
Jrender: An Efficient Differentiable Rendering Library based on Jittor

Hanggao Xin, Chenzhong Xiang, Wenyang Zhou, Dun Liang
Tsinghua University

Beijing, China
cjld@tsinghua.edu.cn

Abstract

Differentiable rendering has been proven as a pow-
erful tool to bridge 2D images and 3D models. With
the aid of differentiable rendering, tasks in computer vi-
sion and computer graphics could be solved more ele-
gantly and accurately. To address challenges in the im-
plementations of differentiable rendering methods, we
present an efficient and modular differentiable render-
ing library named Jrender based on Jittor. Jrender sup-
ports surface rendering for 3D meshes and volume ren-
dering for 3D volumes. Compared with previous dif-
ferentiable renderers, Jrender exhibits a significant im-
provement in both performance and rendering quality.
Due to the modular design, various rendering effects
such as PBR materials shading, ambient occlusions, soft
shadows, global illumination, and subsurface scatter-
ing could be easily supported in Jrender, which are not
available in other differentiable rendering libraries. To
validate our library, we integrate Jrender into applica-
tions such as 3D object reconstruction and NeRF, which
show that our implementations could achieve the same
quality with higher performance.

Keywords: differentiable rendering, real-time render-
ing, deep learning.

1. Introduction

For 2D image tasks, deep learning methods have a
great success in image segmentation [37], image classifi-
cation [28], image generation [42] and so on. Similarly, for
tasks in 3D world, reconstruction [62], segmentation [17],
classification [14], generation [15] of 3D models also have
been improved by deep learning significantly. In these
tasks, gradients could flow from 2D images or 3D models
to neural network weights, guiding the neural networks to
address these challenging problems. As an important build-
ing block of deep learning, differentiable rendering could
generate images from 3D models and flow gradients be-
tween 2D images and 3D models. With the aid of differ-
entiable rendering, neural networks could be guided by gra-
dients both from 2D and 3D spaces, which brings an im-

provement for many applications. For example, with dif-
ferentiable rendering, human faces [51, 13, 3], hand shapes
and poses [11, 2] could be reconstructed or estimated from
a single RGB image, which is unattainable for other deep
learning methods.

However, it is not easy for researchers in the machine
learning community to implement differentiable rendering
algorithms. In deep learning, millions even billions of iter-
ations are needed in the training process. To meet this re-
quirement, the differentiable rendering part should be effi-
cient to achieve real-time performance. And the system de-
sign of the differentiable rendering implementation should
be modular. Concretely, for surface rendering, the ver-
tex processing stage, the rasterization stage, the fragment
shading stage, and the post-processing stage should be de-
coupled, and the support for volume rendering should also
be isolated from the surface rendering pipeline. Besides
that, the differentiable rendering library should be versa-
tile. Abundant materials, lighting conditions, and shading
effects are needed to guarantee the rendering quality. Fi-
nally, the differentiable rendering system should be extend-
able. New rendering algorithms, materials and shading ef-
fects should be easily implemented based on the original
rendering system.

To solve these issues, we introduce an efficient differen-
tiable rendering library named Jrender based on Jittor [18].
Jittor is a a new deep learning framework, which is better at
training and inference for neural networks due to its special
meta-operator fusion and unified graph execution. Besides
that, Jittor provides useful model zoos such as JGAN [61],
JNeRF [57], JDet, JSeg, JMedSeg, JSparse, and JPoint-
CloudLib. Jrender is implemented by CUDA kernels and
Jittor meta-operators to ensure the system is differentiable,
efficient and robust. To make Jrender more efficient, we op-
timize the rendering pipeline and the rendering algorithms.
Besides that, in Jittor’s view, all forward and backward
computations in the differentiable rendering system could
be organized as a unified graph execution, which utilizes the
optimization techniques such as operator fusion to make the
system save the computation and memory costs at the same
time. In Jrender, both differentiable surface rendering and

1



differentiable volume rendering are supported. PBR mate-
rials and shading effects such as soft shadows, ambient oc-
clusions, subsurface scattering, and global illumination are
also supported, which help Jrender outperform other dif-
ferentiable libraries in rendering quality. Our differentiable
rendering library is publicly available1, and we hope this
work could help researchers in computer vision and com-
puter graphics communities to explore differentiable ren-
dering in more applications.

2. Related Work

Offline differentiable rendering. Li et al. [29] first
proposed a stochastic method to compute gradients of the
physically-based rendered pixel with the input parameters
such as lighting, geometry, and material conditions. By us-
ing Monte Carlo ray tracing in edge sampling, they could
elegantly solve the continuous and discontinuous parts of
the gradient integral together. Loubet et al. [33] proposed
a similar way to handle the discontinuous parts in the gra-
dient integral by using reparameterization instead of edge
sampling, but the expensive Monte Carlo ray tracing is still
needed in their method. Besides that, Zhang et al. [59]
extended the previous methods from surface rendering to
volume rendering with high quality. The greatest advantage
of offline differentiable rendering methods is good qual-
ity. Gradients produced by the methods mentioned above
are accurate and these methods are versatile for amazing
rendering effects such as GI, SSS, etc. However, these
works based on Monte Carlo ray tracing are too slow. Mit-
suba [41, 40, 46, 20] is a highly optimized rendering li-
brary for offline differentiable rendering, but it is still too
far from the real-time performance. For example, Mitsuba
costs about 100 ms to render a simple scene with 512 × 512
resolution.

