
A U-Shaped Spatio-Temporal Transformer as
Solver for Motion Capture

Huabin Yang1, Zhongjian Zhang1, Yan Wang1, Deyu Guan2, Kangshuai Guo1,
Yu Chang1, and Yanru Zhang1,3(�)

1 University of Electronic Science and Technology of China, Chengdu, China
{huabinyang12,zhongjianzhang6972,guokangshuai}@gmail.com

yanbo1990@uestc.edu.cn
yuchang@std.uestc.edu.cn

2 team randomersharp
zhguan_@outlook.com

3 Shenzhen Institute for Advanced Study, UESTC
yanruzhang@uestc.edu.cn

Abstract. Motion capture (MoCap) suffers from inevitable noises. The
raw markers can be mislabeled, occluded, or contain positional noise,
which must be refined before being used for production. However, the
clean-up of MoCap data is a costly and repetitive work requiring man-
ual intervention of trained experts. To address this problem, this pa-
per proposes a novel end-to-end Transformer-based framework called
U-Solver for obtaining joint transformations directly from raw mark-
ers (called solving). Through the hierarchical framework composed of
decoupled spatio-temporal (DeST) Transformer and the introduction of
motion-aware network (MAN) in the temporal self-attention mechanism,
U-Solver effectively learns the motion dynamics from both spatial and
temporal dimensions. The raw markers can be automatically cleaned
and solved through the U-Solver. The experimental results demonstrate
that U-Solver outperforms previous state-of-the-art methods in terms of
robustness, efficiency, and precision.

Keywords: Motion Capture · Neural Networks · Spatio-Temporal Prior
· Motion Capture Solving.

1 Introduction

Motion capture (MoCap) refers to the process of recording and translating the
movements into a digital model of an object or human. MoCap systems fall into
three broad categories according to the sensors employed, namely mechanical
MoCap, inertia MoCap, and optical MoCap. Mechanical MoCap systems rely
on the rigid connecting rods and multiple joints fitted with angle sensors to
track movements of each marker. Inertial MoCap systems mainly transmit the
motion data wirelessly through the inertial sensor, and the movements of each
marker are calculated according to the principle of inverse kinematics. Optical
MoCap systems track the absolute position of each marker in 3D space by using
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calibrated multi-view infrared sensors. In contrast to mechanical and inertial
MoCap systems, optical MoCap systems can attain high level of accuracy, flex-
ibility, and convenience at the same time, which is able to widely satisfy the
requirement of the game, film, and robot industries.

Despite the wide range of applications, optical MoCap systems require a lot
of time to clean the incorrect MoCap data mainly including positional noise
and tracking errors, which may take several hours per capture even with the
aiding of commercial software [38]. As the development of deep learning, a few
of denoising solutions of optical MoCap data are proposed based on deep neu-
ral network and become the state-of-the-art of this problem [19, 9]. Compared
with traditional methods [2, 24, 6, 13], the most important contribution of these
solutions is to facilitate the automatic and high-precision cleaning of incorrect
markers. Nevertheless, the research of using deep neural network for optical Mo-
Cap data solving is just in its infancy. Several drawbacks of current approaches
are still worth further enhancing. Recent works either lack sufficient considera-
tion of using temporal information [19] if without the post-processing (temporal
filtering), or subjects to errors accumulation because of its non-end-to-end ar-
chitecture design [9]. Moreover, [19, 9, 20, 37, 29] are not robust enough, which
require pre-processing including pose normalization and skeleton normalization.
However, the temporal filter may cause the overly smoothed results, the pose nor-
malization may fail when the reference markers (usually a set of chosen markers
around torso) are noisy, and the skeleton normalization may result in deviation
from reality.

In this work, we present U-Solver, a novel end-to-end Transformer-based
framework for optical MoCap data solving. In our framework, the U-Net archi-
tecture [34] is adopted due to its unique hierarchical encoder-decoder structure
and the skip connections. We propose the Decoupled Spatio-Temporal (DeST)
Transformer to learn the inherent spatio-temporal correlation of human mo-
tion, and the Motion-Aware Network (MAN) to implicitly model motion dy-
namics from the perspective of temporal smoothness. The experimental results
show that the precision of skeleton position, skeleton rotation and reconstructed
marker position generated by the proposed framework are improved compared
with the state-of-the-art. The contributions of this paper are briefly listed as:

– A novel end-to-end U-shaped Transformer-based framework is achieved for
optical MoCap data solving task with superior performance and more effi-
cient spatio-temporal information utilization in contrast to the state-of-the-
art methods.

– A motion-aware network is proposed and combined with acceleration objec-
tive function to further enhance the temporal motion dynamics modeling.
The good smoothness of the results allows redundant post-processing oper-
ations to be removed.

– A robust solution that achieves highest precision even without intervention
of the pose normalization and the skeleton normalization procedures, hence
removing the hindrance for practical use.
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2 Related Work

2.1 MoCap Data Clean-up and Solving

For removing the noise from the MoCap collection and fitting the data captured
to the skeletons, approaches based on different prior knowledge were proposed
by researchers.

Previously, researches focused on dealing with the erroneous MoCap data.
In some approaches, the skeleton structure is usually parameterized [22], or pre-
determined before production, assuming that the bone lengths are constant and
rigid, and the joint rotation angles are within a reasonable range throughout
production [18]. PCA-based methods and their variations [7, 26, 36] have been
exploit to learn the correlations between markers from the embedding space.
The low-rank property is also used to recover MoCap data [15, 16, 23, 27]. These
two kinds of methods may become ineffective or inapplicable when too many
markers are corrupted. Xiao et al. [41] proposed an algorithm for predicting the
missing markers from the perspective of sparse representation of data. Aristidou
et al. [2] proposed a method based on the self-similarity of human motions to au-
tomatically detect and fix erroneous MoCap data, which avoids the introduction
of external databases by finding K-nearest neighbors of a given motion-word.
Some researchers proposed to model MoCap data problem as a dynamical sys-
tem [8, 24]. The Kalman filter as well as its variations [3, 6, 13] are applied to
estimate the location of missing marker and reconstruct motion data. However,
these methods built upon the assumption that linear models can be used to
approximate the non-linear model.

