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Abstract. With the firestorm of generative macromodelling, text-conditional im-
age editing is a recently emerged and highly useful task with an unlimited future.
Although a lot of research progress has been made, most of the methods still fail
to achieve editing under body-shape preservation, i.e., they cannot generate re-
sults that conform to the semantics of the editing prompt while preserving the
body-shape of the original image subject. To address this great challenge, we
propose BK-Editer, a method that achieves satisfactory body-shape preservation
and accomplishes editing under body shape preservation, which solves two major
problems: 1) the edited result matches the corresponding editing prompt, and 2)
the edited subject’s body shape is largely the same as the original subject’s body
shape. In addition, our method does not require time-consuming training on a
large-scale dataset and is a self-supervised method.

Keywords: Real image editing· Diffusion model· Text-to-image generation· AIGC·
Generative model.

1 Introduction

With the rapid development of diffusion models and multi modal generative models,
there have been significant advances in text-to-image techniques in recent months,
which have enormous commercial value and have found their way into AI painting,
commercial design, film animation production and many other areas. [33, 26, 48, 32,
35]. For example, Stable Diffusion [35] is capable of generating a wide variety of high
quality images based on text prompts provided by the user. However, for some commer-
cial purposes, the generation of a completely new image is not sufficient to satisfy the
user’s needs, and the user often wants to edit an existing image, giving rise to the task
of text-conditional image editing. There are many approaches to implementing text-
based image editing using pre-trained large-scale text-image models [26, 12, 43, 28].
Text-image editing is a very new task, it has only been around for a few months, but
the prospect of its application in comic production, video editing, advertising material
production, etc. is amazingly valuable.
⋆ S. Chen -Corresponding author.
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Fig. 1: Comparing with different concurrent image editing methods on the real natural
world images, it is obvious that the object in the editing result of our BK-Editer can
meet the edit prompt, while keeping the body-shape of the original subject.

It is important for us to emphasise here that synthetic image editing and real im-
age editing are two very different tasks, and it is easy for others to confuse the two
tasks. Synthetic image editing means that when an image is synthesised using a source
prompt, the edit prompt can be used to create another image that matches it, where the
user cannot provide a real image. Real image editing, on the other hand, means that the
user can provide a real image and then use the edit prompts to edit that real image.

A number of existing text-conditioned image editing methods [12, 43, 28] are able
to perform tasks such as object replacement and style transfer while keeping the overall
structure and layout unchanged, and achieve satisfactory results. However, these meth-
ods are unable to perform editing while keeping the body-shape of the original subject
as shown in Fig. 1. In this context, “body-shape” encompasses not only the appearance
but also the form, size, and outline of the object. Some works named subject-driven gen-
eration aim to address this problem, such as Textual Inversion [10], Imagic [18], Dream-
Booth [38], Custorm Diffusion [20], ELITE [44], FastComposer [46] and MasaCtrl [5]
are proposed to subject-driven generation, which can also be a kind of editing. They
can generate new images matching the edit prompt, but the body-shape problem is still
challenge for them. Specially, Textual Inversion [10], Imagic [18], DreamBooth [38]
and Custorm Diffusion [20] require finetune on some images of the same object and
tend to be over-fitting. ELITE [44] requires training on a large dataset, which is more
expensive on time and GPU. MasaCtrl does not require training and finetuning, but its
reconstruction performance on real images is unsatisfactory and body-shape keeping is
also hard for MasaCtrl.

Our approach focuses on the editing of the original subject under body-shape preser-
vation, i.e., it emphasises that the body-shape of the subject in the edited result should
be consistent with that of the original image. Our setting is that we do not need to use
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multiple images of the same object as input, nor do we need to train on a large dataset
for a long time (in this field we usually call it Training-free).

A major problem under this setup is how to preserve the body-shape of the origi-
nal subject during editing. In order to solve this problem, the fundamental difference
between our BK-Editer and other concurrent works is that BK-Editer is designed by
injecting the information of the original image into the proposed BK-attn in U-Net
through the injecting network, and at the same time training these learnable parameters
on a single original image by denoising loss. Since in finetuning we use human matting
or pretrained segment model such as Segment Anything (SAM) [19] to segment out the
subject part, the network can only perceive the subject information and memorise the
body-shape of the subject in their learnable parameters. Then, in the edit stage, we use
the edit prompt to introduce the edit semantic, and use the learned parameters of the
Injecting network and BK-attn for retaining the body-shape.

