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Abstract

Real-time simulation of hyperelastic membranes
such as cloth still face a lot of challenges, such as hy-
perplasticity modeling and contact handling. In this
study, we propose projective peridynamics that uses a
local-global strategy to enable fast and robust simula-
tion of hyperelastic membranes with contact. In the
global step, we propose a semi-implicit strategy to lin-
earize the governing equation for hyperelastic materials
which are modeled with peridynamics. By decomposing
the first Piola-Kirchhoff stress tensor into a positive and
a negative part, successive substitutions can be taken to
solve the nonlinear problems. Convergence is guaran-
teed by further addressing the overshooting problem.
Since our global step solve requires no energy summa-
tion and dot product operation over the entire problem,
it fits into GPU implementation perfectly. In the local
step, we further present a GPU-friendly gradient de-
scent method to prevent interpenetration. Putting the
global and local solves together, experiments show that
our method is robust and efficient in simulating complex
models of membranes involving hyperelastic materials
and contact.

Keywords: hyperelastic membranes, projective peridy-
namics, semi-implicit successive substitution method, con-
tact handling

1. Introduction

How to animate hyperelastic membranes with contact
at interactive rates or even in real-time has been a long-
standing challenge for computer graphics. To ensure the
simulation efficiency, position-based dynamics [25, 3] sim-

plified inner forces as equality or inequality constraints,
which can be largely sped up via parallel implementations
on GPU. However, position-based methods are associated
with a problem that simulation results are controlled by the
number of iterations and the mesh resolution, rather than
a model with physical meanings [17, 23, 9]. As a result,
classical hyperelastic models cannot be directly supported
by position based dynamics in general. Certain reformula-
tion or simplification should be done, e.g., by reformulating
the energy density of neo-Hookean models into compliant
constraints [19]. As an alternative method for real-time ap-
plications, projective dynamics [4] shows a great potential
in bridging the gap between accuracy and efficiency. Since
the original form of projective dynamics requires a special
quadratic form of elastic potential energies, most hypere-
lastic materials are not supported. To model more complex
materials, He et al. [9] has recently proposed the corota-
tional formulation of peridynamics based on projective dy-
namics, providing an attractive way for the simulation of
elastoplastic bodies exhibiting linear elastic response. How-
ever, their method cannot be easily extended to simulate ma-
terials with nonlinear elastic response.

In terms of simulating hyperelastic materials, the New-
ton or quasi-Newton methods are most commonly used. For
example, Liu et al. [18] proposed a quasi-Newton method
to simulate hyperelastic materials with the insight that pro-
jective dynamics can be reformulated as a quasi-Newton
method. To guarantee the convergence, the notorious line
search should be incorporated as a necessity to ensure sta-
bility. Its formal expression can be stated as to find a suffi-
cient small step length λ for an objective function satisfying
the following Armijo condition [1]

f (xk + αpk) ≤ f (xk) + λα∇T
k pk, (1)
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where f(·) is the objective function, pk is a descent direc-
tion, α is called the step length and λ ∈ (0, 1) is a constant
that controls the step length size. However, the Armijo con-
dition is not enough by itself to ensure that the algorithm
makes reasonable progress because it is satisfied for all suf-
ficiently small values of α [27]. In our practical implemen-
tation, we find the right choice for λ not only depends on
f(xk), but also on how to choose the descent direction pk.
The optimal value for λ may even change from iterations to
iterations. The dramatic demand for line-search iterations
could cause a sudden slow-down to the simulation, which
is a nightmare for real-time applications. Another difficulty
that we encounter with the Armijo condition is that it re-
quires dot product operations, making it rather inefficient
for implementation on GPU. To reduce the computational
cost, Wang and Yang [43] proposed to eliminate the dot
product by setting λ = 0 and do less line search by reusing
values of α. However, both the problem with the Armijo
condition and the one with the expensive energy summation
remain unresolved.

Another difficulty in simulating hyperelastic membranes
is how to model contacts. Since real world contacts are typ-
ically discontinuous, they make the contact problems very
stiff. To decrease the stiffness of contact problems, the In-
cremental Potential Contact (IPC) solver [15] introduced
smooth log-barrier functions to model the contacts. How-
ever, when hyperelasticity and contacts are solved together,
the diversity in problem stiffness can quickly degenerate the
overall simulation performance.

In this paper, we present projective peridynamics that
uses a local-global strategy to enable fast and robust simula-
tion of hyperelastic membranes with contact. We solve the
material hyperelasticiy in the global step while the contact
problem in the local step. As a result, different numerical
methods can be used to solve material hyperelasticity and
contact independently by fully exploiting features in each
problem.

Our technical contributions can be summarized as

• A projective model based on peridynamics to simulate
hyperelastic membranes with contact.

• A semi-implicit successive substitution method to ef-
ficiently simulate hyperelastic materials in the global
step.

• A gradient descent method to solve contacts in the lo-
cal step.

2. Related work

2.1. Peridynamics

As a nonlocal theory, peridynamics was formally estab-
lished by Silling [34] to model problems with discontinu-
ities, e.g., fracture simulation. The original form of the

peridynamic model is called the bond-based theory, which
relies on the assumption that the interaction forces between
a pair of particles are equal in magnitude and parallel to
the relative position vector in the deformed state [35, 6].
The problem with the bond-based peridynamics is that it is
not possible to define a Poisson’s ratio because it only cap-
tures a constant Poisson’s ratio of 0.33 for two-dimensional
and 0.25 for three-dimensional problems [31, 22, 20]. To
address this issue, a generalized formulation referred to as
state-based peridynamics was proposed [36]. The core in
the generalization is to introduce a mathematical tool called
state, which is able to model the response of a material at
a point that depends collectively on the deformation of all
bonds connected to the point. For example, a deformation
state can be defined to map any bond onto its image under
the deformation. Within state-based peridynamics, Silling
and Lehoucq [37] proved that the elastic peridynamic model
converges to the classical model in the limit of small hori-
zon under certain assumptions. Lehoucq [14] also derived
a notion of a peridynamic stress tensor from nonlocal in-
teractions. That is to say, peridynamics is compatible with
finite element approximations in a certain function space.
On the other hand, given a hyperelastic model in classical
elasticity theory, a state-based peridynamics model can also
be derived based on the classical constitutive model. This
has the advantage of enabling the description of the defor-
mation/damage process in peridynamics according to well-
established models [41]. For a recent survey on deforma-
tion/damage modeling based on peridynamics, please refer
to [11].