As a summary, the offline differentiable rendering based
on ray tracing are theoretical accurate and could produce
plausible results. But due to the high costs of ray trac-
ing, the offline differentiable rendering methods are thou-
sands times slower compared with the real-time differen-
tiable rendering methods. Nowadays, nearly all applica-
tions [55, 19, 8, 1, 49, 16, 48, 36, 38]using differentiable
rendering are based on deep learning, and they have tough
demands on the performance of the differentiable render-
ing implementations, which could not be achieved by these
offline differentiable rendering methods.

Real-time differentiable rendering. For a 3D mesh
represented by triangles, the rasterization step is needed to
find the closest triangle for each pixel in the image space.
However, as the fundamental part of the real-time render-
ing pipeline, the rasterization step itself is not differentiable
with all input parameters. To solve this issue, previous

1https://github.com/Jittor/jrender

methods could be divided into two categories. Some re-
searchers [32, 24, 13] try to approximate gradients of the
traditional rasterization step, and the others [45, 30, 8]
modify the rasterization process even the entire rendering
pipeline directly to make the forward rendering process dif-
ferentiable.

To approximate gradients, Loper et al. [32] first pro-
posed a general-purpose differentiable rendering library
named OpenDR by computing gradients with local differ-
ential filters. However, it only supports the local shading
model(all shading should be bound as vertex attributes) and
the gradients could only flow between neighboring pixels
due to the filtering operations. Kato et al. [24] proposed
a Neural 3D Mesh Renderer (NMR), which replaces the
sudden change in rasterization with a linear interpolation
change. In NMR, shading could be computed for each frag-
ment, so NMR could support more shading models than
OpenDR and is differentiable with respect to textures. By
using linear interpolation for approximation, NMR has an-
other advantage in that pixels beyond the boundary also
flow gradients to vertices, which could handle the localness
issue of OpenDR and avoid being trapped in the poor local
minima. TF Mesh Renderer [13] is another way to over-
come the discontinuity in the occlusion function. By intro-
ducing negative barycentric coordinates for triangles laying
outside the pixel, they calculate gradients using barycentric
coordinates from rasterization for each triangle-pixel pair.
In this approximation, the local geometry of the boundary
is treated as the planar. For scenes with complex geometry,
TF Mesh Renderer will fail to handle the mutual occlusions
between objects. As a summary, compared with other meth-
ods [23] to approximate gradients, NMR is a better choice
for general purposes. We provide an optimized implemen-
tation for NMR in Jrender, which is about ten times faster
than the previous official implementation [24].

Another series of works modifying the rendering
pipeline to be differentiable are started from VSS [45].
Rhodin et al. represented opaque objects with Gaussian
density distribution to make the visibility function differen-
tiable, and their method works well in generative pose esti-
mation. However, due to the Gaussian density distribution
representation, VSS is hard to handle geometry with high
frequency such as sharp corners, and the rendered image
is blurry compared with the traditional rendering methods.
DIB-R [8] deals with non-differentiable rasterization by
dividing the pixels into foreground pixels and background
pixels. Gradients from foreground pixels are computed us-
ing barycentric coordinates, same as Kyle’s [13] way, and
gradients from background pixels are approximated by the
alpha channel through a distance-based aggregation. How-
ever, the alpha channel is available only when a reference
alpha mask exists, and the method would fail to handle com-
plex visibility gradients or render with environment light-



ing [26]. The most generally used differentiable rendering
method in this category is proposed by Liu et al. [30],
named SoftRas. Instead of using the deterministic way to
find the closest triangle, SoftRas treated each triangle as a
probabilistic cloud, and the pixel color is computed as the
sum of contributions from all mesh triangles(including the
hidden ones). With the probabilistic cloud representation,
all operations in SoftRas are differentiable. And the gra-
dients from pixels could flow to blocked and far triangle
vertices, which is more suitable for tasks needing to refine
object vertices compared with other methods [32, 24]. Py-
torch3d [44] provides a highly optimized implementation
for SoftRas, but we will show that Jrender has a better per-
formance for nearly all situations in Section 4.

Real-time differentiable volume rendering has a great
success in NeRF [36], which represents the 3D scene vol-
ume as neural networks for the novel view synthesis task.
For high performance and good quality, ray marching is
used as the key technique to solve the volume rendering
equation. Following works such as Instant-NGP [38] use
hash strategy and acceleration structures to improve NeRF
performance, but still use ray marching as the solution of
volume rendering equation.

Applications using differentiable rendering. Differ-
entiable rendering bridges the gap between the 3D world
and 2D image, which could be integrated into deep learn-
ing tasks freely. As a result, differentiable rendering has
been widely used in human face/body/hand reconstruc-
tion [22, 12, 9, 27, 60, 51], general object reconstruc-
tion [55, 19, 8, 31, 43, 39], 3D scene parameters estima-
tion [1, 48, 5], novel view synthesis [36, 38], physically-
based rendering [25, 7, 50], and mesh processing [49, 16,
58].

3. Rendering Pipeline

For surface differentiable rendering, the pipeline of Jren-
der is illustrated in Figure 1. To make the library modular
for extensions, the rendering pipeline is divided into four
stages: vertex processing, rasterization, fragment shading,
and post-processing, and each step in the pipeline is not
coupled. Besides optimized implementations for the cal-
culation of gradients, we also provide various shading mod-
els(including PBR materials shading, soft shadows, global
illumination, and subsurface scattering), which make the
rendering quality of Jrender far better than previous differ-
entiable rendering libraries such as OpenDR [32] and Py-
torch3D [44]. In Section 3.5, we will explain the differ-
entiable volume rendering support as an extension of the
Jrender library.