The core distinction lies in our approach’s integration of the original image as an
additional input, alleviating the training burden on the network. This fundamental di-
vergence from approaches like DreamBooth, Custom Diffusion, and Imagic [18] is a
key factor in mitigating over-fitting tendencies.

Our main contributions are summarised as follows:

– We propose a text-conditional image editing method, BK-Editer, which does not
need to be trained on top of a dataset to solve the body-keeping problem of the
original subject in image editing.

– We design BK-attn, an attention layer that can input features of the original im-
age, and embed it into U-Net, which can be make full use of the original image
information during editing.

– Comprehensive experiments show that BK-Editer can obtain satisfactory perfor-
mance in real image editing as shown in Fig. 1 and Fig. 7.

2 Related Work

Text-to-image generation models [41, 39, 32, 35, 49] have experienced an unprecedented
surge in popularity, achieving impressive diversity in the generated images. Initially,
high-fidelity image synthesis methods heavily relied on GANs [34, 51, 52, 47, 21, 54,
50, 42], often conditioned on text descriptions, owing to the impressive capabilities of
GANs. By leveraging multi-modal vision-language learning, these models establish a
connection between text descriptions and synthesized image contents. Recently, var-
ious text-to-image diffusion models [41, 13, 27, 8, 29, 10] have been developed, lever-
aging conditioning of the text prompt within the diffusion model. This approach has
gained prominence due to the exceptional generative power and cutting-edge results
in image quality and diversity achieved by diffusion models. Notably, recent advance-
ments include DALL·E 2 [32], LDM [35], VQ-Diffusion [11], InstructPix2Pix [4], and
GLIDE[26], which further enhance the synthesis process. Diffusion-based models [29,
10] have demonstrated the potential to manipulate images without human intervention,
generating high-quality images that align with text descriptions.
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Table 1: Comparison of Inversion and Editing Methods for Real Image Editing. (”Given
Images” means the number of images required for tuning, and experiments are con-
ducted on a single GTX 3090 GPU.)
Method Type Training Time Tuning Time Given Images
DDIM Inversion Inversion \ \ 1
Null-text inversion Inversion \ 3min 1
Textual Inversion Inversion \ 50min > 4
DDPM Inversion Inversion \ \ 1
Negative-Prompt Inversion Inversion \ \ 1
Proximal Inversion Inversion \ \ 1
SDEdit Editing \ \ 1
P2P Editing \ \ 1
ELITE Editing 3 days \ 1
FastComposer Editing 3 days \ 1
Dreambooth Editing \ 50min > 20
LoRA Editing \ 60min > 30
Custom Diffusion Editing \ 16min > 20
InstructPix2Pix Editing 4 days \ 1
MasaCtrl Editing \ \ 1
BK-Editer Editing \ 3min 1

Manipulating images based on natural language descriptions is a complex task in
text-conditioned image editing. The revolution of image editing through text-conditioned
editing using GANs [25, 22, 45, 29, 3, 16, 17, 1, 2] has sparked extensive research, while
diffusion models, with their strong text feature extraction capabilities using CLIP [30],
offer inherent capabilities for precise and diverse image editing. One innovative ap-
proach, VQGAN-CLIP [7], combines VQGAN [9] and CLIP [31] in an auto-regressive
model, enabling the production of high-quality images and precise edits with control-
lable outcomes. Additionally, textual inversion provides an alternative image editing
approach where models associate specific words in the textual embedding space with
subjects in the corresponding images. Through training, the diffusion model can gener-
ate images of the specific subject in different scenes described by a sentence containing
the designated word. This technique opens up new possibilities for generating images
that align precisely with desired textual descriptions.

As shown in Tab. 1, we list many state-of-the-art methods for real image editing task
and compare their difference between ours. Our BK-Editer is a training-free method,
which means that we don’t need to be trained on a large paired dataset. But we still
need to finetune our model on the given real image. So, our BK-Editer focuses on the
setting of tuning on a single real image.

