Outdoor Localization Results on Aachen Day-Night
Benchmark(v1.0). The best result is in bold.

Method Day Night
(0.25m,2◦) / (0.5m,5◦) / (1.0m,10◦)

NN 82.3 / 89.2 / 92.7 67.3 / 79.6 / 85.7
Superglue 87.9 / 95.4 / 98.3 81.6 / 91.8 / 99.0
ClusterGNN 88.6 / 95.5 / 98.4 85.7 / 93.9 / 99.0
FilterGNN∗ 89.2 / 95.4 / 98.5 85.7 / 92.9 / 100.0
FilterGNN 88.7 / 95.4 / 98.7 84.7 / 92.9 / 100.0

Table 3. Indoor Localization Results on InLoc Dataset. The best
result is in bold.

Method DUC1 DUC2
(0.25m,10◦) / (0.5m,10◦) / (1.0m,10◦)

NN 40.4 / 58.1 / 67.7 35.9 / 52.7 / 60.3
SuperGlue 51.5 / 66.7 / 75.8 53.4 / 76.3 / 84.0
ClusterGNN 52.5 / 68.7 / 76.8 55.0 / 76.0 / 82.4
FilterGNN∗ 55.6 / 69.7 / 78.8 59.5 / 75.6 / 77.1
FilterGNN 52.5 / 67.7 / 77.8 58.0 / 77.1 / 82.4

taken around the same street in Aachen, where the sparse-
ness of views and day-night variation are the main chal-
lenges.

The InLoc dataset provides 329 query images and
9,972 database images. The main challenges include com-
plex lighting conditions and common textureless objects
(floor, ceiling, wall, etc.).

The number of input keypoint is set to 4,096. We report
the percentage of correctly localized queries under different
thresholds (referring to the leader board of Long-Term Vi-
sual Localization Benchmark [42]). The results are listed
in Tables 2 and 3 for Aachen Day-Night dataset and InLoc
dataset, respectively. Our method also achieves comparable
results with other SOTA competitors.

4.2.4 Sparse Reconstruction

In order to demonstrate the robustness of FilterGNN more
intuitively, we integrate it into the COLMAP [33] pipeline
for sparse 3D reconstruction. We extracted 6000 keypoints
per image in this task. THU-MVS dataset [29] provides
multi-view images with 3D groundtruth, consisting of two
cases: a) a cat model with 108 views and b) a dog model
with 72 views. Animal images are usually weakly textured
body surfaces, which brings great challenges to local fea-
ture matching. As shown in Figure 7, FilterGNN performs
best on both the reconstruction density and accuracy. Com-
pared with SuperGlue, our method increases the reconstruc-
tion density by 72% on average, and reduces the reconstruc-
tion error by 35%.

4.3. Ablation Study and Discussion

We divide the ablation study into two aspects: submod-
ule composition and structure. First, we report the effect of

(b)SuperGlue (c)FilterGNN (d)Groundtruth(a)NN

Points:12k,
RMSE:6.38

Points:9k,
RMSE:6.2

Points:30k,
RMSE:1.69.

Points:44k,
RMSE:1.17.

Points:48k,
RMSE:0.88.

Points:24k,
RMSE:1.22

Figure 7. Visualization of sparse Reconstruction on THU-MVS
dataset [29]. The size of reconstruction point cloud and recon-
struction error are displayed above corresponding model. RMSE
refers to the root mean square error.

post-norm, attention methods and optimal matching func-
tion through matching accuracy (precision and recall) com-
parison on validation part of the MegaDepth dataset [16]
(with all training epochs set to 20). Post-norm has two op-
tions, layer norm and instance norm. For optimal matching
function (Opt.), as reported in previous works [38, 36], both
Sinkhorn [37] and Dual-Softmax [26] we have tested work
well in most cases. For attention computation, we tested 4
most representative methods:

• Standard scale product attention implemented in
Transformer [44];

• Linear Attention (LA) [14] with both kernel func-
tions (φ, ϕ) set to 1 + elu;

• Performer [5], with an extra low-dimension lin-
ear projection and kernel functions (φ, ϕ) set to
(softmax, exponential) respectively;

• Efficient Attention (EA) [35], also adopted in our
work, with both kernel functions (φ, ϕ) set to
softmax.

Table 4 shows the detailed comparison results. We can
draw the following conclusions: i) Instance norm always
has a positive effect, while layer norm leads to negative ef-
fect. ii) All linear attention methods except Efficient At-
tention [35] will cause a significant drop, which is much
different from reported evaluation on vision tasks or nat-
ural language processing tasks. iii) Pretrained with stan-
dard attention significantly improves the performance of Ef-
ficient Attention [35], but has no significant effect on other
methods. Directly adopting the traditional linear attention
method would reduce the accuracy rate by 30%, and the
pre-trained strategy would reduce the performance drop un-
der 8%. The two-stage pre-training strategy also brings an
improvement of about 10%. It is worth noting that in some

Table 4. Comparison among different post-norms, attention meth-
ods or optimal matching functions. LN and IN represent layer
norm and instance norm. sh and ds mean Sinkhorn and Dual-
Softmax. “any” means that the choice has no appreciable changes
on the results.