2.2. Hyperelasticity solver

In the classical theory, finite element method (FEM) is
the most widely used method to simulate deformable ob-
jects. Early researchers in computer graphics have mainly
focused on simulating linear elastic models due to its sim-
plicity [7, 24, 21]. However, for materials in the real world,
the linear elastic models usually can not accurately describe
the observed elastic behavior. A hyperelastic model is an
alternative option to describe the nonlinear stress–strain re-
lationship. To capture nonlinear elastic behaviors, Wu et
al. [45] proposed adaptive nonlinear FEM with mass lump-
ing to achieve real time simulation of a 3D liver. However,
they only use an explicit method to take time integration as
the implicit method is computationally intensive and may
have poor convergence. Irving et al. [10] presented an al-
gorithm for the finite element simulation of elastoplastic
solids with explicit integration for the elastic forces. To al-
leviate the stringent time step restrictions imposed by the
explicit integration method, Teran et al. [40] proposed to
solve nonlinear elastic materials using a modified Newton-
Raphson algorithm, which is computationally intensive. Xu
et al. [46] proposed to formulate the strain energy density



function using three principle stretches and solve nonlin-
ear elasticity with an implicit integration method, allowing
larger timestep and more stable performance compared to
the explicit method [10].

Different with force based method, position based dy-
namic [25, 3] solves motion and dynamic problem by re-
formulating generalized constraint with particles’ position.
This constraint projection based method is generalized to
projective dynamic method [4]. Projective dynamic method
decouples hyperelasticity energy density as a rest state man-
ifold constraints and distance measure, allowed constraints
independently being carried out. Wang and Yang [43] fur-
ther proposed a new gradient descent method using Jacobi
preconditioning and Chebyshev acceleration to accelerate
the convergence rate base on GPU for nonlinear elasticity
solving, obtaining real time simulation of a variety of dif-
ferent hyperelastic materials. Rahul et al. [26] extended pro-
jective dynamics to model a broad range of objective func-
tions including nonlinear models and hard constraints. Af-
ter showing that projective dynamics can be interpreted as
a quasi-Newton method, Liu et al. [18] proposed a quasi-
Newton solver equipped with a line search to simulate hy-
perelastic materials. To accelerate the convergence rate,
Peng et al. [30] proposed to apply Anderson acceleration
to speed up the convergence of a local-global solver. Due
to the similarity of our method to a fixed-point method, the
Anderson acceleration can directly applied to our method to
help accelerate the convergence rate.

2.3. Contact handling

For shell-like models, solving contact and self-collision
fastly and robustly still remains to be a great challenge.
Provot [32] provided a collision handling framework which
treats contact zone as a rigid body and gived a continuous
collision detection algorithm for triangle mesh based dis-
cretization. Bridson et al. [5] combined impulses method
and penalty method which introduce impulse for penetrated
triangle pair to separate them away and introduce repul-
sion force to remove close proximity for potential pene-
tration. Previous work also treated self-collision as a con-
straint problem [29, 4]. Recently, Tang et al. [39] devel-
oped a GPU-friendly impact zone solver by solving CCD
culled constrained optimization problem with augmented
Lagrangian method. Wu et al. [44] further developed a re-
pulsion method on GPU, which allows large time step and
be free of Lagrangian multiplier, so that large but inexact
iterative step is kept safe. Li et al. developed a set of
contact solver based on Incremental Potential Contact al-
gorithm [15, 16], which handle contact in a penalty way by
introducing contact barrier energy.

3. Overview

For the sake of completeness, we first present a brief in-
troduction to projective dynamics at the beginning of this
section, and then give more details on how to model hyper-
elastic membranes with projective peridynamics. With an
implicit Euler time integration for a deformable object, its
variational form can be derived as [4]

argmin
y

1

2h2
∥M (y − y∗)∥2F +Ψ(y) , (2)

where h is the time step size, y denotes the position of
all vertices (we use y instead of x to make it consistent
with the description of peridynamics), M is the mass ma-
trix, y∗ = yt + hẏt + h2M−1fext is the intermediate
position calculated from the previous position yt, velocity
ẏt and the external force fext. Ψ represents a summation
of elastic potentials that can account for deformations of
stretching, bending, shearing, etc. In modeling hyperelas-
tic materials, Ψ may contain nonlinear terms, therefore the
time-consuming Newton-type methods are typically used
to solve the nonlinear optimization problem. To improve
the performance, projective dynamics proposes to sepa-
rate a nonlinear objective function into the summation of
a quadratic part and non-quadratic constraints Ci(y) = 0.
The optimization of Eq. (2) can then be solved iteratively in
a local-global alternating manner, i.e., the quadratic part is
solved with a global iterative solver while all non-quadratic
constraints are solved in a local manner.

Let us consider a hyperelastic material model that can
handle contact and self-collision, and its total potential en-
ergy is formulated as

argmin
y

1

2h2
∥M (y − y∗)∥2F +Ψ(y)+B (y) , (3)

where B (y) represents the barrier potential used to penal-
ize the collision [15]

B(d) =

{
−(d− d̂)2 log(d

d̂
), 0 < dk < d̂

0, d ≥ d̂
. (4)

Here d̂ is a user-defined threshold to prevent interpenetra-
tion, d is a function of y representing the closest distance
for each pair of primitives. Our question is how to solve
the above optimization problem with a projective method?
Since both Ψ(y) and B (y) are not quadratic, both of these
two terms should be solved in a local step. However, simply
combining Ψ(y) and B (y) together in the local step does
not produce physically correct results. Lan et al.[13] has
already identified two major challenges include the sticking
and the jittering problems. To address these challenges, we



propose to reformulate Eq. (3) as

argmin
y

E (y, ẏ)+Ψ (y) +
∑
i

wi

2
∥AiSiy −Biz∥2 ,

s.t. B (z) = 0,
(5)

where z represent the auxiliary variables, Ai and Bi rep-
resent the coefficient matrices and Si is the constant selec-
tion matrix. A local-global strategy is also used to solve
the above constrained optimization problem. However, the
difficulty lies in how to solve the global step if the objec-
tive function in Eq. (5) is not quadratic anymore. Our solu-
tion is to propose a substitution-type method that can both
solve nonlinear optimization efficiently and fit into the peri-
dynamics framework well.

