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Abstract

Based on well-defined objective functions and well-
designed network architectures, self-supervised monoc-
ular depth estimation has greatly advanced the develop-
ment of depth estimation. However, due to exceptions
such as moving objects and occlusion, accurate depth
inference in real scenes still needs to be within the scope
of current explicit optimization restrictions. Therefore,
the under-constraint issue is a common problem for ex-
isting methods, which reflects the uncertainty of the esti-
mated depth map. Consequently, we dig into uncertain-
ty quantification, which includes how to measure uncer-
tainty and promote learning performance with uncer-
tainty. Concretely, with Snapshot and Siam learning,
we focus on the learning difficulty difference between
certainty and uncertainty and measure the uncertain-
ty degree by calculating the variance of pre-converged
epochs or twins in training. Then we leverage the uncer-
tainty to guide the network model to strengthen learn-
ing on uncertainty regions in the scene. Finally, we pro-
pose uncertainty post-processing, adaptively producing
final depth with the balance of accuracy and robustness.
We choose Monodepth2 and Hints as baseline models,
carry out the comprehensive comparison and ablation s-
tudy experiments to verify the validity of our uncertain-
ty quantification method.

Keywords: self-supervised, monocular depth estima-
tion, uncertainty quantification, variance

1. Introduction

Depth estimation is a fundamental task in computer
graphics and computer vision, which can be used SLAM
[4], autonomous driving [19], scene reconstruction [8—10],
etc. Besides the industrial distance range devices like
Light Detection and Ranging (LiDAR) and Time of Flight
(ToF), incorporating consumer-grade cameras and machine
learning-based methods can estimate the relative depth of
a scene. Estimating depth from a single RGB image is an
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Figure 1: Compared with the baseline methods on the Eigen
split test dataset [7]. (a-b) input images, (c-d) baseline re-
sults: Monodepth2 [15] and Hints [42], (e-f) uncertainty
mask of depth, and (g-h) our results.

ill-posed problem. However, machine learning methods, in-
cluding the popular deep learning, let monocular depth esti-
mation become a possibility in the application, which learn
the relationship between the spatial distance and RGB fea-
tures from a large dataset. Unlike supervised methods, self-
supervised methods do not need costly ground truth depth.
To improve self-supervised monocular depth estimation,
some methods [3,12,15] introduce novel loss function items
to optimize new objectives. Other methods [16,21,24, 34]
modify the network architectures or add functional modules
to focus on the special depth estimation effect. The pre-



processing or post-processing [22,42,43] is also considered
to argue data usage. However, these techniques cannot solve
some self-supervised monocular depth estimation defects.
The reasons lie in the following aspects.

On the one hand, a specific technique to improve certain
depth estimation performance always requires an applica-
tion prerequisite. For example, the semantic information
used to sharpen the object boundary in the depth map is
limited by the number of known objects. On the other hand,
self-supervised based estimation is an under-constraint task
due to needing more adequate optimization objectives to re-
strict the factors such as low texture, motion objects, vary-
ing illumination, occlusion, and so on. Solely depending on
improving neural network architecture is hard to solve the
above issues.

Uncertainty quantification is an effective strategy to im-
prove the accuracy of the depth estimation model. There are
some methods [2,6,29,32, 38] discuss uncertainty, but sev-
eral weaknesses still exist. First, these methods are based on
ground truth depth to obtain uncertainty. Second, the pro-
posed functional modules or models must solve the under-
constraint problem. Third, they do not significantly distin-
guish between the learning difficulty of certainty and uncer-
tainty regions in the training scenes.

In this paper, we propose an uncertainty quantification
strategy to learn self-supervised monocular depth estima-
tion. Our idea is based on the observation that uncertain-
ty is caused by under-constraint and manifested as unsta-
ble prediction among consecutive training epochs (Fig. 2).
Thus, we propose to base the variance of consecutive epoch
results, estimate the uncertainty regions and guide the net-
work to learn them. Our uncertainty quantification consists
of uncertainty measurement, uncertainty guidance, and un-
certainty post-processing. Based on our simple but effec-
tive uncertainty quantification method, the regions associ-
ated with uncertainty in a scene can be detected and better
learned (Fig. 1).

Our contributions can be summarized as follows:

e We propose to use consecutive training epochs or the
Siam network to measure the uncertainty of the depth map.
Then, the estimation uncertainty mask is used to guide the
depth network model learning.

e We propose ensemble-based uncertainty post-
processing, adaptively producing final depth results with a
balance of accuracy and robustness.

e The proposed uncertainty quantification method does
not add additional modules, which could avoid substantially
modifying the baseline model. It can be conveniently and
effectively generalized to other self-supervised monocular
depth estimation methods.

2. Related Work

Self-supervised monocular depth estimation Garg et al.
[12] established the cornerstone of self-supervised monoc-
ular depth estimation. The photometric reconstruction loss
is the core loss function of self-supervised monocular depth
estimation. This loss measures the difference between a ref-
erence image and the depth-guided re-projection of other
views into that reference viewpoint. Monodepth [ 4] inputs
a left image into a depth network and predicts left-right dis-
parities to enforce consistency between the disparities pro-
duced relative to both the left and right images.