As explained in Section 2, due to the poor performance
of the offline differentiable rendering, most applications
such as deep learning works could not be implemented for
this heavy burden. And the rendering quality of real-time

rendering methods is close to the ray tracing rendering qual-
ity for general scenes. So, Jrender library only focus on the
real-time differentiable rendering. We believe that applica-
tions in computer vision and computer graphics communi-
ties could be implemented more easily and efficiently with
our optimized differentiable rendering library.

3.1. Vertex processing

The vertex processing stage is aimed to project input 3D
scene vertices to 2D image space. Given camera settings,
vertices vw in world space could be converted to the camera
space by viewing transform matrix View, then the camera
space vertices could be projected to the image space as vi
by projection transform matrix Proj, which is

vi = Proj ∗View ∗ vw. (1)

In Equation 1, the transform matrices View and Proj
are only dependent on camera settings, and all operations
involved in the vertex processing stage are differentiable.
After the vertex processing, the primitive culling could be
used as an optional stage, which could save some computa-
tional costs for further stages.

3.2. Rasterization

After projecting triangles into the image space, rasteriza-
tion is used to determine the contribution of these triangles
for each pixel. As explained in Section 2, rasterization used
in the graphics API such as OpenGL is not differentiable
due to the discontinuity from occlusions. To handle this is-
sue, one general method is to approximate gradients of the
original rasterization stage, and the other method is to mod-
ify the rasterization stage to make itself differentiable. In
Jrender, we implement two representative methods named
NMR [24] and SoftRas [30], which have been proven both
efficient and robust for rasterization.

3.2.1 NMR

NMR [24] preserves the traditional rasterization step for the
forward pass but approximates gradients for the backward
pass to handle the discontinuity. The insight of NMR is
to replace the sudden change due to occlusions with lin-
ear interpolations. With this approximation, the gradients
could flow from the pixel color to lightning conditions, tex-
tures, geometry vertices, and camera models. Hiroharu et
al. [24] integrated the neural 3D mesh renderer into ap-
plications such as single image 3D reconstruction and 3D
mesh style editing, which have proven the efficiency and
generality of NMR.

It is important to note that only the closet triangle could
affect the pixel color due to z-culling in NMR. As a result,
the gradients from pixels will not flow to the vertices of the



Vertex Processing Rasterization Fragment Shading Post-processing
Figure 1. The overview of Jrender for surface differentiable rendering pipeline. As general rendering APIs, our method contains four stages:
vertex processing, rasterization, fragment shading, and post-processing. Due to the efficient interpolation between Jittor and CUDA, our
method could easily support various rasterization algorithms and shading models, which makes Jrender a general differentiable rendering
library.

occluded triangles. This mechanism could save computa-
tion costs by discarding the occluded triangles, but gradients
for occluded triangles could help the geometry optimization
process in some applications.

3.2.2 SoftRas

SoftRas [30] is the representative method of modifying the
rasterization stage to make itself differentiable. Different
from the traditional method, SoftRas uses a stochastic way
to determine the contribution of triangles to each pixel. By
modeling triangles as probabilistic clouds with a blur ra-
dius, the contribution of each triangle is not binary for each
pixel. Due to the usage of the probability map, the modified
rasterization is completely differentiable. Liu et al. [30]
also validated the SoftRas method in single-view mesh re-
construction and image-based shape-fitting tasks, and both
achieved state-of-the-art results.

SoftRas method does not adapt the z-culling mechanism,
and the triangles occluded by the closet triangle could also
influence the pixel color by the aggregate function. So, the
gradients from the pixel could flow to both the closet trian-
gle and the occluded triangles. For applications optimizing
the geometry vertices, gradients flowing to the occluded tri-
angles will help the optimization converge fast.

3.3. Fragment shading

Various shading effects supporting is a key feature of
Jrender. Compared with the local shading model in previous
differentiable libraries [32, 44], Jrender supports PBR mate-
rials shading, ambient occlusions, soft shadows, global illu-
mination, and subsurface scattering effects, which make the
rendering results match the real world better. It is needed to
mention that, due to the usage of Jittor, more shading mod-
els could be implemented easily as an extension of Jrender.

Roughness(0.2) Roughness(0.5) Roughness(0.8)

Figure 2. Rendering results of cow model with the GGX normal
distribution function under different roughness settings. With the
roughness increase, the highlight tends to disperse on the entire
surface, which could help produce different material styles for ap-
plications.

3.3.1 PBR material

Compared with the naive shading models such as Phong and
Lambertian, the PBR material is based on the microfacet
theory [47] and could represent most materials in the real
world. BRDF f(ωi, ωo) of the PBR material is defined as:

f(ωi, ωo) =
D(ωh)G(ωi, ωo)F (ωo)

4 cos θo cos θi
. (2)

In Equation 2, D(ωh) is the normal distribution func-
tion of microfacet mirrors on 3D surfaces,G(ωi, ωo) is used
to describe the shadowing and masking effects due to the
occlusion between microfacets themselves, and the Fresnel
term F (ωo) determines the amount of reflected energy with
respect to the view angle. Based on the definition above,
the model appearance could be diverse from different user
input parameters such as metallic, roughness, base reflec-
tivity, etc. In Figure 2, we show the same model rendered
with different roughness settings.

3.3.2 Ambient occlusion

Ambient occlusion is important in real-time rendering to
approximate the indirect illumination. Occlusions between



Without SSAO With SSAO

Figure 3. Comparisons between rendering results with/without
SSAO. For cloth creases in Buddy and the beard in Statue, the
results with SSAO could darken the illumination due to the occlu-
sions, which makes the images more realistic.