Attention Norm Pretrain Opt. P/R
Standard - - sh 78.1/88.5
Standard - - ds 81.6/88.2
Standard LN - sh 67.0/50.0
Standard LN - ds NAN
Standard IN - any 86.8/87.8
Performer [5] - - any 54.3/59.6
Performer [5] IN any any 58.4/62.9
LA [14] - - sh 55.9/56.2
LA [14] - - ds NAN
LA [14] IN any any 59.3/57.6
EA [35] - - any 62.6/60.9
EA [35] IN - any 70.2/74.5
EA [35] - X any 78.3/79.0
EA [35] IN X any 80.3/80.1

Table 5. Ablation of FilterGNN structure. The bold row represents
the default settings.

Methods H L γ P/R

FilterGNN

3 3 0.1 78.0/81.5
3 3 0.2 80.3/80.1
3 3 0.3 92.0/65.7
3 2 0.2 74.2/78.3
3 4 0.2 80.5/80.2
2 3 0.2 77.9/75.7
4 3 0.2 85.2/72.3

cases, Dual-Softmax will cause abnormal gradients. We
speculate that it may be caused by the accumulation of data
variance in the residual network, which can be effectively
avoided by using instance norm.

Then, we report the effect of the network structure, in-
cluding the number of GMFs H , the filtering ratio of GMFs
γ, and the number of attention blocks L in each attentional
GNN module of GPF. As shown in Table 5, increasing the
value of H or L from defaults contributes limited improve-
ment. Too large γ will reduce the recall, which is not good
for other post-processing tasks.

5. Conclusion

In this paper, we present FilterGNN, an efficient and
novel approach for image local feature matching. Observ-
ing the high sparsity property of long-term image feature
matching, we design hierarchical filter blocks to remove
non-matchable keypoints in a cascaded manner. This in-
stant outlier removal mechanism adjusts the network’s fo-
cus to the keypoints within co-visible regions, which is ben-
eficial for solving fine-grained problems. The experimental

results also verify that FilterGNN can indeed substantially
increase the number of predicted matches, which is crucial
for both accurate visual localization and high-quality sparse
reconstruction. Moreover, we also strictly reduce the time
complexity from O(N2) to O(N) by introducing a two-
stage pretraining-finetuning strategy without obvious per-
formance degradation, which has been validated in many
tasks. Since FilterGNN can reach a running speed of 50Hz
with an input of 10K keypoints, in the future, we will ap-
ply it to more complex scenes, such as 3D point clouds [11]
and super-resolution images, which require more input fea-
ture points.

Acknowledgement

This work was supported by the Natural Science Foun-
dation of China (Grant No.: 62220106003).

References

[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016. 2

[2] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk.
HPatches: A benchmark and evaluation of handcrafted and
learned local descriptors. In CVPR, pages 5173–5182, 2017.
1

[3] H. Chen, Z. Luo, J. Zhang, L. Zhou, X. Bai, Z. Hu, C.-L. Tai,
and L. Quan. Learning to match features with seeded graph
matching network. In CVPR, pages 6301–6310, 2021. 1, 3,
6

[4] R. Child, S. Gray, A. Radford, and I. Sutskever. Gen-
erating long sequences with sparse transformers. CoRR,
abs/1904.10509, 2019. 3

[5] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song,
A. Gane, T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin,
L. Kaiser, et al. Rethinking attention with performers. arXiv
preprint arXiv:2009.14794, 2020. 1, 3, 8, 9

[6] D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperPoint:
Self-supervised interest point detection and description. In
CVPRW, pages 224–236, 2018. 1, 2, 4

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-
training of deep bidirectional transformers for language un-
derstanding. In NAACL-HLT, pages 4171–4186, 2019. 3

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale. In ICLR, 2021. 3

[9] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic,
A. Torii, and T. Sattler. D2-net: A trainable CNN for joint
detection and description of local features. In CVPR, pages
8092–8101, 2019. 1, 2, 4

[10] Y. Gu, X. Qin, Y. Peng, and L. Li. Content-augmented fea-
ture pyramid network with light linear spatial transformers
for object detection. arXiv preprint arXiv:2105.09464, 2021.
1, 3

[11] J. Guo, H. Wang, Z. Cheng, X. Zhang, and D.-M. Yan.
Learning local shape descriptors for computing non-rigid
dense correspondence. Computational Visual Media, 6:95–
112, 2020. 9

[12] M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-
J. Mu, S.-H. Zhang, R. R. Martin, M.-M. Cheng, and S.-M.
Hu. Attention mechanisms in computer vision: A survey.
Computational Visual Media, 8(3):331–368, 2022. 1

[13] J. Huang, S. Yang, Z. Zhao, Y.-K. Lai, and S.-M. Hu. Clus-
terslam: A slam backend for simultaneous rigid body clus-
tering and motion estimation. Computational Visual Media,
7:87–101, 2021. 1

[14] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Trans-
formers are RNNs: Fast autoregressive transformers with lin-
ear attention. In ICML, pages 5156–5165. PMLR, 2020. 1,
3, 5, 8, 9