Zhou et al. [48] first proposed by using monocular video
to train the monocular depth estimation model. Mon-
odepth2 [15] makes the following three innovations. First,
they proposed a minimum photometric re-projection loss to
address the problem of occluded pixels. Then, they de-
signed an auto-masking loss to ignore training pixels that
violate relative camera motion assumptions. Finally, they
upsampled the predicted depth maps to the input resolu-
tion and computed all losses to reduce texture-copy artifact-
s. SC-Depth [3] proposes geometry consistency loss that
penalizes the inconsistency of predicted depths between ad-
jacent views, and a self-discovered mask to automatically
localize moving objects that violate the underlying static
scene assumption and cause noisy signals during training.

Some methods propose using multi-task training strate-
gies to improve the accuracy of depth estimate. GeoNet [46]
and DF-Net [49] propose a jointly learning framework for
monocular depth, optical flow, and ego-motion estimation
from videos. The three components are coupled by the na-
ture of 3D scene geometry, jointly learned by the framework
in an end-to-end manner. They used the predicted depth
and optical flow to mask motion objects during training. K-
lingner et al. [21] used the learned semantic information
to eliminate the influence of moving objects on computing
photometric re-projection loss.

Some methods use semi-supervised ways to train the
model. Jamie et al. [42] used the classical disparity map
estimation algorithm SGM [17] from a rectified stereo im-
age pair to provide the depth hints for the network. Klingner
et al. [21] added a semantic segmentation network to detec-
t moving objects, which aimed to prevent moving object-
s from contaminating the photometric reconstruction. SD-
SSMDE [30] presents a novel self-distillation based monoc-
ular depth estimation learning framework. First, train a self-
supervised high-resolution depth estimation model as pseu-
do depth labels. It was then based on the pseudo-depth la-
bels to train the depth estimation network. According to the
photometric reconstruction principle, most existing meth-
ods strongly depend on image features. As image depth
estimation is a pixel-level estimation task, the fact that the
scene is only observed from a single view can lead to in-
consistent or missing information in the generated virtual



views. Furthermore, factors like low texture, motion ob-
jects, occlusion, and poor illumination are beyond the pho-
tometric reconstruction or other relevant optimization re-
strictions and will cause estimation ambiguity in these pixel
regions. In theory, data-driven deep learning can alleviate
under-constraint influence, but it needs to identify these un-
certain regions and learn more.

Uncertainty in depth estimation. The machine learning
community usually treats under-constraint as an uncertain-
ty problem [1]. Liu et al. [25] proposed a systematical dis-
cussion on uncertainty in depth estimation. Song et al. [37]
proposed that the uncertainty of neural networks is general-
ly divided into random and model uncertainty. Random un-
certainty is from sensor noise, and motion noise may cause
the observation data to be inaccurate. Model uncertainty is
from the model parameters and model structures.

Random uncertainty. Choi er al. [6] proposed a model
with a monocular depth network, confidence network, and
threshold network. They distilled the data set with the con-
fidence and threshold networks to supervise the monocular
depth network. Shen et al. [36] supposed that the noise
in the data set obeys the Gaussian distribution, used the
Teacher-Student model to distill the data set, and modeled
its uncertainty.

Model uncertainty. Unlike previous Bayesian-based ap-
proaches, Kendall et al. [2] proposed a deep learning model
that estimated depth and confidence values. This multi-task
approach separately formulates depth and uncertainty esti-
mation to balance depth regression and uncertainty estima-
tion. Mertan et al. [29] statistically developed the relative
depth estimation problem as a maximum likelihood estima-
tion. They assumed the pixel depth followed a normal dis-
tribution and used a neural network to learn the mean and
variance distribution parameters. The mean represents the
depth, and the variance indicates the uncertainty. Teixeira
et al. [38] constructed two confidence depth completion net-
works and a loss network, which conducted depth comple-
tion and confidence estimation with an image-guided ap-
proach. The confidence map filters out unreliable depth es-
timation to obtain a more accurate result.

Poggi et al. [32] was the first to summarize the uncer-
tainty quantification of depth estimation comprehensively.
This work analyzed three uncertainty categories estimation
strategies, including empirical estimation, predictive esti-
mation, and Bayesian estimation. Among these three types,
both predictive estimation and Bayesian estimation need the
extra uncertainty estimation model. However, integrating
them into the baseline model is inconvenient. Empirical es-
timation could work independently with the baseline model,
which is suitable for single-value objective optimization by
increasing the diversity of iteration solutions.

Our method is an empirical estimation. The difference
between the empirical estimation [32] and our method is
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Figure 2: Five depth outputs from consecutive pre-
converged epochs from 13 to 17 based on the baseline mod-
el (Monodepth2-M50) and the uncertainty mask.

that we use consecutive epochs or Siamese network to esti-
mate uncertainty and convert it into a spatial mask, guid-
ing network model learning and ensemble learning post-
processing work.