Hard shadow Soft shadow

Figure 4. Comparisons between rendering results with hard shad-
ows and soft shadows. Hard shadow effects from the shadow map
are usually used with point light sources, and the soft shadows
from VSM are used to enhance the image reality for the area or
environment light sources.

Mirror floor Glossy floor

Figure 5. Rendering results with SSR for Cornell Box and Bunny.
For the mirror surface, clear reflections of the objects could be ren-
dered on the floor. And for the glossy surface, the blur reflections
could also be rendered correctly with the guidance of SSR.

surfaces will darken the illumination of the scene, but this
effect can not be caught by direct illumination. Ambient
occlusion is used to approximate this occlusion effect and
make the scene look more real, especially for objects with
complex geometry such as corners and creases.

In Jrender, we provide an optimized implementation of
SSAO [4] for the ambient occlusion effect. By sampling po-
sitions around the surface, the occlusion from local geome-
try could be approximated efficiently. As shown in Figure
3, objects rendered with SSAO have more realistic details
on surfaces with complex geometry, which promotes the re-
ality of rendering results with nearly no burden.

3.3.3 Soft shadow

Shadow rendering is also an important technique to enhance
image quality. In the real world, the hard shadow is com-
mon under point lights, and the soft shadow makes a quiet
difference for scenes illuminated by area lights or environ-
ment lights. Shadows are the visualization of occlusions,
and the geometric relation between objects in 3D scenes
might be confusing without shadows. But it is not naive to
gain high-quality shadows in real-time rendering. As far as
we know, Jrender is the only differentiable rendering library
supporting shadow rendering.

In Jrender, we use shadow mapping for hard shadows
and variance soft shadow mapping (VSSM) [56] for soft



Without SSS With SSS

Figure 6. Rendering results with/without subsurface scattering
(SSS) for two human head models. Without SSS, the appearance
of human skin looks dry and plastic. With the improvement of
SSS, the human skin looks more realistic, especially for the nose
sides, ears, and eye sockets, which receive more illumination from
other surfaces due to subsurface scattering.

shadows. In VSSM, Chebyshev’s inequality is used to
approximate the proportion of occlusions from the shad-
ing point view, which is efficient and could produce high-
quality results as shown in Figure 4.

3.3.4 Global illumination

Global illumination is another key feature of Jrender, which
could promote the rendering quality to a new level. Previ-
ous rendering libraries [32, 44] ignore the light scattering
between objects and only support direct illumination. How-
ever, important features such as reflections and color bleed-
ing could not be achieved only with direct illumination.

The most general method in real-time rendering for
global illumination is screen space ray tracing (SSR) [35],
which uses rays in screen space to trace against the depth
buffer and achieves honorable global illumination effects.
We show the rendering results with SSR in Figure 5, and
we find that the global illumination is depicted well for both
mirror surfaces and glossy surfaces.

3.3.5 Subsurface Scattering

For objects with translucency materials, the light entering
into the object will scatter and absorb, then exit at a differ-
ent position of the surface. This process is called subsurface

scattering and is hard to accurately calculated in real-time
rendering. But the subsurface scattering makes an impor-
tant role in the appearance of translucency materials such
as human skin, marble, leaves, candles, etc. Especially for
applications using 3D virtual humans, the usage of subsur-
face scattering will improve the entire realism.

In Jrender, we achieve the subsurface scattering effects
using Jorge et al.’s method [21]. They approximate the dif-
fusion function by several Gaussian functions. By using this
approximation, the contribution between each surface pair
could be easily calculated as a sum of Gaussian functions.
In Figure 6, we show the rendering results of human skin
with/without subsurface scattering and the areas around the
human nose and ears are quite different owing to the usage
of subsurface scattering.

3.4. Post-processing

In the post-processing stage, per-pixel operations could
be done to improve image quality. For example, to convert
the illumination from the high dynamic range to the low dy-
namic range, the gamma correction is needed here to make
the rendering results more plausible for human eyes. An-
other common technique used in the post-processing step to
improve image quality is anti-aliasing. In Jrender, we used
the fast approximate anti-aliasing (FXAA) technique to de-
tect the jagged edges and smooth them. Compared with
other anti-aliasing methods, FXAA is easy-implemented
and efficient, which could also handle most aliasing issues.

3.5. Volume rendering

From Section 3.1 to Section 3.4, we have illustrated the
way to render 3D meshes with versatile materials and fancy
shading effects. In this section, we will explain the way
Jrender used to render 3D volumes, which could be deemed
as an extension of Jrender.

To solve the volume rendering equation with real-time
performance, the ray marching technique is used to query
and accumulate contributions from sample points. As an
optimized implementation, the ray sampled with empty
space or very small transmittance will be terminated early
for performance. Please note that the early terminated ray
will not affect the final appearance.

4. Performance Analysis

Compared with previous differentiable rendering imple-
mentations, Jrender has a great advantage in performance
for nearly all situations. We selected 10 meshes with dif-
ferent triangle numbers from ShapeNet [6] to test ours and
previous implementations. For NMR, we test the perfor-
mance of the NMR implementation in Jrender and the of-
ficial NMR implementation [24]. For SoftRas, besides
the Jrender implementation and the official implementa-
tion [30], we also test against the Pytorch3d [44], which



Table 1. Performance comparisons between Jrender and other differentiable rendering implementations including official NMR [24], official
SoftRas [30] and Pytorch3D [44].