3 Background
3.1 Diffusion Model Training
In the training of diffusion model in latent space [36], it starts by encoding a natural
image x0 to a latent clean sample z0. Then, it defines a diffusion process by adding
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noise to z0:
q(zt|z0) = N (

√
αtz0, (1− αt)I), (1)

where αt is the diffusion schedule and t ∈ {1, ..., T} is the time-step. The detail setting
of αt is introduced in [40]. We call zt, t ∈ {1, ..., T} the noisy latent, where zT ∼
N (0, I) is the end point of sampling. In DDPM [13], the common setting of T is 1000
and t ∈ {1, ..., 1000}. The optimization of the diffusion model is simplified to train a
network ϵθ(zt, t) to predict the Gaussian noise ϵ ∼ N (0, I):

Lsimple = Ez0,t

[
||ϵ− ϵθ(zt, t)||2

]
. (2)

3.2 DDIM Sampling and Inversion

If we need to reconstruct a given real image, we should use the deterministic DDIM
sampling [40] instead of other stochastic sampling. DDIM sampling is as follows:

zt−1 =
√
αt−1

zt −
√
1− αt · ϵθ(zt, t)√

αt
+

√
1− αt−1 · ϵθ(zt, t). (3)

However, only DDIM sampling can’t perform real image editing, as it only generates a
completely new image from a random start point zT . To perform real image editing, we
need to invert a real image into zT , and then use this inverted zT as a starting point of
DDIM sampling. If we want to perform real image editing, we can use editing methods
such as SDEdit [23] and P2P [12] with zT as a starting point of DDIM sampling.

DDIM inversion is used to invert a latent z0 to a deterministic noisy latent zT :

zt =
√
αt
zt−1 −

√
1− αt−1 · ϵθ(zt−1, t)√

αt−1

+
√
1− αt · ϵθ(zt−1, t).

(4)

3.3 Text Condition and Classifier-Free Guidance

Text-condition diffusion models aim to generate a result latent z0 from a random noise
latent zT with text prompt P . During the sampling process at inference, the noise esti-
mation network ϵθ(zt, t, C) is used to predict the noise in each zt, where C = ψ(P ) is
the text embedding. The noise is gradually predicted and removed by ϵθ(zt, t, C) for T
steps until we obtain z0.

In text-conditioned image generation, it is necessary to give the textual condition
enough control and influence over the generation. Ho et al. [14] propose classifier-free
guidance, where the conditional and unconditional predictions are combined. Specifi-
cally, let ∅ = ψ(“”) be the null text embedding and let w be the guidance scale, then
the classifier-free guidance prediction is defined by:

ϵθ(zt, t, C,∅) = w · ϵθ(zt, t, C) + (1− w) · ϵθ(zt, t,∅), (5)

where ϵθ(zt, t, C,∅) is used to replace ϵθ(zt, t) in the sampling Eq. 3, and w is usually
in [1, 7.5] in Stable Diffusion. The higher w means the stronger control by the text.
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Fig. 2: Pipeline of the proposed BK-Editer, which can be divided into 3 stages, tuning
stage, inversion stage and editing stage. 1) Tuning stage is for finetuning our new pa-
rameters to remember the body-shape of our subject. 2) Inversion stage is for getting
a good start point in the sampling process. 3) Editing stage is using the body-shape to
edit.

3.4 Stable Diffusion Model

Diffusion models [13, 40, 27] employ a dual process, involving the gradual addition of
Gaussian noise to the training data followed by a subsequent reverse process that re-
stores the original data distribution. The progression unfolds along the Markov chain
during the forward process that transforms a data sample x0 ∼ q(x0) into a sequence
of noisy samples x1:T = x1,x2, · · · ,xT in T steps. A neural network can be utilized
to implement pθ(x0:T ), with learnable parameters θ, to reverse the aforementioned pro-
cess. By training a network ϵθ(xt, t) to predict the Gaussian noise vector added to
xt [13], the optimization process can be transformed.