3. Method

This paper proposes an uncertainty quantification strat-
egy (UQ) to train self-supervised monocular depth estima-
tion. Our goal function can be expressed as follows:

UuQ(T', M), M

where ' is the baseline model, M is an uncertainty mask
constructed by the uncertainty information over all pixels of
the depth map to identify uncertainty positions and measure
uncertainty degree.

The overview of the proposed uncertainty quantification
is illustrated in Fig. 3. We use the consecutive Snapshot and
Siam models to implement our uncertainty quantification s-
trategy (Fig. 3(a)). The uncertainty quantification consists
of uncertainty measurement, uncertainty guidance, and un-
certainty post-processing (Fig. 3(b)). In the subsequent sec-
tions, we will introduce the technical details.

3.1. Snapshot and Siam

Poggi et al. [32] summarised the three types of uncertain-
ty: predictive estimation, Bayesian estimation, and empiri-
cal quantification. The predictive estimation and Bayesian
estimation need the extra uncertainty estimate models. We
follow the way of empirical quantification to avoid modify-
ing the prototype of the given depth estimation model and
further explore its potential from the uncertainty perspec-
tive. We use Snapshot and Siam training approaches.
Snapshot. Snapshot is a method to ensemble multiple so-
lutions to solve the single-value optimization question [ 8].
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Figure 3: Overview of the proposed uncertainty quantification method. (a) Two empirical uncertainty quantification ap-
proaches are Snapshort and Siam in the training process. (b) The uncertainty quantification strategy contains three steps:
uncertainty measurement (UM), uncertainty guidance (UG), and uncertainty post-processing (UP). Symbol L is loss func-

tion.

Snapshot aims to promote the diversity of models by ag-
gressively cycling the learning rate used during a single
training. Choose N snapshots from a single training by
leveraging cyclic learning rate schedules to obtain C' pre-
converged epochs. At each training iteration, the learning
rate \; is derived from the following equation on parame-
ters of the initial learning rate \g, the total number of steps
T and cycles C:

2)

In our work, we choose consecutive pre-converged e-

pochs as members to distinguish certainty pixels and un-
certainty pixels. We propose this strategy because the
neighboring epochs have similar prediction abilities for
well-constraint parts; inconsistent output results where the
under-constraint is hard to understand.
Siam. Siamese Network is a siamese neural network
(Siam). We use Siam to run two streams of training, where
the twins in each epoch are used to compare and distinguish
certainty pixels and uncertainty pixels. Our Siam has the
same network structure, initialization parameters, and train-
ing process. In the training process of Siam, the variance
between two sub-networks is used to evaluate the uncer-
tainty, and the uncertainty information is used to guide the
network learning. We use the two sub-networks currently
being trained as two checkpoint models to generate the un-
certainty map during each iteration. Then the uncertainty
mask is computed and used to guide the training process of
the network. Thus, the loss caused by pixels in regions with
high uncertainty is endowed with increased weight.

The pipelines of our Snapshot and Siam are presented in

Fig. 3(b). When the training procedure starts the Snapshot
and Siam, uncertainty measurement (UM) and uncertain-
ty guidance (UG) are implemented along the epochs itera-
tively. Uncertainty measurement would identify uncertain-
ty, which is used to construct a 2D mask with a threshold
in uncertainty guidance. This mask distinguishes the cer-
tainty pixels and uncertainty pixels and is imposed on the
loss function of the baseline model with different weight-
s. Once the training procedure reaches convergence, un-
certainty post-processing (UP) would take effect to produce
depth for each pixel, which adaptively chooses from the last
epoch or an ensemble mean based on the uncertainty mask.

3.2. Uncertainty Measurement

The first step of our proposed uncertainty quantification
approach is to measure uncertainty. We use the endogenous
variance of the models to estimate the uncertainty of the
depth map with the self-supervised learning method. Dur-
ing the training process, we select Snapshot or Siam model,
of which the variance is used to calculate the uncertainty
information of the depth map.

Snapshot calculates the uncertainty in backtracking to re-
ferring mode, which collects consecutive epochs in back-
forward order from the current epoch to compare them and
calculate uncertainty. There are two factors for Snapshot
to determine. One is how many pre-converged epochs are
needed, and the other is which are chosen. For the first one,
we could search one small interval to find one empirical-
ly optimal value. For the second one, we reasonably us-
ing consecutive pre-converged epochs just before the cur-
rent epoch because certainty parts benefiting from the well-
constraint should keep stable outputs in closely adjacent e-



pochs. This stability could decrease its interference with
the identification of uncertainty. The visual demonstration
is illustrated in Fig. 2.

Siam calculates the uncertainty in a mirroring-to-
referring mode, where the twins act like a mirror for each
other to refer to and calculate uncertainty. Siam runs rela-
tively independent streams. At the same epoch, the depth
results from twins would compare and calculate the uncer-
tainty. There is one factor for Siam to determine which e-
poch starts to estimate the uncertainty. We still use a search
strategy to get an empirically optimal value.

