Efficient Participating Media Rendering with Differentiable Regularization
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Abstract

Highly scattering media are common in the real
world, e.g., milk, skin, and cloud. Rendering partic-
ipating media is challenging, especially for high-order
scattering dominant media, since the light might have
a large number of scattering events before leaving the
surface. Monte Carlo-based methods usually require a
long time to produce noise-free results. Based on the ob-
servation that lower-albedo media have less noise than
higher-albedo media, we propose to reduce the variance
of rendered results using differentiable regularization.
We first render an image with the low-albedo participat-
ing media together with the gradient w.r.t. the albedo
and then predict the final rendered image with a low-
albedo image and a gradient image via a novel predic-
tion function. To achieve higher quality, we also con-
sider the gradient of the neighboring frames to provide
a noise-free gradient image. Ultimately, our method can
produce results with much less overall error than equal-
time path tracing results.

Keywords: participating media, differentiable regular-
ization, differentiable rendering, volumetric path tracing,
temporal denoising.

1. Introduction

Participating media are common in daily life, e.g., milk,
wax, and skin. In computer graphics, it is challenging to
simulate the light transport in the participating media: low-
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order scattering dominant participating media produce vol-
umetric caustics, where the sharp features are difficult to
capture; high-order scattering dominant participating me-
dia produce smooth effects, but the light rays might have
a large number of scattering events before leaving the sur-
face. In this paper, we focus on the high-order scattering
dominant homogeneous participating media without refrac-
tive boundaries.

Several groups of approaches have been proposed to
render participating media. Density estimation-based ap-
proaches [1, 2, 3, 4, 5, 6] are widely used to render partici-
pating media, due to their efficiency. However, these meth-
ods are mostly biased and complex. On the contrary, Monte
Carlo-based approaches [7, &, 9] are much simpler but re-
quire a long time to converge due to the long light paths
within the media. Several strategies have been proposed to
improve the convergence of Monte Carlo-based approaches
for media rendering, including path guiding [10, 11], zero-
variance-based approaches [12, 13], and precomputation-
based approaches [14]. They have successfully reduced the
variance. Our method is also based on the Monte Carlo-
based path tracing, but improves the rendering quality in a
different way. Moreover, our method can be combined with
these methods to improve the convergence further.

In this paper, we propose a differentiable regularization-
based approach, under the observation that the rendered re-
sult of low-albedo media has less noise than high-albedo
media. We first render the image with a small albedo while
the other configurations are the same. During rendering, we
compute the path radiance, along with the radiance gradi-
ent, w.r.t. the albedo, resulting in a rendered radiance image
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and a gradient image. Next, we use the radiance and the
gradient images to predict the radiance image for the orig-
inal albedo. Since low-albedo media have less noise than
high-albedo media, our method can decrease the noise of
the final image by using differentiable regularization [15].
Furthermore, we improve the quality of the gradient image
with temporal denoising. To summarize, our main contri-
butions include the following:

* a differentiable regularization framework to improve
quality in participating media rendering,

* a robust radiance prediction model to predict images
for high-albedo media from a low-albedo rendered im-
age and a gradient image, and

* atemporal gradient denoising approach to further im-
prove the image quality.

In the next section, we briefly review the related works.
We introduce some preliminary knowledge of our method
in Sec. 3 and the three steps of our method in Sec. 4. Then,
we validate and analyze our method in Sec. 5 and conclude
our contributions in Sec. 6.

2. Related Work

In this section, we first briefly review some Monte Carlo-
based participating media rendering methods. Please refer
to Wu et al. [16] for more methods on homogeneous partic-
ipating media rendering. Then, we introduce some related
works on differentiable regularization, path space regular-
ization, differentiable rendering, and scattering parameter
exploitation.