Algorithm 1 describes an overview of our local-global
strategy in simulating hyperelastic membranes with contact.
Here, Line 7∼8 represent one iteration of solving material
hyperelasticity in the global step while Line 11 represents
contact handling solved in the local step. More details on
how to discretize Eq. 5 are given in the following context.

Algorithm 1: Projective Peridynamics

1 Input yt,vt , ξ, h, ε, d̂, s0, kb
2 yk=0 ← yt + hv∗

3 zk=0 ← yt

4 //We typically set eps = 1e−4

5 while maxi
(∥∥yk

i − yk−1
i

∥∥
2

)
> eps and k ≤

max iter do
6 foreach vertex i do
7 Calculate Ak

i , s
k
i , s

t
i //Eq. (25)

8 yk+1
i = Jacobi(Ak

i , s
k
i , s

t
i) //Eq. (24)

9 end
10 Find active contact pairs.
11 zk+1 = Project(yk+1, zk,ξ, h, ε, d̂) //Algorithm 2
12 yk+1 ← zk+1

13 end
14 yt+1 ← yk

3.1. Basic theory of peridynamics

In the peridynamic model, let y(x, t) be the deformed
position at time t of the vertex x in the reference configura-
tion of a region B. By applying an implicit integration, the
deformation of a vertex i from time t to t+ 1 is written as

yt+1
i = yt

i + hvt+1
i , vt+1

i = v∗
i + hM−1

i f t+1
i , (6)

in which vi is the velocity, v∗
i is the intermediate velocity

calculated as v∗
i = vt

i + hM−1
i fexti , Mi is the mass matrix

(i.e., Mi = miI), h is the time step, and fi is the total in-
ternal force exerted on vertex i. Unlike FEM, the force fi in

(a) Droping to ball.

(b) Static frame.

Figure 1. Muti-layer elastic cloths drop over default gravity. Single
layer(left), three layers(middle) and six layers(right) situation are
being tested.

peridynamics is modeled as an integration over a neighbor-
hood of xi. More specifically, fi can be descretized as

fi = Vi

∑
j

{
Ti ⟨xj − xi⟩ −Tj ⟨xi − xj⟩

}
Vj , (7)

in which T is the force state describing the interaction force
between xi and xj , and V is the volume. Silling and
Lehoucq [37] demonstrate that if the deformation is suffi-
ciently smooth, the peridynamic stress tensor converges to
a Piola-Kirchhoff stress tensor that is a function only of the
local deformation gradient tensor, as in the classical theory.
Therefore, suppose we have an expression for a stress ten-
sor in the classical theory, a peridynamic constitutive model
that is consistent with the model is derived as

Ti ⟨xj − xi⟩ = ωijPiK
−1
i (xj − xi) , (8)

where P represents the first Piola-Kirchhoff stress which is
a function of the deformation gradient tensor F

F =

∑
j

ωij (yj − yi) (xj − xi)
T

K−1
i , (9)

ω is a scalar state acting as a weighting function, Ki is the
shape tensor calculated as

Ki =
∑
j

ωij (xj − xi) (xj − xi)
T
. (10)

By combining Eq. (6) and (7), we obtain the following
system

mi

(
yt+1
i − yt

i − hv∗
i

)
=

h2Vi

∑
j

{
Tt+1

i ⟨xj − xi⟩ −Tt+1
j ⟨xi − xj⟩

}
Vj .

(11)



3.2. Kirchhoff-Love plate formulation

In simulating membranes that are modeled with only one
layer of triangles, it can be noted from Eq. (10) that the
shape tensor is not guaranteed to be positive definite. In
other words, the standard form of peridynamics cannot han-
dle degenerate configurations for codimensional materials
as the singular shape tensor may cause the simulation to
blow up. To address this limitation, we propose to reformu-
late both the shape tensor and deformation tensor based on
the Kirchhoff–Love plate theory [33]. The Kirchhoff–Love
plate theory is a mechanical model and a set of assumption
used to represent a three-dimensional thin plate (or mem-
brane) in two dimensional reference (named as mid-surface
in the following discussion, which is a reference surface laid
in middle between upper and lower surfaces of the plate ).
Three kinematic assumptions are used in this theory, i.e.,
straight lines normal to the mid-surface of the undeformed
plate remain straight, normal to the mid-surface, and un-
stretched after deformation. The length of this normal be-
tween mid-surface and plate upper or lower surface is mod-
eled as thickness. Therefore, we are able to extend the ba-
sic theory of peridynamics to describe codimensional struc-
tures.

We introduce a virtual bond that is normal to both the
undeformed and deformed mid-surfaces, denoted as x⊥

i and
y⊥
i , respectively

x⊥
i = ξnorm

(∑
J θJnJ∑
J θJ

)
,y⊥

i = ξnorm
(∑

J θ∗Jn
∗
J∑

J θ∗J

)
,

(12)
where ξ represents the thickness of the membrane measured
from surface to the mid-surface; J is the index of all neigh-
boring triangles; θJ is inner angle of triangle J with apex of
vertex i; nJ is the triangle normal, and norm(·) is used to
normalize a vector. The superscript ∗ for θ and n is used to
denote quantities in the deformed configuration. With vir-
tual bonds introduced, the shape tensor K can be defined
as

Ki =
∑
j

ωij(xj − xi)(xj − xi)
T + x⊥

i ⊗ x⊥
i , (13)

where ⊗ represents the Kronecker product. Similarly, the
deformation gradient tensor F can be reformulated as

Fi =

∑
j

ωij(yj − yi)(xj − xi)
T + y⊥

i ⊗ x⊥
i

K−1
i .