When Snapshot and Siam start the uncertainty measure-
ment, we use the endogenous variance of the models to es-
timate the uncertainty U:

Zli\lzl(Di _5)2

Snapshot
— _ N )
U=UM(D) = { 2 (D,—D)?

2

3)

,  Siam

where N is closely adjacent pre-converge models number,
D, is the estimated depth map of model I at the 7 epoch. D
is the average of depth maps on training strategy Snapshot
and Siam, respectively.

3.3. Uncertainty Guidance

Here, we use the uncertainty measurement result to guide
the training of the network model I'. Unlike previous uncer-
tainty quantification methods, we make the uncertainty in-
formation explicitly and spatially guide the learning of the
model. We use the mean of the uncertainty U as the thresh-
old U, imposing the uncertainty on pixels differentially:

tﬂ=$L§:U¢L )

where U (k) is the uncertainty value at each pixel k in the
image space €, and ||Q2]| is the total amount of pixels in
input image /.

If U(k) is smaller than the threshold U, we think that it
has not been influenced by uncertainty and should only have
the definite well-constraint loss part. Conversely, the total
loss can add the uncertainty part if U (k) is higher than the
threshold U. The uncertainty mask M is:

1, Uk) <
1+ \U(K), Uk >T

| <

M:quz{ (5)

where A is an empirical parameter to control how much
weight is given to the uncertainty pixel.

Supposing L is the loss function of the baseline model
T", which would function on each pixel for the input im-
age. After considering the uncertainty guidance, the new
loss function L,,¢,, can be expressed as:

Lpew = M x L. (6)

Figure 4: The uncertainty mask from the current 20 epoch
back to the 16 epoch. Left: Monodepth2-Snapshot-M50,
right: Hints-Siam-MS50.

Fig. 4 demonstrates two uncertainty guidance examples of
Snapshot and Siam. Uncertainty guidance can persistently
concentrate on masking the rich uncertainty regions, and
meanwhile, their area shrinks when the learning advances.

3.4. Uncertainty Post-processing

The third step for our uncertainty quantification is
uncertainty-based ensemble learning post-processing work.
The last model lies close to the desired optimal point when
the training terminates. Lying over the optimal point may
cause texture copy or other artifacts. If lying quite near but
not reaching the optimal point, it is better to choose the last
epoch as the final output, as it would be one most close to
the ideal optimal point. The final estimator D is condition-
ally determined based on the ensemble of Snapshot or the
twins of Siam:

<
>

D(k) = UP(D(k), Dr (k)) = {Dr/ k), U(k)

~ Q<

where IV denotes the model at the last epoch in Snapshot or
the superior one of the Siam twins in the last epoch, Dr is
the depth map of I', and D (k) is the average of depth maps
on training strategy Snapshot or Siam. This step differs s-
lightly from Eq. (5). When the uncertainty of pixel from I/
is below U, it means that this pixel has been learned well;
use D as final depth D. When the uncertainty of pixel is
greater than the U, the output is from Dr.



3.5. Baseline Models

We choose Monodetph2 [15] and Hints [42] as the base-

line model I'" to validate the proposed uncertainty quantifi-
cation method, respectively. We do not modify the param-
eters or structures of the baseline models but only impose
uncertainty on loss functions. Monodepth2 and Hints are
the two frequently used methods and have well-organized
source codes, which could guarantee the fairness of evalua-
tion.
Monodepth2. Self-supervised monocular depth estimation
usually uses photometric re-projection loss at training time.
Monodepth2 [ 5] predicts the dense depth map D, by min-
imizing the photometric re-projection loss L,

L, = pe(Iy, Iy—), (3)
The re-projected image Iy/_,4:

It'—)t = It'<pr0j(Dt7Tt—>t’7K)>7 (9)

where (.) is the sampling operator; K € R3*3 is the camera
intrinsic parameter matrix is identical for all images. proj()
returns the resulting 2D coordinates of the projected depths

Dt in It/:
proj(Dy, Ty, K) = KTy Dy(pe) K 'py,  (10)

where p; denotes a pixel. Referring to [ 14,47], Monodepth2
uses L, and SSIM [41] as the photometric loss function pe:

pe(l,, I) = %(1 — SSIM(I,, I,))
+(1 —a) Lo = Il

Y

where a = 0.85, SSIM() is computed over a 3x3 pixel win-
dow.

To encourage neighboring pixels to have similar depths,
use an edge-aware depth smoothness loss Ly weighted by
image gradients to improve the predictions around object
boundaries. The edge-aware smoothness L:

L, = |0, D |e~19=1¢l |9, D |e~ 1% 1:l, (12)

where 0., 0, are gradient operation on X, y-axis, D} =
D,/ Dy is the mean-normalized inverse depth.

The final loss is computed as the weighted sum of image
photometric re-projection loss L, and smoothness loss L:

L=L,+ L, (13)

where p = 0.01 is the weighting for the smoothness term.

In stereo training (S), Iy is the second view in the stereo
image pair to I,. When relative poses are not known in ad-
vance for training (M), a pose estimation network predicts
the relative pose T}, . In mixed training (MS), I,/ includes
the temporally adjacent frames and the stereo view.