Monte Carlo-based participating media rendering.
Rushmeier [17] first introduced path tracing to volumetric
rendering by solving the radiative transfer equation. Lafor-
tune and Willems [8] first proposed bidirectional volumetric
path tracing. Later, more methods [9] have been extended
to volumetric rendering. Sampling is an important prob-
lem in participating media rendering since there are many
scattering events within media. Efficient sampling will im-
prove the convergence speed. Several lines of work have
been proposed to improve sampling in participating media,
including path guiding [! 1], manifold next event estima-
tion [ 18], zero-variance random walk [12, 13], and precom-
putation [14].

All these methods target better sampling for media ren-
dering. Unlike their works, our method improves the ren-
dering quality with differentiable regularization and can
combine with their methods to further improve the quality
of the results.
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Figure 1. For high-order scattering dominant media, the light path
is extremely long, especially when the albedo is high since the at-
tenuation after each scattering is minor; when the albedo is low, the
light path will be shortened, since the attenuation becomes quicker.
Thus, low-albedo media will have less noise.

Differentiable regularization. Differentiable regulariza-
tion was first proposed by Fan et al. [15] for glints render-
ing. They render the scene with a changed configuration
(larger light source size and larger surface roughness) to
obtain a less-noise rendered radiance image and a gradi-
ent image and then predict the rendered results under the
desired configuration. Our method is also inspired by this
method and introduces the differentiable regularization for
participating media rendering. However, there are some key
differences compared to their work. First, we perform tem-
poral denoising on the gradient image to improve its qual-
ity. Second, our prediction function is well-designed to fit
the behavior of media rendering rather than using linear or
log-linear functions directly.

Path space regularization. The differentiable regulariza-
tion is performed on the screen space, while another group
is performed on the path space. The path space regular-
ization methods render scenes with complex light paths by
manipulating the material parameters. The path space reg-
ularization was first proposed by Kaplanyan and Dachs-
bacher [19] for pure specular interactions and improved by
Bouchard et al. [20] by using a custom MIS weight to se-
lect between unbiased and biased samplers. This path space
regularization idea is extended to microfacet models by Jen-
dersie and Grosch [21].

The above methods cannot correct the error introduced
by regularization, while both Fan et al. [15] and our method
can extrapolate from the regularized result to predict the re-
sult of original configurations using the gradient informa-
tion.

Differentiable rendering methods. Differentiable ren-
dering methods compute the derivation of a rendered image
w.r.t. arbitrary scene parameters, such as light sources, cam-
era positions, the position of the object, etc. Li et al. [22]
proposed the first general-purpose differentiable path tracer,
which samples the Dirac delta functions from the deriva-
tives of the discontinuous integrand. Loubet et al. [23]



proposed a reparameterization technique for differentiat-
ing path-traced images to improve performance. Zhang et
al. [24] introduced a differential theory of radiative trans-
fer for volume rendering, and Zhang et al. [25] proposed a
path-space differentiable rendering formulation. Recently,
Zhang et al. [260] formulated an analytical form of gen-
eralized differential path integrals that can capture light
transport on the surfaces and within the media. Nimier-
David et al. [27] developed a versatile renderer Mitsuba 2,
which offers a GPU-based differentiable rendering frame-
work, and Nimier-David et al. [28] introduced radiative
back-propagation in this framework to improve the scala-
bility and the efficiency. More details can be found in Zhao
etal. [29].

Recently, Zhang et al. [30] introduced the antithetic sam-
pling of BSDFs and light-transport paths to Monte Carlo
differentiable rendering, which can accelerate the conver-
gence and is easily integrated into the existing differentiable
rendering pipeline.

Our method uses differentiable rendering to render an
image w.r.t. the media albedo. We use automatic differen-
tiation tools from the Eigen library to compute the gradient
due to its efficiency.

Scattering parameter exploitation. Hasan and Ra-
mamoorthi [31] used the intensities of the homogeneous
media with different albedo and the corresponding deriva-
tives of each image pixel to approximate the heterogeneous
target media. Zhao et al. [32] used the similarity theory
to find low-order scattering dominant media to accelerate
Monte Carlo rendering. Besides our method, all these men-
tioned methods exploit scattering parameters to reduce the
difficulties of rendering. Compared to these works, our
method especially uses differentiable rendering.