In Stable Diffusion (SD), an autoencoder network is employed for encoding x0 to z0
and decoding z0 to x0, while the U-Net [37] serves as the noise prediction network, de-
noted as ϵθ, responsible for generating latent noises ẑt. The U-Net ϵθ comprises multiple
CNN blocks, self-attention layers, and cross-attention layers. The self-attention layer
facilitates the flow of information from the text prompt, whereas the cross-attention
layer enables the flow of information from the features themselves. Specifically, query
features Q are derived from the image features, while key and value features K and V
are obtained from either the text embedding (cross-attention) or the image itself (self-
attention). The generation of images is influenced by various factors: Firstly, the atten-
tion map of cross-attention plays a crucial role in determining the image structure [12,
43, 6], specifically the positions of the objects present. Secondly, the alteration of tex-
ture and detail in the generated image is attributed to the manipulation of K and V
in the cross-attention layer. Lastly, both K, V , and the attention map in self-attention
significantly impact the generated result in terms of content preservation.

3.5 Task Setting and the Body-Keeping Problem

Given a real rather than a synthesised source image Is and a corresponding text prompt
Ps (which can be semantic or empty), and given a target edit prompt Pt. Our task is to
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generate a new image It by a pre-trained stable diffusion model, and this edited result
It should satisfy the following two requirements 1) It semantically matches the target
prompt of Pt. 2) The objects in It should be consistent with Is in terms of IDs, and in
particular, the body shape of the object should be consistent with that in Is.

This task has been a great challenge so far, especially when editing on real images,
the problem is more serious and the result is unsatisfactory, most of the current image
editing methods based on stable diffusion cannot maintain good reconstruction perfor-
mance when editing actions on real images [12, 43], especially it is difficult to preserve
the body-shape of the original subject. For example, if Pt is used directly to synthesise
a new image Īt, although the generated Īt can match the semantics of the actions in Pt,
even if the ẑT obtained from DDIM inversion is used as the starting point of sampling,
the subject in Īt tends to be different from the original Is [12].

The core problem mentioned above is that the body-shape of subject generated in
Īt is often very different from the original real image Is. The primary cause of this
phenomenon is that during editing, the Key K and Value V of cross-attention in the
U-Net are derived from the target editing text prompt Pt, which brings new features
different from those of the original real image Is, so that the editing result has changed
dramatically in the body-shape. Therefore, our core idea is to first use some parameters
to preserve the body-shape of the source image Is in the feature space. Then, we utilize
these preserved body-shape with the target prompt Pt, and finally synthesize the desired
editing image It. Thus, our BK-Editer focuses on the setting of tuning on a single real
image.

4 Method

To realise the above core idea, we propose BK Editer, which can be divided into 3
stages, tuning stage, inversion stage and editing stage. It is obvious that our BK-Editer
focuses on the setting of tuning on a single real image.

4.1 Tuning Stage for Finetuning Network

Tuning stage is the first stage, aiming at learning body-shape information by inject-
ing real image into the network. For better learning the information from Is, we need
some parameters to save the body-shape of Is. We find that the body-shape can be
well learned in two ways. 1)The first way is to finetune the U-Net of Stable Diffusion
Model (the nosie estimation network), which actually means saving the information of
the body shape of Is in the finetuned parameters of U-Net. 2) The second way is that we
can design an additional network hθ named injecting network for the input of Is and
train this injecting network, which indeed means saving the information of the body
shape of Is in these trained parameters.

We then combine the above two ways. To begin with, we introduce how the pro-
posed injecting network hθ works. hθ is a lightweight network consisting of several
base blocks [37]. Our findings suggest that its design does not hold critical importance
within the scope of our task. Given the real image Is, latent representation z0 is ob-
tained by the encoder of VAE. Then we feed z0 into the injecting network to extract the
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Algorithm 1: The 3 Stages of BK-Editer
Require: the latent of the original real image z0 and the source prompt embeddings cs.

The initialization parameters ϵθ and hθ .