Table 1: Depth metrics. D(k) is the predicted depth at
each pixel k in the image space (2, ﬁ(k) is the correspond-
ing ground truth depth, ||€2|| is the total amount of pixels
in input image I. Three different thresholds, al = 1.25,
a2 = 1.252, a3 = 1.253, are used in the accuracy metric.

Metric Definition

Abs Rel: ﬁ k;g %

Sq Rel: ﬁ k%:g W

RMSE: m k%;) |D(k) — D(k)|2

RMSE log: ﬁ k%;l llog D(k) — log D(k)|2

Accuracy (ai): ‘ % of D(k) s.t. § = max(gE; , %) < al

2

Hints. Hints [42] introduces stereo matching algorithm S-
GM [17] to get depth hints D;, and then uses D, to create a
second synthesized view with the following formula:

Tyt = Iy (proj(Ds, I, K)), (14)

This extra synthesized view can be seen as semi-supervised
information. Hints has conditions to determine whether or
not to apply a supervised loss D; as ground truth on a per-
pixel k basis:
L [L(D9) + L= (D). D). v o
| Ly(D(K)), else

where LI¢21 (D(k), D(k)) = log(1+ |D(k) — D(k)|), and
v = L,(D(k)) < L,(D(k)). They introduced depth hints
as a practical approach to help escape from local minima

and to guide the network toward a better overall solution.

4. Experiments

In the experiments, we validate the proposed uncertain-
ty quantification method on the KITTI dataset [13] and e-
valuate it using the Eigen split [7]. The program is im-
plemented with Pytorch and runs on a server with the
following configuration: CPU: Intel(R) Xeon(R) Silver
4114 CPU@2.20GHz*2; RAM: 192G and GPU: NVIDIA
GeForce GTX 2080Ti*2.

4.1. Evaluation metrics

Depth metrics. We use seven metrics [7] to evaluate the
depth estimation model. The four error metrics measure
the difference between predicted depth D and ground-truth
depth D: the absolute relative error (Abs Rel), the squared
relative error (Sq Rel), the root mean square error (RMSE),
and the logarithmic root mean square error (RMSE log).
The three accuracy metrics give the fraction ¢ of predicted



Table 2: The empirical parameter A in Eq. (5), the start-
ing epoch N of Siam, the parameter N in Eq. (3): closely
adjacent pre-converge models number.

(a) A: Blue: Monodepth2-Snapshot-M50. Purple: Hints-Siam-
MS50.

A | AbsRell RMSE| alt |AbsRell RMSE| alt
06| 0.110 4574 0881| 0.101 4561 0881
08| 0.110 4599 0882| 0.102 4539 0.881
10| 0.109 4551 0.885| 0.102 4546 0.880
12| 0108 4542 0884| 0102 4563 0.882
14| 0110 4580 0.886| 0.102 4572 0.882

(b) Siam: Starting Epoch N.

Model | N | AbsRel, | RMSE] | alf
Hints-Siam-MS50 | 1 0.102 4546 | 0.880
Hints-Siam-MS50 | 3 0.102 4572 | 0.881
Hints-Siam-MS50 | 5 0.102 4568 | 0.881

(c) Snapshot: closely adjacent pre-converge models number N.

Model | N | Abs Rel| | RMSE] | alt
Monodepth2-Snapshot-M50 | 3 | 0.110 4.593 |0.883
Monodepth2-Snapshot-M50 | 5 0.109 4.551 |0.885
Monodepth2-Snapshot-M50 | 7 | 0.146 5.366 | 0.802

Table 3: Validation experiments on threshold U. Blue:
Monodepth2-Snapshot-M50. Purple: Hints-Siam-MS50.

Mask | Abs Rell. RMSE| alf |AbsRell RMSE| alf
U 0.109 4551 0.885| 0.102 4546 0.880
08T | 0.115 4670 0871 0102 4546 0.882
12¢T | 0115 4702 0873| 0102 4555 0.881
median| 0.111 4584 0.882] 0.103  4.584 0.878

depth inside an image whose ratio and inverse ratio with the
ground truth is below the thresholds al = 1.25, a2 = 1.252,
and a3 = 1.253. The smaller the first four metrics are, the
better the results are, while the bigger the last three metrics
are, the better the results are. Table | presents the above
detailed equations.

Uncertainty metrics. We use two metrics of the area under
the sparsification error (Ause) and the area under the ran-
dom gain (Aurg) [32] to evaluate how significant our mod-
eled uncertainties are:

Ause(U, D) = ¢(D) — e(Dy), (16)

Aurg(U, D) = Ause(rand, D) — Ause(U, D),  (17)

where e is the depth map error metric, Dy is the depth map
for the 2% pixels with the highest uncertainty. Here, Abs
Rel, RMSE or § > 1.25 (since § < 1.25 defines an accuracy
score) be used as €. Ause (the lower, the better) quantifies
how close the estimate is to the ideal sparsification uncer-
tainty. Aurg (the higher, the better) quantifies how better it
is compared to no modeling.