3. Background

In this section, we first show the properties of participat-
ing media in Sec. 3.1 and then review the volume rendering
equation in Sec. 3.2.

3.1. Participating media properties

The main parameters in homogeneous participating me-
dia include phase function p (w,w’), absorption coefficient
04, and scattering coefficient 0. Another way is using ex-
tinction coefficient o0; = o, + o5 and albedo o = ‘;—j The
phase function represents the probability density of a ray
with an incident direction w and an outgoing direction w’.

When a medium has a small mean free path (mfp, [ =
a%) and a high albedo, the light ray might have thousands
of scattering events before leaving the surface, resulting in
a high variance without sufficient samples. These media
are called high-order scattering dominant media. Examples
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Figure 2. Comparison of gradient images (top) without denoising
and with denoising (top) and their predicted results (bottom).

include skin, wax, marble, and milk. Our method targets
rendering high-order scattering media.

We observed that the rendered results of low-albedo me-
dia have less noise than high-albedo media with an equal
sampling rate since the light path will be shorter with lower
albedo, leading to less variance.

3.2. Radiative transfer equation

The light transport in participating media is modeled
with Radiative Transfer Equation [33]:

L(z,w) =T, (z ¢ xs)L(zs,w)

s (D
—|—/ T.(z <> x¢)os(x) Li (2, w)dt.
0
T is the transmittance, defined as
Tr(x <> x5) = exp(—o¢|lz — ), 2)

where s is the distance along a ray through the medium to
the nearest surface x5, and z; is a point, and its distance to
surface x is between 0 and s. L(zs,w) is computed from
Rendering Equation [34]. L;(x¢,w) is the in-scattering ra-
diance at x; , which collects incident radiance from all di-
rections over the unit sphere €2, according to the phase
function p, defined as

Li(l’t,w):/ﬂ p(w,wi) L(2t, wi)dws. 3

4. Method

We observe that low-albedo media have less noise than
high-albedo media when rendering with Monte Carlo-based
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Figure 3. Comparison among our method, temporal denoised path tracing with equal time, path tracing with equal time, and the reference.
The difference between path tracing and the reference and the difference between our method and reference are shown in the last two

difference maps.

path tracing. Therefore, we render the images with the mod-
ified lower-albedo media and predict the result for the actual
media configuration, as shown in Figure 1.

Our method includes three steps. First, we perform a
differentiable volumetric path tracing on a modified media
configuration (see Sec. 4.1) and record the radiance together
with the gradient w.r.t. the albedo. Second, we perform
temporal denoising for the gradient image (see Sec. 4.2).
Third, we predict the results for the original media with the
modified radiance image and the denoised gradient image
(see Sec. 4.3).

4.1. Differentiable volumetric path tracing

Rendering participating media with high albedo is chal-
lenging since the light path has a slow attenuation, resulting
in long light paths and the high variance. On the contrary,
media with low albedo have a faster attenuation along the
light path, resulting in less noise. Therefore, we propose to
manipulate the albedo parameter and compute the gradient
w.r.t. the albedo via a simple differentiable volumetric path
tracing.

Eq. | could be rewritten as a path integral:
Liaw) = | 10 @
Sp

where S, is a path space, which contains all paths starting
from x with direction w and ending at the light source.

Using Monte Carlo sampling on Eq. 4 results in the fol-
lowing equation:

f(pi)
L(z,w szdfpz (5)

where M is the sampling count and pdf is the probability
density function (pdf) to sample path p;, whose contribution
is defined as:

K
Fi) = ][ wrglwr—1,w), 6)
k=1
where K is the max number of bounces, xg, 1, - , Tk i

a sequence bounce points along the path, xg and zx de-
fine the start and the end of path, wy, is the weight of path
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Figure 4. Comparison between our method and volumetric path tracing (equal-time) on media with varying extinction coefficients o, €
{5, 10, 15,20, 50}. Our method produces better results than path tracing consistently. The sample rate of the source scene is set as 256.
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p(wk—1,wk) if x, € medium

plwi—1,wg) cos(Oy)

g(wkflawk) = {

if xp € surface,

®)
where p(wg_1,wy) is the phase function, p(wk—1,wy) is
bidirectional scattering distribution function (BSDF), 6y, is
the angle between the surface normal at xj, and the direc-
tion wg. These terms are all independent of the albedo a.
We only consider the albedo in f(p;), and its gradient can
be analytically derived.