1) Tuning stage: Set guidance scale w = 7.5;
while not converge do

sampling timestep t and noise ϵ;
obtain zt by forward process with t and ϵ;
get the output of U-Net ϵθ(zt, t, cs, hθ(z0)) with the proposed BK-attn and hθ;
update the parameters by Lsimple.

end
Return trained parameters ϵθ and hθ

2) Inversion stage: Set guidance scale w = 1 of stable diffusion model, in this stage we
utilize DDIM inversion to obtain a sequence of latents {ẑt} including ẑT . We save the
BK-attn embeddings (K̄l,t, V̄l,t).

Return ẑT and BK-attn embeddings

3) Editing stage: Set guidance scale w = 7.5 and use ẑT as the start point of reverse
process. Given a editing prompt Pt, then get its embedding ct and an uncondition
embedding cu;

for t = T, T − 1, . . . , 1 do
ϵc = ϵθ(z̄t, t, ct, hθ(z0)), using corrsponding (K̄l,t, V̄l,t);
ϵu = ϵθ(z̄t, t, cu, hθ(z0)), using corresponding (K̄l,t, V̄l,t);
ϵt = ϵu + w(ϵc − ϵu);
z̄t−1 = Reverse(z̄t, ϵt);

end
It = Decode(z̄0);
Return Editing result It

body-shape embeddings which can mainly saving the body-shape information of the
subject in Is.

ψ = hθ(z0). (6)

Here we use ψ ∈ RC×H×W to denote the body-shape embeddings, where C, H and
W are the channels and resolution, respeactively.

After obtaining the above body-shape embeddings ψ, we feed them into a proposed
new type of attention layer named Body-Keeping Attention Layer (BK-attn). The BK-
attn layer’s foundation is built upon the self-attention layer of Stable Diffusion. For
instance, given the l-th self-attention layer during step t of reverse process, we have:

K̄l,t = Kl,t + γkl,tResize(ψ), V̄l,t = Vl,t + γvl,tResize(ψ), (7)

Attention(Ql,t, K̄l,t, V̄l,t) = Softmax(
Ql,tK̄

T
l,t√

d
)V̄l,t, (8)

where (Kl,t, Vl,t) and (K̄l,t, V̄l,t) denote the original and the new (Key, Value), re-
spectively. Besides, (γkl,t, γ

v
l,t) denote the learnable weights for the original Key and

Value embeddings. By the above BK-attn, the body-shape information can be easily
injected into the attention layer of the U-Net and perceived by the model. We use
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Fig. 3: Real image editing results of different editing methods on bear images.

ϵθ(zt, t, cs, hθ(z0)) to represent the U-Net with our BK-attn, where hθ(z0) is the body-
shape embeddings.

Now we define our proposed Body-Keeping finetuning as follows. For instance,
given the U-Net ϵθ and the designed Injecting network hθ, we can train them by the
way similar to the training of Stable Diffusion Model. In particular, we sample a ran-
dom timestep t as well as a standard Gaussian noise ϵ in each optimisation step, and
then obtain zt according to the forward process formula. Then, we get the output of
U-Net ϵθ(zt, t, cs, hθ(z0)) to predict the added noise ϵ̃t, where cs is the text embed-
ding of source prompt Ps. Since the real noise ϵ is known by us, we can thus use ϵ as
supervision to train our learnable parameters hθ and ϵθ to output a more precise noise
ϵθ(zt, t, cs, hθ(z0)). The loss function is

Lsimple = Et,ϵ min
hθ,ϵθ

∥ϵθ(zt, t, cs, hθ(z0))− ϵ∥2 . (9)

To focus the model’s parameters on remembering the subject’s body shape rather than
the background, we use the segmentation model to segment out the subject part of the
image, and simply set the background part to blank as in Fig. 2. With the learning
procedure above, the well-optimized hθ and ψ can actually preserve the body-shape of
the source real image Is well, which is important for the editing stage. The algorithm
of the tuning stages is provided in Algorithm 1.

4.2 Inversion Stage for Obtaining BK-attn Embeddings

Specifically, as illustrated in Fig. 2, for obtaining the BK-attn embeddings ((K̄l,t, V̄l,t))
in the diffusion process, we first perform DDIM inversion [8, 40] to generate a sequence
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Fig. 4: Real image editing results of different editing methods on corgi dog images.

of noised latents {ẑt} including ẑT . Note that we use the finetuned network with BK-
attn for this inversion. We save the BK-attn embeddings ((K̄l,t, V̄l,t)) for the edit stage.