(a) threshold = median (b) threshold = U

3

(c) threshold = 0.8U

(d) threshold = 1.2U

Figure 5: Uncertainty masks from the uncertainty map
based on different thresholds, the baseline model is the

Monodepth2-M50. The best result is threshold = U.

Table 4: Quantitative evaluation on uncertainty mea-
surement. [32]: Monodepth2-Snap+Self-M;  Oursl:
Monodepth2-Snapshot-MS50; Ours2: Hint-Siam-MS50.

Abs Rel RMSE 6>1.25
Ausel Aurg? | Ausel Aurg? | Ausel Aurg?
[32] 0.069  0.005 | 3.733 0.258 | 0.101  0.008
Oursl 0.054 0.018 | 3316 0557 | 0.071  0.035
Ours2 0.043  0.027 | 3.071 0.860 | 0.057 0.051

Method

4.2. Parameter Setting

We use many experiments to determine the empirical pa-
rameter \ in Eq. (5), the starting epoch of Siam, the param-
eter N in Eq. (3), and the threshold of uncertainty mask
M. We approximately enumerate multiple A values to de-
termine a recommended setting for the subsequent experi-
ments.

In Table 2(a), we display 0.8 to 1.2 results, which is an
optimal interval. We set A = 1 for all experiments to reduce
the computation cost. As shown in Table 2(b), we set the
starting epoch of the Siam at the 1 epoch. As shown in Table
2(c), we set the parameter N = 5 in Eq. (3) and start the
uncertainty guidance of the Snapshot at 6 epoch. In Eq. (4),
the mean U and other possible options like fractional mean
and median, we have validated that U is a more proper one
to work as the threshold. In Table 3 and Fig. 5, we can see
that the threshold U achieves better performance.

4.3. Performance Evaluation

Here, we evaluate the proposed uncertainty estimation s-
trategy on the two baseline models: Monodepth2 and Hints.
We evaluate the depth accuracy and modeled uncertain-
ties. Total six conditions of Monodepth2, Monodepth2-
Snapshot, Monodepth2-Siam, Hints, Hints-Snapshot, and
Hints-Siam are taken into evaluation, which is carried out
by varying the training paradigms (stereo pairs, monodepth,
stereo and monodepth), and CNN modules (ResNetl8,
ResNet50). Because the SGM algorithm in Hints needs a
stereo pair image, which can not train on M.
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Figure 6: Quantitative evaluation of Snapshot and Siam performance on Monodepth2 [15] baseline model with seven depth
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Abs Rel, Sq Rel, RMSE, RMSE log, accuracy (ai) (Table 1). One radar chart illustrates one metric, varying by the training
paradigms and CNN modules. An axis of the radar chart represents one training paradigm (M, S, MS), while the number
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Table 5: Ablation Study on baseline model Monodepth?2 [

in three training paradigms.

]. We conduct an ablation study by switching on/off UG and UP

. Snapshot Siam

Backbone Train | UG | UP I —pomary RIIJ\/ISE¢ alf | AbsRel] RMSE]  alf
Monodepth2-18 | M X | X 0.118 4887 0874 | 0.118 4887 0874
Monodepth2-18 | M v | x 0.116 4807 0876 | 0.115 4784 0876
Monodepth2-18 | M v | D] o115 4807 0874 | 0.116 4784 0873
Monodepth2-18 | M v v 0.114 4762 0879 | 0.114 4.693 0877
Monodepth250 | M X | X 0.112 4718 0880 | 0.112 4718 0.880
Monodepth2-50 | M v | x 0.109 4556 0.885 | 0.111 4714 0879
Monodepth2-50 | M v | D | o110 4560 0881 | 0.111 4716 0.878
Monodepth2-50 | M v | v 0.109 4551 0885 | 0.111 4712 0.880
Monodepth2-18 | S X | X 0.110 5000 0.867 | 0.110 5001 0.867
Monodepth2-18 | S v | x 0.110 4950  0.864 | 0.109 4921 0.865
Monodepth2-18 | S v | D | 0109 4957 0866 | 0.108 4890  0.866
Monodepth2-18 | S v | v 0.109 4924 0866 | 0.109 4882 0.865
Monodepth250 | S X | X 0.106 4861 0871 | 0.106 4361 0871
Monodepth2-50 | S v | x 0.105 4816 0870 | 0.105 4803 0.872
Monodepth2-50 | S v | D | o105 4833 0868 | 0.104 4780  0.874
Monodepth2-50 | S v v 0.105 4799 0870 | 0.103 4709 0875
Monodepth2-18 | MS | X | X 0.107 4788 0873 | 0.107 4788  0.873
Monodepth2-18 | MS | v | X 0.106 4725 0873 | 0.106 4714 0871
Monodepth2-18 | MS | v | D | 0.108 4723 0871 | 0.107 4715 0872
Monodepth2-18 | MS | v | v 0.105 4717 0874 | 0.106 4678 0873
Monodepth250 | MS | X | X 0.103 4658 0880 | 0.103 4658 0.880
Monodepth2-50 | MS | v | X 0.102 4650 0880 | 0.104 4650  0.881
Monodepth2-50 | MS | v | D | 0.103 4651 0880 | 0.104 4651 0.880
Monodepth2-50 | MS | v | v | 0.102 4648 0881 | 0.103 4.649  0.881

Table 6: Ablation Study on the baseline model Hints [

three training paradigms.