In practice, we use automatic differentiation to obtain the
radiance and the gradient w.r.t. the albedo at the same time.
In this paper, we use the autodiff tool in Eigen C++ library
to perform automatic differentiation. The radiance and the
gradient w.r.t. the albedo will be computed along a sampled
path and recorded in a pixel. We will accumulate the radi-
ance and the gradient from all sampled paths within a pixel
and average them to obtain the radiance and the gradient
w.r.t. the albedo for a pixel.

4.2. Temporal gradient denoising

With the rendered color and the gradient image for the
source albedo, we find that the gradient image suffers from
a large amount of noise, as shown in Figure 2. Thus, we
propose to perform temporal denoising on the gradient im-

ages since it is common to render a sequence rather than a
single image.

First, we reproject every pixel of the current frame’s
neighboring frames to its matching pixel with the motion
vector, and then we blend them to get the denoised value.
The reprojection function for pixel ¢ is defined:

foroj (1) =i+ d - vg - t, ©)]

where d is the motion vector, vy is the velocity and ¢ is the
time.

( <z‘>)> Y

where k is the distance (number of frames) between the
image in the sequence and the target image (k = 0), and
G}, is the gradient image with distance k. w, is a smooth
factor, which is set as w, = 0.1 in all the test scenes. N
is the number of frames used for denoising and is set as 11
in our implementation. Note that any denoising (not only
temporal) could be used for the gradient image.
Denoising the gradient is better than denoising the origi-
nal image since the bias/artifacts from denoising will not be
directly visible if applied only to the gradient.

Gdenoised (Z)

_ Wa
1—(1—w)V

—1
proj

N-1
Z (1- wa)k Gy (

k=0

4.3. Participating media regularization

With the source pixel value R, and the gradient G at
the source albedo o5, we need to predict the pixel value R;
with the target albedo «;. Two typical prediction functions
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Figure 5. Radiance variation curves on a slice of pixels (the locations are shown as the red line at the left image) of the ground truth(GT),
predicted results of linear, log-linear, our prediction functions, and the source image. The source as = 0.95 X o and target oy = 0.95.

Our prediction function is the closest to the ground truth.

are the linear and the log-linear functions, as shown in Fan
et al. [15]. However, they cannot be used in the albedo pre-
diction, as the behavior of the media’s albedo is complex.
Therefore, we propose a novel prediction function, which
includes two exponential functions for extrapolation.

Our prediction function is defined by multiplying two
exponential functions:

R, = R, + G (e(at—as)/,@ _ 1) e~ VRs(cr=as)® (1)

The definitions of 5 and -y are as follows:

5
= e 12)

where cg (0 < cg < 005) is a constant. This constant is
used to scale the mfp, i.e. o, ! Thus, our prediction func-
tion can handle various models with different scales and
shapes. We always set cg as 0.5 in practice.

This definition is based on the following observations:
first, the pixel value grows with the increasing albedo, and
the growth speed increases at the same time; second, the
growth speed is faster in the high-albedo and the small mfp
cases than in the low-albedo and the large mfp cases. There-
fore, we introduce the 8 (Eq. 12) to the first exponential
term in Eq. 11 to ensure these two characteristics. However,
using this exponential term alone causes some problems. In
the high-albedo and small mfp case, the (3 is close to 0, and
then the value multiplies to G5 will be significantly high.
The small differences of G5 among neighboring pixels will
be significantly amplified, leading to discontinuity among
neighboring pixels in the predicted result. To solve this is-
sue, we include another exponential term in Eq. 11. This
term can alleviate the amplification of the first exponential
term, depending on the albedo and the extinction coefficient
in the v term (Eq. 12). When the albedo is close to 1, and
the mfp is small, we need the value of the -y term to be high
enough to control the high value caused by the first expo-
nential term. Then, we set 1 — « as the denominator in
the v term. The growth speed becomes faster as the extinc-
tion coefficient increases. The speed of alleviation should