4.3 Edit Stage with Body-Keeping

The overall architecture of the proposed pipeline to perform editing is shown in Fig. 2.
ẑT obtained from inversion stage is used as the start point of the edit stage. During
each denoising step t of generating the target editing image It, we also make full use of
the trained U-Net with BK-attn and the injecting network hθ. Specifically, we use the
saved BK-attn embeddings ((K̄l,t, V̄l,t)) in the corresponding place of the edit stage.
Note that the information of (K̄l,t, V̄l,t) is from hθ(z0) which preserves the body-shape
of the source image Is.

5 Experiments

Using publicly available checkpoints, we evaluate the effectiveness of our proposed
method on two pretrained models: the state-of-the-art text-to-image Stable Diffusion
Model [35] and the anime-style model Anything-V4. Our experimental focus lies in
real image editing with body-keeping, where we employ DDIM scheduler [40] with
50 denoising steps during the inversion, tuning, and editing stages. The classifier-free
guidance is carefully set to 7.5, while the remaining hyperparameters can be adjusted
based on specific model requirements.

5.1 Comparisons with Other Concurrent Works

On Pretrained Stable Diffusion Model. In our evaluation, we compare the proposed
BK-Editer with several state-of-the-art text-conditioned image editing methods, includ-
ing InstructPix2Pix [4], Custorm Diffusion [20], P2P [12], MasaCtrl [5], FastCom-
poser [46], ELITE [44], DDPM Inversion [15] and PnP [43]. Their codes and check-
points are utilized to generate the editing outcomes.
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Fig. 5: Real image editing results of different editing methods on bird shape images.

Fig. 1 demonstrate the editing performance, wherein our BK-Editer method exhibits
superior performance in real image editing. Editing of real images remains a difficult
task, and the main challenge lies in the difficulty of satisfying two goals simultane-
ously. First, existing methods either fail to generate editing results with the same body-
shape as the original image, or fail to satisfy the corresponding semantics in the editing
prompt.

The effectiveness of the proposed method, BK-Editer, is evident in its success-
ful resolution of both of two challenges. Unlike approaches such as Custorm Diffu-
sion [20] that remembers the subject by the parameters in the special token embeddings
and cross-attention layers, our method focuses on learning parameters associated with
the body-shape with the injecting of Is. Furthermore, unlike ELITE [44] and FastCom-
poser [46], our approach does not rely on training with large datasets, eliminating the
need for dataset collection and the consumption of GPU resources and training time.
The limitations of existing methods such as P2P [12] can be attributed to the utilization
of the attention map from the source image in generating the edited image, leading to
the replication of the original spatial structure. Although MasaCtrl [5] generates edit-
ing results with similar body, its reconstruction performance on real images remains
inadequate. When these methods are constrained to real image editing without the use
of additional control information like ControlNet, their effectiveness diminishes signif-
icantly.

On Preatrained Anything-V4 Model. We have conducted extensive tests to eval-
uate the effectiveness of our approach in the realm of animation image editing, specif-
ically utilizing Anything-V4 dataset. The editing results showcased in Fig. 6 include
comparisons with various other methods such as ELITE, InstructPix2Pix, P2P, MasaC-
trl, PnP, and FastComposer. It is worth noting that our method focuses on real image
input, rather than generating images based on given prompts. Moreover, the proposed
BK-Editer demonstrates the versatility of our method by keeping the body-shape of the
animated subjects in the source image while incorporating the desired editing prompt.
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Fig. 6: Real image editing results of different editing methods on anime human images.
It is obvious that our BK-Editer can achieve very good body-keeping performance on
humanoid objects with matching to the edit prompt.

5.2 User Study
Determining the quality of body-shape preservation, especially amidst changes in view-
point or pose, can pose challenges in qualitative assessments. As a means to address this,
a user study is needed to validate the consistency and quality of body-shape preserva-
tion.

Thus, we conduct a user study with 30 participants to evaluate the human perception
of our method on our edited results. Altogether, 20 real images are collected in various
situations as our test set, including animals, humans, anime humans, anime animals,
etc.