Scene
(#triangles)

bowl
(280)

house
(904)

draw.
(1.8k)

chair
(3.3k)

bag
(5k)

sink
(11k)

car
(39k)

cam.
(69k)

airp.
(111k)

bed
(248k)

Forward rendering + gradient time(ms)

Jrender
(SoftRas)

256 × 256 7.0 7.3 7.4 7.5 8.1 13.5 20.7 32.6 36.9 67.4
512 × 512 7.1 7.6 8.1 8.5 15.2 17.2 22.1 36.1 38.3 69.3

1024 × 1024 7.3 7.9 10.0 11.5 16.7 23.6 35.5 46.7 48.9 97.2
2048 × 2048 7.9 14.7 21.5 29.1 41.2 64.1 69.1 94.1 128.4 294.1
4096 × 4096 24.3 47.5 67.3 97.2 151 227.8 242.1 328.9 454.5 1092

Official
SoftRas

256 × 256 7.2 8.4 9.7 11.3 14.2 27.4 53.6 114.9 168.7 689.7
512 × 512 7.6 8.8 11.7 16.7 23.9 39.9 116.2 211.9 334.5 990.1

1024 × 1024 9.2 13.7 26.9 44.1 71.7 127.4 404.9 714.3 1130 2942
2048 × 2048 15.6 33.2 85.1 147 240.2 462.9 1550 2745 4361 11540
4096 × 4096 43.7 109.9 312.1 556.3 921.7 1869 6027 11346 18520 38676

Pytorch3d
(SoftRas)

256 × 256 12.8 13.1 13.2 13.5 13.6 18.8 28.6 36.2 48.8 76.4
512 × 512 20.8 22.3 22.4 22.5 23.6 23.8 38.3 46.6 56.9 90.4

1024 × 1024 48.3 50.1 51.7 53.3 56.8 57.8 82.9 95.9 124.1 215.7
2048 × 2048 143.1 145.4 146.2 146.3 151.2 152.7 194.7 246.7 344.1 635.9
4096 × 4096 558.7 560.6 562.4 565.9 571.4 589.9 701.4 923.1 1272 2399

Jrender
(NMR)

256 × 256 7.5 11.5 11.8 12.5 13.2 15.2 19.4 22.3 27.4 36.8
512 × 512 11.3 20.7 28.6 29.1 33.4 36.2 48.2 58.7 64.2 75.3

1024 × 1024 32.1 69.4 92.1 95.7 102.5 109.7 114.7 127.5 166.2 223.1
2048 × 2048 107.7 252.1 349.9 354.5 379.3 391.7 421.3 556.5 642.1 829.9
4096 × 4096 431.9 1005 1415 1429 1556 1581 1841 1998 2417 3345

Official
NMR

256 × 256 8.1 11.8 16.9 22.3 36.3 62.9 205.9 359.7 578.1 1307
512 × 512 12.7 22.9 40.5 65.7 105.6 198.6 664.1 1227 2043 4549

1024 × 1024 42.3 71.1 138.4 236.9 383.2 760.5 2581 4768 7926 17765
2048 × 2048 139.7 268.8 540.5 934.6 1515 3062 10462 19041 33426 78745
4096 × 4096 452.5 1087 1769 3781 6362 12814 48147 76942 141967 318589

Speedup factor

Our vs
Off. Soft.

256 × 256 1.0 1.2 1.3 1.5 1.8 2.0 2.6 3.2 4.6 10.2
512 × 512 1.1 1.2 1.4 2.0 1.6 2.3 5.3 5.9 8.7 14.3

1024 × 1024 1.3 1.7 2.7 3.8 4.3 5.4 11.4 15.2 23.1 30.3
2048 × 2048 2.0 2.3 4.0 5.1 5.8 7.2 22.4 29.2 33.9 39.2
4096 × 4096 1.8 2.3 4.6 5.7 6.1 8.2 24.9 34.5 40.7 35.4

Our vs
Pytorch3d

256 × 256 1.8 1.8 1.8 1.8 1.7 1.4 1.4 1.1 1.3 1.1
512 × 512 2.9 2.9 2.8 2.6 1.6 1.4 1.7 1.3 1.5 1.3

1024 × 1024 6.6 6.3 5.2 4.6 3.4 2.4 2.3 2.1 2.5 2.2
2048 × 2048 18.1 9.9 6.8 5.0 3.7 2.4 2.8 2.6 2.7 2.2
4096 × 4096 23.0 11.9 8.4 5.8 3.8 2.6 2.9 2.8 2.8 2.2

Our vs
Off. NMR

256 × 256 1.1 1.0 1.4 1.8 2.8 4.1 10.6 16.0 21.0 35.2
512 × 512 1.1 1.0 1.4 2.3 3.2 5.5 13.7 20.9 31.8 60.4

1024 × 1024 1.3 1.0 1.5 2.5 3.7 6.9 22.5 37.4 47.7 79.6
2048 × 2048 1.3 1.1 1.5 2.6 4.0 7.8 24.8 34.2 52.0 94.8
4096 × 4096 1.1 1.1 1.3 2.7 4.1 8.1 26.2 38.5 58.7 95.2

provides an optimized SoftRas implementation based on
Pytorch.