(14)
Note x⊥

i is defined as the orthogonal complement of all
neighboring bonds ⟨xj − xi⟩, the shape tensor Ki is guar-
anteed to be nonsingular. As a result, the value of the
deformation gradient Fi can be correctly calculated from
Eq. (14).

𝑥0𝑥∗ 𝑥0𝑥∗
𝑥

𝑦 𝑦

𝑥

𝑦 = 𝑥

𝑦 = 𝑓(𝑥)

𝑦 = 𝑓(𝑥)

𝑦 = 𝑥

𝑥0𝑥∗ 𝑥0𝑥∗
𝑥

𝑦 𝑦

𝑥

𝑦 = 𝑥

𝑦 = 𝑓(𝑥)

𝑦 = 𝑓(𝑥)

𝑦 = 𝑥

Figure 2. An illustration of the standard successive substitution
method.

After extending peridynamics to model membranes, we
consider to solve Eq. (11). Note T is a nonlinear function of
the deformation gradient tensor in hyperelastic models, how
to solve above nonlinear system is a real challenging task.
In parallel computing, the Jacobi method is most commonly
used due to its well adaptation to GPU. Unfortunately, the
Jacobi method can only be used to solve a system of linear
equations. In the following context, we develop a semi-
implicit successive substitution method to solve Eq. (11).

4. Semi-implicit successive substitution
method

In a substitution-type method, if we would like to find
the roots for a nonlinear equation f(x) = 0, we usually
start with initial guesses for all of the unknowns and then
loop around the equation to obtain “better” approximations.
To take successive iterations, we construct a function g(x)
satisfying

x = g(x) ⇐⇒ f(x) = 0, (15)

known as the fixed-point problem. Finding a function satis-
fying Eq. (15) is easy, e.g., we can just set g(x) = f(x)−x.
However, the difficulty is how to guarantee the successive
substitutions xk+1 = g(xk) will converge to the root with
the chosen g(x). Conditions for convergence of successive
substitution method provides us a sufficient convergence
criteria

|g′(x)| < 1. (16)

From Figure 2, it can be noted that if the convergence cri-
teria is strictly satisfied, xk will finally converge to root as
k increases. Otherwise, xk may diverge. In the follow-
ing context, we will talk about how to reformulate Eq. (11)
into a formula that can satisfy the convergence criterion in
Eq. (16). Motivated by the projective peridynamics [9], we
separate the force state Ti ⟨xj − xi⟩ into two parts

Ti ⟨xj − xi⟩ = T+
i ⟨xj − xi⟩+T−

i ⟨xj − xi⟩ , (17)

where T+
i ⟨xj − xi⟩ will be further formulated as a func-

tion of yj−yi while T−
i ⟨xj − xi⟩ still remain as a function

of xj − xi. The superscript + indicates the coefficients of



xj − xi are guaranteed to be positive while the superscript
− indicates the coefficients of xj − xi are guaranteed to be
negative. For isotropic materials, Teran et al. [40] pointed
out that the first Piola-Kirchhoff stress tensor can be factor-
ized into the following form

Pi = UiP̂i

(
F̂i

)
VT

i , (18)

where F̂i is the diagonal matrix obtained from the standard
singular value decomposition of Fi = UiF̂iV

T
i , P̂i is a

function of F̂i which is also a diagonal matrix. By splitting
Pi into two components, we have

Pi = UiP̂
+
i

(
F̂i

)
VT

i +UiP̂
−
i

(
F̂i

)
VT

i , (19)

where P̂+
i represents the positive component of P̂i while

P̂−
i the negative component. With the above separation, the

positive part of the force state can be reformulated as

T+
i ⟨xj − xi⟩ = ωijP

+
i Ki

−1 · (xj − xi)

= ωijUiP̂
+
i

(
F̂i

)
VT

i Ki
−1ViF̂

−1
i UT

i

· (yj − yi) .
(20)

by applying an approximation yj − yi ≈ Fi · (xj − xi)
during the derivation. In a similar way, the negative part of
the force state can be reformulated as

T−
i ⟨xj − xi⟩ = ωijP

−
i Ki

−1 · (xj − xi)

= ωijUiP̂
−
i

(
F̂i

)
VT

i Ki
−1 · (xj − xi) .

(21)
To further simply the force state, we assume the shape ten-
sor Ki in Eq. (20) and Eq. (21) is isotropic and its value can
be calculated analytically according to the following for-
mula

Ki =

∫
Hi

(xj − xi) (xj − xi)
T
dVj =

16

15
πri

5I, (22)

where Hi represents a spherical neighborhood of radius ri
centered at xi and I represents the identity matrix. By sub-
stituting the analytical solution of Ki into both Eq. (20) and
Eq. (21), a simplified form of the force state can finally be
defined as

Ti ⟨xj − xi⟩ = κiUiP̂
+
i

(
F̂i

)
F̂−1

i UT
i · (yj − yi)+

κiUiP̂
−
i

(
F̂i

)
VT

i · (xj − xi) ,

(23)
where κi = 16

15πri
5. Note when Eq. (23) is solved with

our semi-implicit successive substitution method, we make
a special treatment to handle the first term of RHS in an
implicit way while the second term in an explicit way. Sub-
stituting Eq. (23) into Eq. (11), the semi-implicit governing

equation for a nonlinear system can finally be defined as

yk+1
i =

(
miI+Ak

i

)−1

∑
j

Ak
ijy

k
j + ski + sti

 , (24)

where

Aij = h2Vi

(
κiUiP̂

+
i F̂

−1
i UT

i + κjUjP̂
+
j F̂

−1
j UT

j

)
Vj

ski = h2Vi

∑
j

(
κiUiP̂

−
i V

T
i + κjUjP̂

−
j V

T
j

)
Vj · (xj − xi)

sti = mi

(
yt
i + hv∗

i

)
Ai =

∑
j
Aij .