In the first part, we invite 30 participants to score the visual quality of only 10 edited
results from 1 (worst) to 9 (best). Table 2 reports the average rating scores of different
methods, among which our method receives the highest ratings.

In the second part, as shown in Fig. 7, we further conduct large-scale user study on
20 test images to evaluate the human perception of our method and 3 strongest SOTA
methods on real image editing. Following the setting in other editing methods [18], we
evaluate results via user answers on the six questions shown in Fig. 7 using a Likert
scale of 1 (bad) to 3 (good). All methods are tested on the above 20 real images. Fig. 7
reports the rating distributions of different methods, among which our method BK-
Editer receives more “good” and less “bad” ratings. Also, we performed a statistical
analysis on the ratings using a paired t-test (using the T-Test function in MS Excel)
between our approach and each of the other methods. With a significant level of 0.001,
all the t-test results are statistically significant.

5.3 Ablation Study

The effectiveness of the proposed BK-Editer method and the use of the injecting net-
work and BK-attn to input information from the original image can be effectively
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Fig. 7: Comparing with SOTA image editing methods on 30 people and 20 real images
for 6 questions user study.

Fig. 8: Ablation study of the number of finetunning iterations (top) and the range of
using BK-attn in different reverse timesteps (bottom).

demonstrated by comparing the results of real image editing. In order to increase the in-
terpretability of the method and to explore the reasons for the success of the method, we
performed ablation experiments by manipulating specific parameters (e.g., the number
of iterations for training the Injecting network and U-Net parameters) and the different
effects of using BK-attn at different time steps.

We gained insight into the behaviour of the method by analysing the effects on
reconstruction and editing. We also compared the effects of using different numbers of
training iterations, as shown in Figure 8 (top), where too many iterations of training can
lead to overfitting, and too few iterations of training can lead to body size information
that has not yet been learned. At Figure 8 (below), we found that using too few steps of
BK-attn (starting from 0.9T steps) leads to a worse body shape retention in the edited
results, which leads to a deviation from the original appearance of the edited results. On
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Image InstructPix2Pix ELITE FastComposer PnP MasaCtrl Dreambooth BK-Editer
1 5.56 6.28 7.23 6.55 6.37 6.67 7.68
2 6.12 7.12 7.12 6.91 5.91 7.57 8.44
3 5.86 6.69 7.01 5.71 4.90 7.24 8.00
4 5.13 6.56 5.68 5.61 6.54 7.52 7.81
5 5.80 6.96 6.23 5.78 6.15 7.10 7.84
6 4.78 6.44 6.73 5.53 5.80 6.89 8.01
7 5.65 5.95 6.24 5.40 6.08 6.11 7.76
8 4.42 5.33 6.06 4.28 4.79 5.49 6.58
9 5.78 6.75 6.02 5.52 5.58 7.00 7.36

10 6.44 7.32 6.10 6.34 5.12 5.04 8.12
average 5.55 6.54 6.44 5.76 5.72 6.66 7.76

Table 2: The scores of 10 editing images for user study.

the contrary, if too many steps of BK-attn are used (starting from 0.3T steps), the edited
image is very similar to the source image.

6 Limitations and Conclusion

Overall, we propose BK-Editer that enables body-shape keeping and editing, which
solves two major problems: 1) the edited results can be matched with the corresponding
edit prompts, and 2) the edited objects can maintain the body-shape of the original real
image. In addition, our method does not need to scan large datasets for very time-
consuming training, nor does it need to collect full supervised data and labels.

The body-shape keeping performance of our BK-Editer is good enough since we
can ensure the body-shape kept during the edit stage. Our method does not need some
additional information (e.g., joint maps, depth maps, sketches, segmentation masks,
etc.) supplied by the user to strongly perform body-shape control [24, 53], as providing
this additional information is very cumbersome for the user. However, our method also
has the problem that it still requires several minutes of finetuning the network at the
tuning stage, and our next work is to explore faster tuning methods. Besides, the results
from our ablation studies can be considered as failure cases. Some instances of failure
are also observed in human experiments.
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