]. We conduct an ablation study by switching on/off UG and UP in

. Snapshot Siam
Backbone | Train | UG | UP \—pomar er)v[s& alT | AbsRel] RMSE] alf
Hints-18 S X X 0.109 4.812 0.872 0.109 4.812 0.872
Hints-18 S v X 0.107 4.742 0.876 0.107 4.747 0.875
Hints-18 S v D 0.106 4.763 0.874 0.106 4.748 0.874
Hints-18 S v v 0.105 4.714 0.878 0.105 4.683 0.877
Hints-50 S X X 0.104 4.677 0.879 0.104 4.677 0.879
Hints-50 S v X 0.103 4.604 0.879 0.102 4.581 0.881
Hints-50 S v D 0.104 4.613 0.879 0.102 4.576 0.882
Hints-50 S v v 0.102 4.582 0.881 0.101 4.551 0.883
Hints-18 MS X X 0.107 4.780 0.874 0.107 4.780 0.874
Hints-18 MS v X 0.105 4.726 0.875 0.105 4.654 0.877
Hints-18 MS v D 0.104 4.727 0.876 0.107 4.649 0.876
Hints-18 MS v v 0.105 4.676 0.876 0.103 4.620 0.879
Hints-50 MS X X 0.102 4.629 0.883 0.102 4.629 0.883
Hints-50 MS v X 0.102 4.602 0.882 0.103 4.599 0.879
Hints-50 MS v D 0.103 4.602 0.881 0.104 4.599 0.881
Hints-50 MS v v 0.102 4.582 0.883 0.102 4.546 0.880
Depth Accuracy Evaluation. Fig. 6 and Fig. 7 report method.

depth accuracy on the two baseline models Monodepth2 and
Hints variants implementing, respectively. Snapshot and
Siam have improved the model accuracy of Monodepth2
and Hints on all training paradigms and ResNet18/50. Con-
cerning evaluations on four loss metrics, our Snapshot and
Siam lie inside the baseline models. On the accuracy met-
rics, our Snapshot and Siam lie outside baseline models.
Evaluation results have validated the effectiveness of our

Uncertainties Evaluation. We quantitatively evaluate the
uncertainty measurement strategy using the two uncertain-
ty metrics(Ause and Aurg). Monodepth2-Snap+Self-M50
is the best model in [32]. Monodepth2-Snapshot-M50 and
Hint-Siam-MS50 are the optimal models under three train-
ing paradigms, respectively. Table 4 summarizes the effec-
tiveness of modeled uncertainties. In the uncertainties eval-
uation, we can see that our results are better than [32].



Table 7: Depth evaluation on the KITTI. Comparisons with state-of-the-art methods. *: the result of the model we trained.
Method marked by gray is baseline method, and light-gray is the uncertainty method from Poggi et al. [32]. The best results

in each category are written in boldface.

Method Year | Periodical | Train | Abs Rel| | SqRel | | RMSE| | RMSE log | | alf | a27 | a37
Zhou et al. [48] 2017 | CVPR M 0.183 1.595 6.709 0.270 0.734 1 0.902 | 0.959
Yang et al. [45] 2018 | AAAI M 0.182 1.481 6.501 0.267 0.725 | 0.906 | 0.963
Mahjourian et al. [27] 2018 | CVPR M 0.163 1.240 6.220 0.250 0.762 | 0.916 | 0.968
GeoNet [46] 2018 | CVPR M 0.149 1.060 5.567 0.226 0.796 | 0.935 | 0.975
DDVO [40] 2018 | CVPR M 0.151 1.257 5.583 0.228 0.810 | 0.936 | 0.974
DF-Net [49] 2018 | ECCV M 0.150 1.124 5.507 0.223 0.806 | 0.933 | 0.973
LEGO [44] 2018 | CVPR M 0.162 1.352 6.276 0.252 - - -