[15] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The effi-
cient transformer. In ICLR, 2020. 1

[16] Z. Li and N. Snavely. MegaDepth: Learning single-view
depth prediction from internet photos. In CVPR, pages 2041–
2050, 2018. 6, 8

[17] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao,
Z. Zhang, L. Dong, et al. Swin transformer v2: Scaling up
capacity and resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12009–12019, 2022. 4

[18] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 10012–
10022, 2021. 3

[19] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004. 2, 4

[20] Z. Luo, L. Zhou, X. Bai, H. Chen, J. Zhang, Y. Yao, S. Li,
T. Fang, and L. Quan. ASLFeat: Learning local features of
accurate shape and localization. In CVPR, pages 6589–6598,
2020. 2, 6

[21] D. Mishkin, F. Radenovic, and J. Matas. Repeatability is not
enough: Learning affine regions via discriminability. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 284–300, 2018. 2

[22] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-
SLAM: A versatile and accurate monocular SLAM system.
IEEE Transactions on Robotics, 31(5):1147–1163, 2015. 1

[23] Y. Ono, E. Trulls, P. Fua, and K. M. Yi. LF-Net: Learning lo-
cal features from images. In NIPS, pages 6237–6247, 2018.
7

[24] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer,
A. Ku, and D. Tran. Image transformer. In ICML, pages
4055–4064. PMLR, 2018. 1

[25] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang.
Blockwise self-attention for long document understanding.
In EMNLP, pages 2555–2565, 2019. 1, 3

[26] I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla,
and J. Sivic. Neighbourhood consensus networks. In NIPS,
pages 1658–1669, 2018. 3, 5, 8

[27] A. Roy, M. Saffar, A. Vaswani, and D. Grangier. Effi-
cient content-based sparse attention with routing transform-
ers. Transactions of the Association for Computational Lin-
guistics, 9:53–68, 2021. 3

[28] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:
An efficient alternative to SIFT or SURF. In ICCV, pages
2564–2571. Ieee, 2011. 2

[29] S. Sakai, K. Ito, T. Aoki, T. Watanabe, and H. Unten. Phase-
based window matching with geometric correction for multi-
view stereo. IEICE TRANSACTIONS on Information and
Systems, 98(10):1818–1828, 2015. 8

[30] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From
coarse to fine: Robust hierarchical localization at large scale.
In CVPR, pages 12716–12725, 2019. 1, 7

[31] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich.
SuperGlue: Learning feature matching with graph neural
networks. In CVPR, pages 4938–4947, 2020. 1, 2, 3, 5,
6, 7

[32] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image re-
trieval for image-based localization revisited. In BMVC, vol-
ume 1, page 4, 2012. 1, 7

[33] J. L. Schonberger and J.-M. Frahm. Structure-from-motion
revisited. In CVPR, pages 4104–4113, 2016. 1, 7, 8

[34] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys.
Pixelwise view selection for unstructured multi-view stereo.
In ECCV, pages 501–518. Springer, 2016. 7

[35] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li. Efficient at-
tention: Attention with linear complexities. In Proceedings
of the IEEE/CVF winter conference on applications of com-
puter vision, pages 3531–3539, 2021. 3, 5, 8, 9

[36] Y. Shi, J.-X. Cai, Y. Shavit, T.-J. Mu, W. Feng, and K. Zhang.
ClusterGNN: Cluster-based coarse-to-fine graph neural net-
work for efficient feature matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12517–12526, 2022. 1, 2, 3, 5, 6, 8

[37] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices
and doubly stochastic matrices. Pacific Journal of Mathemat-
ics, 21(2):343–348, 1967. 8

[38] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou. LoFTR:
Detector-free local feature matching with transformers. In
CVPR, pages 8922–8931, 2021. 1, 8

[39] S. Suwanwimolkul and S. Komorita. Efficient linear atten-
tion for fast and accurate keypoint matching. In Proceed-
ings of the 2022 International Conference on Multimedia Re-
trieval, pages 330–341, 2022. 1, 3

[40] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys,
J. Sivic, T. Pajdla, and A. Torii. InLoc: Indoor visual local-
ization with dense matching and view synthesis. In CVPR,
pages 7199–7209, 2018. 1, 7

[41] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. YFCC100M: The new
data in multimedia research. Communications of the ACM,
59(2):64–73, 2016. 1, 7

[42] C. Toft, W. Maddern, A. Torii, L. Hammarstrand, E. Sten-
borg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, T. Pa-
jdla, et al. Long-term visual localization revisited. TPAMI,
2020. 7, 8

[43] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. arXiv
preprint arXiv:1607.08022, 2016. 2, 4

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In NeurIPS, pages 5998–6008, 2017. 1, 2, 5, 8

[45] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma.
Linformer: Self-attention with linear complexity. CoRR,
abs/2006.04768, 2020. 1, 3

[46] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned
invariant feature transform. In ECCV, pages 467–483.
Springer, 2016. 2

[47] Z. Zhang, T. Sattler, and D. Scaramuzza. Reference pose
generation for visual localization via learned features and
view synthesis. IJCV, 129(4):821–844, 2021. 1, 7