be slower at the same time. Then, we set the ~ term as a
logarithmic function w.r.t. the extinction coefficient. We
also introduce R, in Eq. 11 to keep the smoothness among
the neighboring pixels.

Our prediction function works for a wide range of ma-
terials, from large mfp to small mfp, as shown in Figure 4.
We also compare our prediction function against the linear
and the log-linear prediction function in Figure 5, and our
prediction function better fits the ground truth.

5. Results

We have implemented our algorithm inside Mitsuba ren-
derer [35]. We compare our method against volumetric
path tracing (PT) with equal time and use converged PT
as ground truth. All timings in this section are measured
on an Intel i7-10700@2.90GHz (16 cores) with 16GB of
main memory. We use Mean Squared Error (MSE) to mea-
sure the difference with the reference. In this paper, we fo-
cus on participating media with the high albedo, and the
media configurations are shown in Table 1, and we use
Henyey—Greenstein phase function in our scenes. For con-
venience, if all channels of the albedo or the extinction co-
efficient have the same value, we will only show one value.

In the following, by source we mean the rendered result
with the low albedo, without prediction, while by farget we
mean the final predicted result with the desired albedo.

5.1. Quality validation

In Figure 3, we compare our method with the temporal
denoised volumetric path tracing and the volumetric path
tracing with equal rendering time. This temporal denoising
method is the same as our gradient denoising method. We
also show the error maps between our method and the refer-
ence and between path tracing and the reference. By com-
parison, our method produces less error than denoised path
tracing and path tracing without denoising both visually and
quantitatively. Moreover, we also find that applying tem-
poral denoising to path tracing cannot perform better than
path tracing with equal time. These three scenes include
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Figure 6. Predicted results (top) from different sources (bottom) on the Candle scene. When the source albedo is far from the target albedo,

there is obvious color bias after the prediction.

Table 1. Media configurations, scene settings, computation time, and Mean Squared Errors (MSE) for our test scenes. g is the mean cosine
of the phase function. Spp. represents sample per pixel for path tracing. All timings are in minutes.

Scene Media Resolution Ours Pt. Reference
g oy o Factor Spp. Time MSE | Spp. Time MSE | Spp. Time
Bunny | 0.7 10 0.95 500 x 500 | 0.95 256 049 1.de-4| 200 0.50 2.3e-4| 16K 45.61
Candle | 0.8 10 [0.98,0.94,0.88] | 256 x 256 | 0.95 2048 1.21 6.1e-5| 1300 1.17 1.3e-4| 16K 15.89
Lucy (0.8 10 0.97 512 x 512 | 093 512 1.14 1.5e-5| 350 1.16 4.4e-5| 16K 60.00
both simple shapes (Bunny scene and Candle scene) and 30
MSE 7.8
complex shapes (Lucy scene). In both cases, our method 25 Time
outperforms path tracing. g 76
In Figure 4, we compare our method against path tracing o T4g
. . . . . L5 705
with equal time on the Bunny scene with varying extinction %4 %
coefficient g;. Our method consistently produces less noise 1o s 70
in the range of oy, from thin to dense media. This demon- 0.3 \/ 6.8
strates that our differentiable regularization framework and 0.0, = , . : . 166
0.0 10 088 089 090 091 092

our prediction function are both robust.

The source images and the denoised gradient images in
the prediction step used in the above scenes are shown in
the supplementary material.