(25)
Please note Eq. (24) is now in a form of xk+1 = g(xk),
which can be easily solved with successive substitutions.
The question is whether yk+1

i will converge to a global so-
lution as k increases? By checking the convergent criterion,
we have∥∥∥∥∥∥(miI+Ak

i

)−1∑
j

Ak
ij

∥∥∥∥∥∥ < 1, k = 0, 1, · · · . (26)

Therefore, if we do not update the coefficients in Eq. (24)
at each iteration, yk+1 will absolutely converge to a root
of Eq. (24). However, without simultaneously updating the
coefficients in Eq. (24), the roots are not guaranteed to con-
verge to the solution of the nonlinear system in Eq. (11).

4.1. Convergence and Performance

To demonstrate how our semi-implicit successive sub-
stitution method works, we first consider a simple one di-
mensional spring whose governing equation is written as
x0 = (x0 − x1 − 1)2 in a position-based manner. Here, x0

and x1 represent the one-dimensional coordinates of two
spring ends. By fixing one end, e.g., setting x1 = 1, the
governing equation for the other spring end is written as

x0 = (x0 − 2)
2 ≡ g (x0) . (27)

Starting with an initial guess of x0 = 0.5, it can be no-
ticed from Figure 3(a) that the standard successive substi-
tution method fails to find a converged solution while Fig-
ure 3(b) shows our method is able to find the converged so-
lution. In our semi-implicit successive substitution method,
the definition of g (x0) at k-th iteration is first converted into
a linearized semi-implicit equation

h
(
xk
0 , x

k+1
0

)
= −4xk+1

0 +
(
xk
0

)2
+ 4. (28)

Therefore, solving xk+1
0 = −4xk+1

0 +
(
xk
0

)2
+ 4 is equiv-

alent to find an intersection point between y = x and
y = −4x+

(
xk
0

)2
+ 4, as was demonstrated in Figure 3(c).
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Figure 3. Convergence illustration on how to find the intersection point between y = x and y = (x − 2)2. Starting with an initial guess
of x = 0.5, (a) the standard successive substitution method fails to converge while (b) our semi-implicit successive substitution method
succeeds in finding the solution. Refer to (c) for a snapshot of the convergence routine of our method.

Notice when the linearized function h
(
xk
0 , x

k+1
0

)
is up-

dated at each iteration, the sequence xk
0 is guaranteed to

converge to one of the solution of Eq. (27).
Now let us consider a general dynamics problem and de-

fine its governing equations as the following multivariable
functions

x = g (x) . (29)

To take one iteration, g (x) is first converted into a lin-
earized semi-implicit equation h(xk+1,xk) at the begin-
ning of each iteration. Then, the intersection point xk+1

between the two hyperplanes y = x and y = h(x,xk)
is calculated by solving the linear system of equation x =
h(x,xk). As the iteration number increases, the sequence
xk+1 is expected to converge to a global solution of the dy-
namics problem defined in Eq. (29). However, for an ar-
bitrary function of g(x), the semi-implicit successive sub-
stitution method still suffers from the overshooting prob-
lem, as was demonstrated in Figure 4. Note as xk ap-
proaches the global solution x∗, the gradient magnitude of
linearized semi-implicit equation h

(
xk
0 ,x

k+1
0

)
can finally

become larger than the gradient magnitude of the original
function. As a result, further substitution iterations may
cause the sequence xk to oscillate around the global solu-
tion.

To address the overshooting problem, our solution is to
adjust the step length as follows

xk+1
i = xk

i + αi

(
xk+1
i − xk

i

)
, (30)

where αi ∈ [0, 1] represents the step length for vertex i.
In the standard gradient descent methods, a backtracking
line search is typically applied to find the feasible step size.
Starting from an initial guess for α, e.g., α0 = 1, the value
of α will be halved until the Wolfe or Goldstein conditions
are reached. The problem with this standard strategy is that

𝐱𝑘 𝐱𝑘+1

ℎ(𝐱𝑘 , 𝐱𝑘+1)

(𝐱)

′(𝐱)

(𝐱𝑘+1)

(𝐱𝑘)
𝐱𝑘+1 > (𝐱𝑘)

𝐱∗
𝐱

Figure 4. Demonstration of the overshooting problem. As the se-
quence xk approaches the local minima of the energy function,
the gradient magnitude of the linearized semi-implicit equation
h(xk

0 ,x
k+1
0 ) can become larger than the gradient magnitude of

the energy function, which could possibly cause the sequence xk

to oscillate around the global solution.

it can waste a lot of iterations during the backtracking pro-
cess [43]. In our work, we propose a new step length search
method by only taking account of the current deformation
state. Given xk, we first reformulate the energy density
function E (x) into a first-order Taylor polynomial defined
as

E (x) = E
(
xk
i

)
+ α

∂Ei
∂xi

(
xk+1
i − xk

i

)
. (31)

Since the new energy density function is guaranteed to be
non negative, an upper limit for αi can naturally be defined
as

αi = min

[
−

E
(
xk
i

)
∂Ei

∂xi
·
(
xk+1
i − xk

i

) , 1] . (32)

Note αi can be calculated independently for each vertex,
which makes our method quite suitable for GPU implemen-
tation. In addition, our method requires no iterative strat-



egy to adjust the step length because the upper limit of αi

has already provides a sufficient condition to guarantee the
convergence. In a practical implementation, the value of
the denominator can be zero due to the rounding errors re-
sulted from floating-point calculations. To avoid being di-
vided by zero, we simply set αi = 1 if the denominator
value is smaller than a predefined threshold, e.g., 10−6 for
single precision operations.
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Figure 5. The convergence of our method with different Jacobi
iteration numbers in solving Eq. (24). By using more Jacobi it-
erations, the semi-implicit successive substitution can accelerate
the convergence rate. However, the total computational cost is in-
creased.