Ranjan et al. [35] 2019 | CVPR M 0.148 1.149 5.464 0.226 0.815 1 0.935 | 0.973
Struct2depth [5] 2019 | AAAI M 0.141 1.026 5.291 0.215 0.816 | 0.945 | 0.979
Klingner et al. [21] 2020 | ECCV M 0.117 0.907 4.844 0.196 0.875 | 0.958 | 0.980
EPC++ [26] 2020 | PAMI M 0.141 1.029 5.350 0.216 0.816 | 0.941 | 0.976
PackNet [16] 2020 | CVPR M 0.111 0.785 4.601 0.189 0.878 | 0.960 | 0.982
Johnston ez al. [20] 2020 | CVPR M 0.106 0.861 4.699 0.185 0.899 | 0.962 | 0.982
CoMOoDA [22] 2021 | WACV M 0.103 0.862 4.594 0.183 0.899 | 0.961 | 0.981
Poggi etal. [ 7] 2020 | CVPR M 0.112 0.838 4.691 0.186 0.881 | 0.961 | 0.983
SC-Depth [3] 2021 cv M 0.126 0.920 5.245 0.208 0.840 | 0.949 | 0.979
SD-SSMDE [30] 2022 | CVPR M 0.108 0.751 4.485 0.180 0.885 | 0.964 | 0.984
Ours(Monodepth2-Snapshot-50) | - - M 0.109 0.792 4.551 0.184 0.885 | 0.963 | 0.983
Gargetal. [11] 2016 | ECCV S 0.152 1.226 5.849 0.246 0.784 | 0.921 | 0.967
Monodepth R50 [14] 2017 | CVPR S 0.133 1.142 5.533 0.230 0.830 | 0.936 | 0.970
StrAT [28] 2018 3DV S 0.128 1.019 5.403 0.227 0.827 1 0.935 | 0.971
3Net [33 2018 3DV S 0.129 0.996 5.281 0.223 0.831 | 0.939 | 0.974
SuperDepth (1024x382) [31] 2019 | ICRA S 0.112 0.875 4.958 0.207 0.852 | 0.947 | 0.977
Monodepth2 [15]* 2019 | ICCV S 0.110 0.903 5.001 0.209 0.867 | 0.949 | 0.975
MonoResMatch [39] 2019 | CVPR S 0.115 0.920 4913 0.208 0.850 | 0.945 | 0.970
Poggi etal. [ 7] 2020 | CVPR S 0.108 0.835 4.856 0.202 0.865 | 0.951 | 0.977
Wavelet Decomposition [34] 2021 | CVPR S 0.105 0.813 4.625 0.191 0.879 | 0.959 | 0.981
Ours(Hints-Siam-50) - - S 0.101 0.771 4.551 0.187 0.883 | 0.961 | 0.981
UnDeepVO [23] 2018 | ICRA MS 0.183 1.730 6.571 0.268 - - -

Monodepth2 [15]* 2019 | ICCV MS 0.107 0.829 4.788 0.197 0.873 | 0.957 | 0.979
EPC++ [260] 2020 | TPAMI | MS 0.128 0.936 5.011 0.209 0.831 | 0.945 | 0.979
Poggietal [ 7] 2020 | CVPR MS 0.104 0.783 4.654 0.190 0.876 | 0.958 | 0.981
Ours(Hints-Siam-50) - - MS 0.102 0.769 4.546 0.188 0.880 | 0.961 | 0.982

Ablation Study. We conducted an ablation study to validate
the effectiveness of each component (uncertainty guidance
and post-processing) in our proposed uncertainty quantifi-
cation method. We switch on and switch off uncertainty
guidance and uncertainty post-processing in all three train-
ing paradigms on baseline models Monodepth2 and Hints.
We present the complete results in Table 5 and Table 6. We
can seen that the uncertainty guidance and uncertainty post-
processing can improve the accuracy of the depth estimation
model, respectively. The best result is use the uncertainty
guidance and uncertainty post-processing.

4.4. Comparisons

We make comprehensive comparisons with the curren-
t representative methods. Table 7 shows the depth of
quantitative results. For the baseline model Monodepth2,
Monodepth2-Snapshot-M50 achieves the best result. For
baseline model Hints, Hints-Siam-MS50 achieves the best

result. Although recently proposed methods surpass Mon-
odepth2 and Hints, our proposed uncertainty quantification
improved their accuracy. In Fig. 8, we demonstrate a group
of depth maps from current methods. The objects in our
depth maps have complete structures and sharp boundaries.

Compared to the uncertainty work [32], our results are
quantitatively and qualitatively superior to theirs. In Table
7, we mark the results [32] in light gray color and backbone
in gray. We can find that our uncertainty quantification ad-
vantage over them is very significant. Such a significant ad-
vantage also exists in visual comparison Fig. 8. The reason
that our uncertainty quantification better understands and
applies uncertainty in depth estimation brings solid advan-
tages.

5. Conclusion

In this paper, we proposed a novel uncertainty quantifi-
cation strategy to train self-supervised monocular depth es-
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Figure 8: Examples of qualitative comparison. Compar-
isons with the state-of-the-art self-supervised monocular
depth estimation methods: Monodepth2 [15], Hints [42],
PackNet [16], Klingner et al. [21], Poggi et al. [32]. Our re-
sults of left: Monodepth2-Snapshot-M50 and right: Hints-
Siam-MS50.
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timation. Our uncertainty quantification strategy contain-
s uncertainty measurement, guidance, and post-processing.
First, we use consecutive training epochs or the Siam net-
work to measure the uncertainty of the depth map. Then, the
estimation uncertainty is used to guide the depth network
model learning. Finally, the uncertainty post-processing
adaptively produces final depth results with a balance of ac-
curacy and robustness. Our method has achieved the SOTA
results compared with existing uncertainty quantification
methods. We want to investigate how to construct a more
efficient self-supervised uncertainty quantification method
for future work. Another problem we intend to explore is
finding effective depth cues to fix the uncertainty.
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