5.2. Parameter analysis

Prediction function is a key component in our method.
To validate its benefits, we compare it against the linear and
the log-linear models on the Cube scene in Figure 5. We vi-
sualize the radiance curves for a slice of pixels along the red
line in the source image, images predicted by three different
prediction functions, and the reference image. By compar-
ison, our prediction function produces the closest result to
the reference.

Gradient denoising also significantly impacts the results.
In Figure 2, we compare the results with and without gra-
dient denoising. By comparison, we find that the temporal
denoising reduces the noise on the gradient image and fur-
ther improves the rendered quality result.

S

02 04 06 08
Qg

Reference MSE: 2.2e-4  MSE: 2.3e-4

Figure 7. The error (MSE) curve as a function of source albedo o
on the Lucy scene. The a5 ranges from 0.1 to 0.94 (0.1 — 0.97x
ay). The sample rate of the source scene is set as 512. The errors
are measured on cropped images (30 x 30). The error curve and
the time cost curve (rightmost) are on a small range of the source
albedo, 0.9 — 0.95 x a;. The images corresponding to the orange
and green dots are shown at the bottom.

Choice of source albedo. The choice of the source albedo
affects the final image quality significantly. In Figure 7, we
show the error curve as a function of the source albedo for
the Lucy scene. The curve shows that the best source albedo
is around 0.9 — 0.95 x «;. We also show the time cost and
the error curves at this range (0.9 — 0.95 X ).

In Figure 6, we show both the source image and the tar-
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Figure 8. MSE between our method or path tracing with the ref-
erence (rendered with 33,768 spp) over varying rendering time on
the Cube scene. The error of our method decreases until approxi-
mately 16 s and then keeps almost constant. The error before 16 s
comes from both variance and bias. After the result is converged,
the error comes from bias. Therefore, our method is suitable for
rendering with a low time budget.

get image with different source albedo. Using the source
albedo far from the target albedo (e.g., with 0.5 or 0.7 as a
factor) results in a large bias. When increasing the source
albedo, the bias decreases while the variance increases.
Thus, the best source albedo is around 0.9 — 0.95 x «.

Considering the accuracy and the time cost, the source
albedo should be chosen in 0.9 — 0.95 X «a in practice.

5.3. Performance measurement

In Table 1, we report all the scene-setting, computation
time, and their error (MSE) with the reference rendering
results of our test scenes. The cost of prediction and de-
noising is negligible compared to rendering time ( 0.2s for
a 512 x 512 image). Thus we ignore it in our computa-
tion time. Our method produces higher-quality results than
volumetric path tracing with equal time in all scenes quan-
titatively. We use 11 frames for gradient denoising for all
our scenes. As we can see from the table, our method has a
higher sample rate than the equal-time path tracing, as lower
albedo leads to shorter paths and less rendering time.

5.4. Limitations and discussion

We have identified several limitations of our method.
Our method introduces bias into the rendered results as a
trade-off between bias and variance. However, our over-
all error (bias and variance) still goes down. Our method
targets renderings with a low time budget. When the sam-
ple rate is high, our result will have a larger error than path
tracing, as shown in Figure 8. Our method is designed for
high-albedo media and does not benefit the media with low
albedo, as shown in Figure 9.

€-90'9

PT, spp: 320,2.57 s

Ours, spp: 256, 2.60 s

Figure 9. Failure case: comparison between our method and path
tracing on rendering the low-albedo media. The source as =
0.9 X oy and the target oz = 0.5.

6. Conclusion

We have presented a novel differentiable regularization
framework to improve rendering quality in participating
media rendering. Our method is simple and is suitable
for any high-albedo homogeneous participating media. Our
method produces fewer noise results than path tracing, al-
though it will introduce bias. Moreover, we can apply other
approaches (e.g. path guiding and advanced sampling) in
the rendering step of our method, which can improve the
rendering quality. Then, with our method’s denoised and
prediction steps, the noise can be further reduced.

In the future, we are interested in improving our differen-
tiable regularization by introducing novel prediction func-
tions (e.g., neural networks) or differentiating more param-
eters.
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