For fairness, the same texture, lighting condition, and
camera pose are used to render each 3D mesh with different
resolutions, and the user-define hyper-parameters such as

the sharpness scalars in SoftRas are set as default. Both Py-
torch3D and Jrender support the coarse-to-fine rasterization
architecture, and the same bin size is used to test against
these libraries. All tests in this section are carried out on a
single NVIDIA TITAN RTX GPU card with 24GB mem-



Input Albedo Normal Depth

Figure 7. Reconstructed albedo maps, normal maps, and depth
maps from our implementation. The first two test cases are from
the Cat Head dataset and the last two test cases are from the
CelebA face dataset.

ory.
As shown in Table 1, Jrender has a much better per-

formance than other implementations. With the increase in
triangle counts and resolutions, the official NMR and offi-
cial SoftRas are quickly slower than Pytorch3D and Jren-
der. Due to the coarse-to-fine mechanism, Pytorch3D and
Jrender are more suitable for large scenes and high reso-
lutions. And the advantages of Jittor such as just-in-time
compilation, automatic operator fusion, and higher com-
putational graph processing efficiency make Jrender more
efficient both in memory accessing and computing, which
makes Jrender a better performance.

5. Applications

5.1. Unsupervised 3D objects reconstruction

As explained in Section 1, differentiable rendering is the
bridge between 3D objects and 2D images. With the aid of
differentiable rendering, Wu et al. [51] proposed an un-
supervised method to reconstruct 3D objects from single-
view images, which outperforms other methods and inspires
many other important works.

In Wu’s method, the only input is single-view images. In
the training process, the neural networks are trained to fac-
tor out the 3D scene features such as albedo, depth, camera
pose, and the lighting condition for each input image. Based
on the symmetric assumption, the 3D scene features could

SIDE (×10−2) ↓ MAD (deg.) ↓

Official implementation 0.793 ± 0.140 16.51 ± 1.56
Our implementation 0.769 ± 0.136 15.99 ± 1.49

Table 2. Comparisons of our implementation and the official ver-
sion. The reconstruction errors on the BFM dataset with SIDE and
MAD metrics (lower SIDE and MAD indicate better results).

be passed to the differentiable rendering part to reconstruct
2D images. As a result, gradients from losses defined in
image space could flow to the predicted 3D scene features,
and gradients of predicted 3D scene features 3D will finally
pass to the neural networks weights.

As the validation, we re-implement Wu’s method based
on Jrender. Compared with the official implementation,
ours is much more efficient and could reproduce the results
presented in their paper as shown in Figure 7. In Table 2,
we show the SIDE and MAD errors of our implementation
and the official implementation, and ours is even better than
the official one.

With the acceleration of Jrender, the performance of our
implementation is 1.3 times faster than the official version.
Concretely, the differentiable rendering part is 6.2 times
faster than the official implementation, but the neural net-
works part is the bottleneck for the entire process, which
takes up more than 70% computations.

5.2. Neural radiance fields

Neural radiance fields (NeRF) [36] are new representa-
tions of 3D scenes, which have great success in the novel
view synthesis task. NeRF represents the 3D scenes as vol-
umes instead of meshes, and the volumes are stored in neu-
ral networks.

In NeRF, ray marching is still the core technique to solve
the volume rendering equation, and the only difference is
that queries for volumes are calculated by the neural net-
works. We integrate the volume rendering part of Jrender
into NeRF, and we find that our results could achieve the
same quality as the official NeRF. As shown in Figure 8,
our results of both synthesized scenes and real scenes are
nearly as same as the official results, which validates the
accuracy of differentiable volume rendering in Jrender.

Due to the just-in-time compilation mechanism and au-
tomatic operator fusion in Jittor, NeRF based on Jrender is
1.4 times faster than the official version [36]. We also found
that the training speed could gain another 30% improve-
ment by using float16 type instead of float32 type. Based
on Jrender, researchers have done much effort to implement
the NeRF library named JNeRF [57], which provides more
optimized NeRF models for the computer graphics commu-
nity.



GT Official. Ours

Figure 8. Comparisons between results of our implementation
based on Jrender and the official version. For both the synthesized
scene(Lego) and the real scene(Fern), our results could achieve the
same quality as the official results.

6. Conclusion and Discussions

Conclusion. As a summary, we present an efficient and
modular differentiable rendering library Jrender. With the
reasonable and extendable system design, Jrender supports
various rasterization methods, fancy shading effects, and
versatile representatives of 3D scenes, and has a better per-
formance and higher quality. We hope Jrender could accel-
erate and inspire more research in computer graphics and
computer visions.

Limitations and Future Works. Compared with other
differentiable rendering libraries, Jrender could support
more fantastic rendering effects. But Jrender still can not
support some rendering effects such as hair rendering [54]
, glints rendering [53] or vegetation rendering [10]. As an
evolved open-source project, we will support many other
differentiable rendering methods such as nvdiffrast [26],
fancy real-time shading effects mentioned above, and the
SDF rendering. Besides that, Jrender will also provide use-
ful API and data structures to efficiently implement render-
ing methods based on SH [52] and probes [34] in the future.