The full procedure of our method is now quite similar to
the Newton–Raphson method except that our method takes
one additional operation to adjust the step length. In addi-
tion, our method imposes no restriction on the accuracy in
solving the linear system of equations x = h(x,xk). Due
to our step length adjustment strategy, our method is flex-
ible enough to solve the linearized semi-implicit equation
at arbitrary accuracy. Figure 5(a) demonstrates how the ac-
curacy in solving the linearized semi-implicit equation can
affect the global convergence rates. Generally speaking, the
more accurate we solve the linearized semi-implicit equa-
tion, the faster convergence rate can be achieved. However,
there exists a performance balance between the global iter-
ation number and the inner iteration number. Figure 5(b)
shows that increasing the iteration number in solving the
linearized semi-implicit equation can significantly increase
the total computational cost. Therefore, in our practical im-
plementation, we usually take only one Jacobi iteration to
solve x = h(x,xk) and the new sequence is found to con-
verge to the global solution well.

5. Hyperelastic modeling of membranes

In this section, we will give details on how to decom-
pose the first Piola-Kirchhoff stress tensor for hyperplastic
materials. According to the continuum theory, the strain-
energy density function Ψ(I1, I2, I3) of an isotropic hyper-
elastic material is defined by the three invariants of the right

Cauchy-Green deformation tensor C = FTF:

I1 = trace(C) = λ2
1 + λ2

2 + λ2
3

I2 = C : C = λ4
1 + λ4

2 + λ4
3

I3 = det(C) = λ2
1λ

2
2λ

2
3 .

(33)

Following [10, 46], the diagonal first Piola-Kirchhoff stress
tensor can be derived as

P̂ = diag

(
∂Ψ

∂λ1
,
∂Ψ

∂λ2
,
∂Ψ

∂λ3

)
. (34)

Taking the compressible neo-Hookean material for ex-
ample, its strain energy density function is formulated as

Ψ = s0 (I1 − 3− ln I3) + s1

(√
I3 − 1

)2
, (35)

we have

∂Ψ

∂λm
= 2s0λm + 2s1

I3
λm
− 2

(
s0
λm

+ s1
I3

1/2

λm

)
. (36)

Therefore, we succeed in decomposing P̂ into

P̂+
m,m = 2s0λm + 2s1

I3
λm

P̂−
m,m = −2

(
s0
λm

+ s1
I3

1/2

λm

)
,

(37)

which absolutely obeys the decomposition principle as well.
However, if we try to model hyperelasticity for shell-like

objects with standard hyperelastic energy density functions,
several difficulties can be encountered. For example, since
normal principle stretch used to calculate the third invari-
ant I3 can be relatively small for codimensional materials,
the force arisen from the second term in Eq. (34) can be
quite sensitive to the deformation. Besides, the Poisson
effect makes it hard to control the stretching and bending
for membranes independently. Motivated by the common
way to decouple stretching and bending strain for mem-
branes [38, 8, 2, 12], we propose to use two specific energy
models that can be well adapted into our framework and
control stretching and bending separately.

5.1. Stretching

To better modeling stretching for membranes, we pro-
pose to use the following user-defined hyperelasticity model
using principle of strain λi:

Ψ = s0 (A3(λ1) +A3(λ2) +A3(λ3)) , (38)

where A3 is a special case of An proposed by [47]

An =
1

n
(
sn+1 − 1

n+ 1
+

s−n+1 − 1

n− 1
). (39)



The corresponding P̂ can be decomposed into two parts as
followed:

P̂+
m,m = s0

λm
3

3

P̂−
m,m = −s0

1

3λm
3 .

(40)

5.2. Bending

To allow modeling membrane bending independently,
the bending force should disappear for configurations un-
der the rest, pure rotational and stretching states (i.e. gradi-
ent deformation tensor is diagonal). In order to satisfy the
above constraints, we extend the meshless bending model in
Wu et al.[44] and make a further derivation to make the final
form of the bending force compatible with our semi-implicit
solver. The bending energy density function on each vertex
is defined as

Eb
i =

kb
2

∑
j

∥Gi(xj − xi)∥22 , (41)

where kb is constant parameter for bending control, G =
FTF−1 − I can be viewed as a bending measurement. It is
easy to verify that this measurement can fit into our method
as well. By taking the approximation of yj−yi ≈ Fi(xj−
xi), the bending force derived from −∇yE

b
i can be written

as

Tb
i ⟨xj − xi⟩ = kbF

−T
i F−1

i (yj − yi)− kbF
−1
i (xj − xi).

(42)
Notice Eq. (42) resembles the force state formulation de-
fined in Eq. (23). Therefore, both the stretching and bend-
ing energy can be efficiently solved with our semi-implicit
successive substitution method.

To sum up, a global step to solve the membrane can
be formulated by the Eq. (24) with Aij and ski defined as
follows

Aij = h2Vi

(
κiUiP̂

+
i F̂

−1
i UT

i + κjUjP̂
+
j F̂

−1
j UT

j

+kb(FiF
T
i )

−1
+ kb(FjF

T
j )

−1
)
Vj ,

(43)

ski = h2Vi

∑
j

(
κiUiP̂

−
i V

T
i + κjUjP̂

−
i V

T
j

− kbF
−1
i − kbF

−1
j

)
Vj · (xj − xi).

(44)

Figure 7 and Figure 6 demonstrate how parameter s0
and kb influence the deformation behavior of a hyperelas-
tic cloth. Generally, a larger value of s0 generate more stiff
stretching behaviors, while a larger value of kb brings more
resistance to folding and buckling. Notice, the two param-
eters can be independently adjusted to control different de-
formation behaviors.

6. Contact handling

Notice the global step solve cannot guarantee vertex po-
sitions remain interpenetration-free. Therefore, a local step
should be taken in order to avoid interpenetration. Given
the vertex positions yk after one global step, two objectives
should be fulfilled after taking the local step solve. Firstly,
vertex positions y should remain as close as to yk. Sec-
ondly, the constraint B(z) = 0 is fulfilled for membrane
modeling with a finite thickness of ξ. According to Eq. (5),
the general formulation for the contact problem in the local
step can be written as

argmin
z

∑
i

ωi

2

∥∥Bizi −AiSiy
k
i

∥∥2, s.t. B(z) = 0.