References

[1] D. Azinovic, T.-M. Li, A. Kaplanyan, and M. Nießner. In-
verse path tracing for joint material and lighting estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2447–2456, 2019. 2,
3

[2] S. Baek, K. I. Kim, and T.-K. Kim. Pushing the enve-
lope for rgb-based dense 3d hand pose estimation via neu-
ral rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1067–
1076, 2019. 1

[3] M. Bao, M. Cong, S. Grabli, and R. Fedkiw. High-quality
face capture using anatomical muscles. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10802–10811, 2019. 1

[4] L. Bavoil and M. Sainz. Screen space ambient occlusion.
NVIDIA developer information: http://developers. nvidia.
com, 6(2), 2008. 5

[5] D. Beker, H. Kato, M. A. Morariu, T. Ando, T. Matsuoka,
W. Kehl, and A. Gaidon. Monocular differentiable rendering
for self-supervised 3d object detection. In European Con-
ference on Computer Vision, pages 514–529. Springer, 2020.
3

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015. 6

[7] C. Che, F. Luan, S. Zhao, K. Bala, and I. Gkioulekas. To-
wards learning-based inverse subsurface scattering. In 2020
IEEE International Conference on Computational Photogra-
phy (ICCP), pages 1–12. IEEE, 2020. 3

[8] W. Chen, H. Ling, J. Gao, E. Smith, J. Lehtinen, A. Ja-
cobson, and S. Fidler. Learning to predict 3d objects with
an interpolation-based differentiable renderer. Advances in
Neural Information Processing Systems, 32, 2019. 2, 3

[9] Y. Deng, J. Yang, S. Xu, D. Chen, Y. Jia, and X. Tong. Ac-
curate 3d face reconstruction with weakly-supervised learn-
ing: From single image to image set. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 3

[10] Z. Fan, H. Li, K. Hillesland, and B. Sheng. Simulation and
rendering for millions of grass blades. In Proceedings of
the 19th symposium on interactive 3D graphics and games,
pages 55–60, 2015. 9

[11] L. Ge, Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, and J. Yuan.
3d hand shape and pose estimation from a single rgb image.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10833–10842, 2019.
1

[12] B. Gecer, S. Ploumpis, I. Kotsia, and S. Zafeiriou. Gan-
fit: Generative adversarial network fitting for high fidelity 3d
face reconstruction. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
1155–1164, 2019. 3

[13] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, and
W. T. Freeman. Unsupervised training for 3d morphable
model regression. In Proceedings of the IEEE Conference



on Computer Vision and Pattern Recognition, pages 8377–
8386, 2018. 1, 2

[14] D. Griffiths and J. Boehm. A review on deep learning tech-
niques for 3d sensed data classification. Remote Sensing,
11(12):1499, 2019. 1

[15] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Ben-
namoun. Deep learning for 3d point clouds: A survey. IEEE
transactions on pattern analysis and machine intelligence,
43(12):4338–4364, 2020. 1

[16] J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala, and
S. Laine. Appearance-driven automatic 3d model simplifi-
cation. arXiv preprint arXiv:2104.03989, 2021. 2, 3

[17] Y. He, H. Yu, X. Liu, Z. Yang, W. Sun, Y. Wang, Q. Fu,
Y. Zou, and A. Mian. Deep learning based 3d segmentation:
A survey. arXiv preprint arXiv:2103.05423, 2021. 1

[18] S.-M. Hu, D. Liang, G.-Y. Yang, G.-W. Yang, and W.-Y.
Zhou. Jittor: a novel deep learning framework with meta-
operators and unified graph execution. Science China Infor-
mation Sciences, 63(12):222103:1–21, 2020. 1

[19] E. Insafutdinov and A. Dosovitskiy. Unsupervised learning
of shape and pose with differentiable point clouds. Advances
in neural information processing systems, 31, 2018. 2, 3

[20] W. Jakob, S. Speierer, N. Roussel, and D. Vicini. Dr. jit:
a just-in-time compiler for differentiable rendering. ACM
Transactions on Graphics (TOG), 41(4):1–19, 2022. 2

[21] J. Jimenez, V. Sundstedt, and D. Gutierrez. Screen-space
perceptual rendering of human skin. ACM Transactions on
Applied Perception (TAP), 6(4):1–15, 2009. 6

[22] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-
to-end recovery of human shape and pose. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7122–7131, 2018. 3

[23] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka,
W. Kehl, and A. Gaidon. Differentiable rendering: A sur-
vey. arXiv preprint arXiv:2006.12057, 2020. 2

[24] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3907–3916, 2018. 2, 3, 6, 7

[25] P. Khungurn, D. Schroeder, S. Zhao, K. Bala, and
S. Marschner. Matching real fabrics with micro-appearance
models. ACM Trans. Graph., 35(1):1–1, 2015. 3

[26] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and
T. Aila. Modular primitives for high-performance differ-
entiable rendering. ACM Transactions on Graphics (TOG),
39(6):1–14, 2020. 3, 9

[27] G.-H. Lee and S.-W. Lee. Uncertainty-aware mesh decoder
for high fidelity 3d face reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6100–6109, 2020. 3

[28] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A.
Benediktsson. Deep learning for hyperspectral image clas-
sification: An overview. IEEE Transactions on Geoscience
and Remote Sensing, 57(9):6690–6709, 2019. 1

[29] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen. Differen-
tiable monte carlo ray tracing through edge sampling. ACM
Transactions on Graphics (TOG), 37(6):1–11, 2018. 2

[30] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differen-
tiable renderer for image-based 3d reasoning. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 7708–7717, 2019. 2, 3, 4, 6, 7

[31] S. Liu, S. Saito, W. Chen, and H. Li. Learning to infer im-
plicit surfaces without 3d supervision. Advances in Neural
Information Processing Systems, 32, 2019. 3

[32] M. M. Loper and M. J. Black. Opendr: An approximate dif-
ferentiable renderer. In European Conference on Computer
Vision, pages 154–169. Springer, 2014. 2, 3, 4, 6

[33] G. Loubet, N. Holzschuch, and W. Jakob. Reparameterizing
discontinuous integrands for differentiable rendering. ACM
Transactions on Graphics (TOG), 38(6):1–14, 2019. 2

[34] Z. Majercik, T. Müller, A. Keller, D. Nowrouzezahrai, and
M. McGuire. Dynamic diffuse global illumination resam-
pling. In ACM SIGGRAPH 2021 Talks, pages 1–2. 2021. 9

[35] M. McGuire and M. Mara. Efficient gpu screen-space ray
tracing. Journal of Computer Graphics Techniques (JCGT),
3(4):73–85, 2014. 6

[36] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 2, 3, 8

[37] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtar-
navaz, and D. Terzopoulos. Image segmentation using deep
learning: A survey. IEEE transactions on pattern analysis
and machine intelligence, 2021. 1

[38] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neu-
ral graphics primitives with a multiresolution hash encoding.
arXiv preprint arXiv:2201.05989, 2022. 2, 3

[39] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger.
Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3504–3515, 2020. 3

[40] M. Nimier-David, S. Speierer, B. Ruiz, and W. Jakob. Ra-
diative backpropagation: an adjoint method for lightning-
fast differentiable rendering. ACM Transactions on Graphics
(TOG), 39(4):146–1, 2020. 2

[41] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mit-
suba 2: A retargetable forward and inverse renderer. ACM
Transactions on Graphics (TOG), 38(6):1–17, 2019. 2

[42] X. Ning, F. Nan, S. Xu, L. Yu, and L. Zhang. Multi-view
frontal face image generation: a survey. Concurrency and
Computation: Practice and Experience, page e6147, 2020.
1

[43] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or.
Pix2vex: Image-to-geometry reconstruction using a smooth
differentiable renderer. arXiv preprint arXiv:1903.11149,
2019. 3

[44] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo,
J. Johnson, and G. Gkioxari. Accelerating 3d deep learning
with pytorch3d. arXiv preprint arXiv:2007.08501, 2020. 3,
4, 6, 7

[45] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and
C. Theobalt. A versatile scene model with differentiable vis-
ibility applied to generative pose estimation. In Proceedings



of the IEEE International Conference on Computer Vision,
pages 765–773, 2015. 2

[46] D. Vicini, S. Speierer, and W. Jakob. Differentiable signed
distance function rendering. ACM Transactions on Graphics
(TOG), 41(4):1–18, 2022. 2

[47] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Mi-
crofacet models for refraction through rough surfaces. Ren-
dering techniques, 2007:18th, 2007. 4

[48] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J.
Guibas. Normalized object coordinate space for category-
level 6d object pose and size estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2642–2651, 2019. 2, 3

[49] J. Wu, J. B. Tenenbaum, and P. Kohli. Neural scene de-
rendering. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 699–707, 2017.
2, 3

[50] L. Wu, G. Cai, R. Ramamoorthi, and S. Zhao. Differen-
tiable time-gated rendering. ACM Transactions on Graphics
(TOG), 40(6):1–16, 2021. 3

[51] S. Wu, C. Rupprecht, and A. Vedaldi. Unsupervised learning
of probably symmetric deformable 3d objects from images
in the wild. In CVPR, 2020. 1, 3, 8

[52] H. Xin, Z. Zhou, D. An, L.-Q. Yan, K. Xu, S.-M. Hu, and
S.-T. Yau. Fast and accurate spherical harmonics products.
ACM Transactions on Graphics (TOG), 40(6):1–14, 2021. 9

[53] L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner,
and R. Ramamoorthi. Rendering glints on high-resolution
normal-mapped specular surfaces. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2014), 33(4), 2014.
9

[54] L.-Q. Yan, W. Sun, H. W. Jensen, and R. Ramamoorthi. A
bssrdf model for efficient rendering of fur with global illu-
mination. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia 2017), 36(6), 2017. 9

[55] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective
transformer nets: Learning single-view 3d object reconstruc-
tion without 3d supervision. Advances in neural information
processing systems, 29, 2016. 2, 3

[56] B. Yang, Z. Dong, J. Feng, H.-P. Seidel, and J. Kautz. Vari-
ance soft shadow mapping. In Computer Graphics Forum,
volume 29, pages 2127–2134. Wiley Online Library, 2010.
5

[57] G.-W. Yang, Z.-N. Liu, D.-Y. Li, and H.-Y. Peng. Jnerf: An
efficient heterogeneous nerf model zoo based on jittor. Com-
putational Visual Media, 9(2):401–404, 2023. 1, 8

[58] K. Yin, J. Gao, M. Shugrina, S. Khamis, and S. Fidler.
3dstylenet: Creating 3d shapes with geometric and texture
style variations. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12456–12465,
2021. 3

[59] C. Zhang, L. Wu, C. Zheng, I. Gkioulekas, R. Ramamoorthi,
and S. Zhao. A differential theory of radiative transfer. ACM
Transactions on Graphics (TOG), 38(6):1–16, 2019. 2

[60] X. Zhang, Q. Li, H. Mo, W. Zhang, and W. Zheng. End-
to-end hand mesh recovery from a monocular rgb image. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2354–2364, 2019. 3

[61] W.-Y. Zhou, G.-W. Yang, and S.-M. Hu. Jittor-gan: A fast-
training generative adversarial network model zoo based on
jittor. Computational Visual Media, 7:153–157, 2021. 1

[62] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner,
R. Klein, and A. Kolb. State of the art on 3d reconstruc-
tion with rgb-d cameras. In Computer graphics forum, vol-
ume 37, pages 625–652. Wiley Online Library, 2018. 1