(45)
For simplicity, we choose Ai = Bi = Si = I and reformu-
late Eq. (45) as follows

argmin
z

∑
i

1

2

∥∥zi − yk
i

∥∥2, s.t. B(z) = 0. (46)

According to the numerical optimization theory, the
above constrained optimization problem actually can be re-
formulated into the following unconstrained optimization
problem:

B(z) = min
z

(∑
i

1

2

∥∥zi − yk
i

∥∥2 + µ
∑
k

Bk(z)

)
, (47)

where µ is a constant weight. Note the first term
1
2

∥∥zi − yk
i

∥∥2
2

acts like a momentum potential to prevent
vertices from getting too far away. The second term is
used to penalize the collision. In the follow context, we
will present a gradient descent method to solve the uncon-
strained optimization problem, as demonstrated in Algo-
rithm 2. Note all steps in our local step solve is highly paral-
lelizable and can be easily implemented on modern GPUs.

6.1. Direction of gradient descent

IJd

JId

Ip

Jp

I

J

In this section, we first dis-
cuss how to define a well-
chosen descent direction that
can decrease the total poten-
tial energy gradually.

If we consider the colli-
sion detection between a pair
of triangles, the CCD test be-
tween the two triangles actu-
ally reduces to performing 6 vertex-triangle queries and 9
edge-edge queries. Without loss of generality, let us con-
sider the edge-edge case in the right figure to demonstrate



(a) 0× (b) 0.1× (c) 1× (d) 10×
Figure 6. Bending stiffness test. A cloth drops onto a table with some books under default gravity. The stretching stiffness s0 is set to a
constant 8000, while the bending stiffness kb is set to 0×, 0.1×, 1× and 10× 240 from left to right.

(a) 0.1× (b) 1× (c) 10×
Figure 7. Stretching stiffness test. The cloth is dangling down un-
der 20 times the default gravity. From left to right, the stretching
stiffness s0 is set to 0.1×, 1× and 10 × 500, while the bending
stiffness is set to 0 for all simulations.

how to calculate the gradient descent direction. By denoting
the two triangle as I and J , the distance between triangle I
and J can be defined as

dIJ = arg min
αI ,αJ

(||pI(αI)− pJ(αJ)||2) , (48)

where pI and pJ represent a point locating inside triangle
I and J , respectively, αI and αJ represent the barycentric
coordinates. If we insert above equation into Eq. (47), the
gradient descent direction for vertex i can then be calculated
by taking derivative of B(y) with respect to zi

gi =−∇zi
B

=µ
∑
I

αi
I

[
(dIJ − d̂)2

dIJ
+ 2(dIJ − d̂) log

(
dIJ

d̂

)]
norm(dIJ) + yk

i − zi ,
(49)

where αi
I represents the barycentric coordinate for vertex i

in triangle I .

6.2. Step length adjustment

Unlike solving traditional unconstrained optimization
problem, the feasible set of y in our problem is further con-
strained by the thickness of membrane. More precisely, we
require the unsigned distance between any pair of primitives
to satisfy the following strict inequal condition:

d̂IJ = dIJ − ξ > 0. (50)

To fulfill above condition, one practice is to take the Ad-
ditive CCD algorithm [16] to find a lower bound of time-
of-impact tIJ for each pair of primitives and then clamp the
vertex position according to Line 4∼18 in Algorithm (2).
However, directly clamping the vertex position by the time-
of-impact may introduce sticking artifacts, just as pointed
out by Wang et al.[42].

Therefore, we propose to rescale the step length accord-
ing the time-of-impact. More precisely, the time-of-impact
will be used to clamp vertex position only if it is greater than
a predefined threshold. Otherwise, we use a C1 piecewise
continuous function to rescale the proximal distance dIJ as
follows

f(d) =


(1 + ε)ξ, d ≤ ξ

1

4εξ
(d− ξ)2 + (1 + ε)ξ, ξ < d ≤ (1 + 2ε)ξ

d, (1 + 2ε)ξ < d

,

(51)
where ε is a user-defined mininal separation multiplier
(which is typically set to 1e−1 or 1e−2 in our current imple-
mentation). If we replace dIJ with f(dIJ), it can be verified
that Eq. (50) stands forever given a positive mininal separa-
tion multiplier ε, i.e., d̂IJ > εξ. Besides, it can further be
verified that the first derivative of the barrier function B′ (d)
is bounded, as shown in Figure 8.

After we insert Eq. (50) into Eq. (49), the question be-
comes how to calculate a suitable step length λ that would
gradually minimize the object function as follows

B(zm + λg) < B(zm). (52)

A simple yet effective approach is to use a backtracking line
search approach to reduce an initial guess until the Wolfe
condition gets satisfied. However, this could waste a bunch
of iterations during the backtracking process. In fact, the
boundedness of B′ (d) allows us to guess an upper bound
for the step length.



Algorithm 2: Contact Handling in the Local Step

1 Project(yk, zk−1, ξ, h, ε, d̂)
2 zm=0 ← yk

3 while maxi
(∥∥zmi − zm−1

i

∥∥
2

)
> eps and m ≤

max ite do
4 foreach triangleI do
5 foreach (triI , triJ) is activated, do
6 tIJ =

AdditiveCCD(triJ , triI , h, zm, zk−1)
//set s = 0.1, tc = 0.95 for original
ACCD algorithm

7 end
8 if tIJ < 1 then
9 Insert (triI , triJ) into ContactList

10 end
11 tI = minJ(tIJ)

12 end
13 foreach vertex i do
14 ti = mini∈triJ (tJ)
15 if ti < 1 and ti > threshold then
16 zmi ← (zmi − zk−1

i )ti + zk−1
i

17 end
18 end
19 foreach (triI , triJ) ∈ ContactList do
20 Calculate pI ,pJ ,dIJ (Section 6.1)
21 Calculate αi

I for i ∈ triI
22 Calculate αi

J for i ∈ triJ
23 end
24 foreach vertex i do
25 Calculate d̂IJ = f(dIJ)− ξ,∀triI , i ∈ triI

(Section 6.2)
26 Calculate gi (Section 6.1)
27 end
28 Calculate step length λ (Section 6.2)
29 foreach vertex i do
30 zm+1

i ← zmi + λgi

31 end
32 end
33 return zk ← zm

By requiring the maximum position change at each iter-
ation is no greater than εξ, i.e., max

i
∥λgi∥ ≤ εξ, an upper

bound for λ can easily be derived as

λ ≤ εξ

µα0 ⌈B′ (d)⌉+ d̂
, (53)

where ⌈B′ (d)⌉ represents the upper bound of B′ (d), α0 is
an estimated upper bound of

∑
I α

i
I , d̂ is an upper bound of∥∥yk

i − zi
∥∥.

(a) f(d) (b) B′ (d)

Figure 8. (a) The diagram of refactor function in Eq. (51). In this
case, we set ε = 0.1. (b) The corresponding barrier function
derivative B′ (d) after adopting distance refact with ξ = 0.2, 0.3
and 0.5: d̂ is set to a normalized number 1.0, denoted 1 times of
primitive unit.

7. Results and discussion

All experiments are implemented in C++ and CUDA and
are executed on 11th Gen Intel(R) Core(TM) i9-11900K
CPU @3.5GHz ×8 with 32GB memory and NVIDIA RTX
A4000 GPU. Table 1 shows all statistics for the experi-
ments.

7.1. Thickness modelling

(a) Phase difference at 1.20π rad.

(b) Phase difference at 2.39π rad.

Figure 9. Elastic cylinders rotate.

In this set of experiments, an elastic cylinder is being
twisted with an angular velocity ω = 1 rad/s. The two ends
of the cylinder are twisted in opposite directions. Figure 9
demonstrates the different central cylinder as we choose dif-
ferent values for the cloth thickness ξ.

7.2. Deformation, contact and separation.

In this example, we provide a set of experiments to test
deformation, contact and separation for two objects. A
panda-shape elastic shell is ejected to hit an elastic cloth-
like target with an initial velocity v = 15 m/s and density



ρ = 1000 kg/m3. Both the panda-shape shell and cloth tar-
get are set to the same material. As the panda-shape shell
hits the target, contact forces between two objects helps de-
celerate the speed of the shell. Then, the two objects sepa-
rate and no unnatural locking artifacts can be observed. Af-
ter changing the material stiffness s0, distinctive deforma-
tion behaviors can also be observed. Notice as the material
stiffness s0 is decreased, the panda appears to be softer.

(a) s0 = 2000 (b) s0 = 8000 (c) s0 = 40000

Figure 10. Shooting panda. The stretching stiffness s0 is set to
2000, 8000 and 40000 from left to right while the bending stiff-
ness is set to 0.005× s0 for all simulations.

7.3. Interactive cloth simulation

Figure 11 demonstrates an example to show interactive
cloth simulation with mouse interactions. In this configu-
ration, contact with the avatar is handled with SDF-based
constraints while inner contact among the cloth is handled
with our local step solver. The supplementary video shows
that this complex example can be run at an interactive speed
even when a large scale of primitives and contact get in-
volved.

7.4. Comparison to descent methods [43]

To be fair, we set up an example similar to Figure 6 and
compare our semi-implicit successive substitution method
to the gradient descent method [43]. The compressible neo-
Hookean model [28] is chosen to define its strain energy
density function and the two Lamé parameters are set to
s0 = 4.8e7 and s1 = 1.2e7, respectively. The timestep is
set to 1ms. The relative error at k-th iteration is defined to
be η = E(yk)−E(y∗)

E(y0)−E(y∗) , where E is the total strain energy, y0

is the initial guess, yk is the solution at k-th iteration and y∗

is the exact solution (in our practical implementation, y∗ is
chosen to be the solution after 500 iterations are taken). Fig-
ure 12 shows statistics on the convergence and time cost at

Figure 11. Interactive cloth simulation with contact. For the short
skirt interaction, experiment running in averge 22 frames per sec-
onds, while for the long dress interaction, experiment running in
averge 8 frames per seconds because of more self-collision han-
dling involved.

the 20-th frame for both methods. First of all, it can be noted
that our method achieves a fast convergence rate at the first
dozens of iterations. However, the convergence rate gradu-
ally slows down as the iteration number is further increased,
just similar to a standard Jacobi iterative method. Besides, it
can be noted from Figure 12(bottom) that our method takes
lower computational cost in taking one iteration due to the
efficient step length adjustment method. Finally, both meth-
ods can be accelerated by taking the Chebyshev method.

8. Conclusion and limitations

We present a stable and efficient semi-implicit succes-
sive substitution method for simulating hyperelastic mem-
branes with contact based on peridynamics. Inspired by the
fix-point iterative method, we separate inner elastic force
into an implicit positive part and an explicit negative part to
guarantee the convergence of each iteration. Overshooting
problem is avoided by adopting self-adapted step length on
position marching through gradient direction during itera-
tion. Furthermore, self-collision contact will be projected
as constraint and solved with gradient descend method.

For membranes modeling, we follow classical Kirch-
hoff–Love plate theory and adopt a vitual bond with di-
rection of vertex normal for each particles to revise sigu-
lar shape matrix and deformation gradient matrix. We also
derive two specific energy models that can be well adapted
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Figure 12. Comparison to Wang and Yang [43] with/without
Chebyshev acceleration. Relative error over iteration step and run-
ning time is shown correspondingly.

into the framework and allow to model stretching and bend-
ing property independently for membranes material.

Our method also has several limitations. First, the con-
vergence rate slows down in simulating a muti-layer cloth,
which could possibly be caused by inexact gradient de-
scend direction when both sides of the mid-layer generate
active contact pairs. Besides, our method cannot implement
strict controllable strain limits for elasticity when simulat-
ing shell-like materials. For our further work, we would first
try to test with other collision detection algorithms in the lo-
cal step. Then, since the proposed semi-implicit successive
substitution method is general, we would like to apply it
to solve constraints in other applications, e.g. rigid body
dynamics. Finally, we would like to study on how to sim-
ulate other material models that involve both nonlinearity
and contact.
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