With the recent advancement of deep learning technology, several approaches
using neural networks for processing MoCap data have been proposed [19, 20,
9]. By introducing the concept of denoising from machine learning, Holden [19]
proposed to produce joint transformations matrix directly from raw markers by
training a six-layer ResNet in a simple and end-to-end way. In contrast, Chen
et al. [9] proposed MoCap-solver to tackle optical MoCap problem, which re-
quires three high-quality pre-trained MoCap-Encoders (relative to three intrin-
sic features in raw markers respectively: marker layouts, template skeleton and
motion). However, the former’s work is per-frame based and does not exploit
temporal information, the latter’s work utilizes both the temporal and spatial
information, but its non-end-to-end structure is time-consuming and may cause
the errors accumulation. Besides, optimization based methods such as MoSh++
[30] and DeepMurf [31], which require a pre-trained SMPL model [28] to regress,
are also non-end-to-end, they tend to be slow in inference and sensitive to noise.

2.2 Smoothness

Smoothness as kinematic information exists even in noisy motion data. On the
one hand, some works focused on the temporal prior knowledge of human mo-
tion. By using a temporal filtering operation in the post-processing, the temporal
prior is introduced to ensure that the predicted results is smooth and natural
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[19, 6, 13]. On the other hand, some researchers have embedded smoothness con-
straints (smoothness regularization term) into their works as temporal attributes
of motion to help generate robust refinements from noisy MoCap data. Such
smoothness term is often added to the original objective function [32, 16, 25].

2.3 Rotation Representations

In the realm of computer graphics, 3D rotation is often represented in multi-
ple ways, such as Euler angles, quaternions, or rotation matrix. Euler angles is
the most intuitive representation of rotations, but it will suffer from gimbal lock
when two axes in a three-gimbal system align. Compared with other rotation rep-
resentations, quaternions have a more compact representation and are suitable
for interpolation. Recently, Zhou et al. [44] pointed out that the commonly used
rotation representations in Rn with n ≤ 4 have discontinuities and are an obsta-
cle for neural networks to perform regression tasks. Therefore, unlike previous
works, we use the 6D continuous rotation representations in our framework.

2.4 Attention Model

Recurrent Models are frequently used architecture for motion modeling tasks [1,
11, 25]. Cui et al. [11] proposed to incorporate a deep bi-directional attention
to LSTM to encode and decode motion correlation from forward and backward
directions. While the introduction of the attention mechanism does enhance
performance, the inherent limitations of the RNN architecture hinder its ability
to effectively capture structural correlations.

Transformer [37] has achieved significant performance in natural language
processing [37, 12] and computer vision [14, 39]. Taking place one step ahead of
the MoCap solving, Ghorbani et al. [17] exploited self-attention mechanism to
capture local and global information for labeling unordered point cloud data on
a per-frame basis, but which is conducted only on the spatial dimension of data
and still lacks the use of temporal information. Luan et al. [29] used K-nearest
neighbor information of markers, self-attention and cross-attention to recover
human motion from MoCap data. Although it is an end-to-end solution, the
number of parameters of the model is too large, which makes the network depth
limited.

In contrast, given raw markers (markers may be mislabeled, occluded, or con-
tain positional noise), our work focuses on processing these markers by exploiting
both the spatial and temporal information to output joint transformations ef-
fectively and efficiently.

2.5 U-Net Architecture

The residual structure and encoder-decoder structure are frequently used struc-
tures of denoising neural networks [4, 40, 42]. The advantage of the residual struc-
ture is its skip connections, which help to alleviate the possible gradient problem.
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Meanwhile, the hierarchical encoder-decoder structure can learn features at mul-
tiple scales. However, both structures lack active attention to the dimension of
features and are unable to explicitly learn features of a specific dimension, which
usually requires the intervention of means such as the dimension adjustment.

U-Net, as a special network with both skip connection structure and encoder-
decoder structure, was first proposed by Ronneberger et al. [34] for biomedical
image segmentation and has been quickly extended to many applications. Re-
cently, U-Net architecture combined with attention mechanism has been widely
used in computer vision such as image denoising [40, 42] and has established new
state-of-the-arts due to its inherent scalable architecture as well as multi-scale
feature extraction capability.

Motivated by these observations, we designed our framework called U-Solver,
whose overall architecture is similar to U-Net and composed of DeST Trans-
former with a MAN added to the temporal self-attention mechanism. We lever-
age decoupled spatial and temporal self-attention mechanism to capture spatial
and temporal nature of motion, respectively, then a weighted sum of attention
is calculated to better model the motion dynamics.

3 Methodology

In this section, we first give the formulation of optical MoCap solving problem,
then we describe the overall structure of U-Solver, followed by the details of each
component and loss function.

Fig. 1. Marker layout of T-pose. Layouts depend on the placements of markers.

3.1 Problem Formulation

The recorded markers in 3D space tends to be a temporal sequence of point
cloud data, which implicitly contains information including motion, subject’s
body shape and marker layouts (Defined as local offset from each marker to each
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joint in a T-pose. Different marker placement corresponds to different marker
layout. See Fig. 1 for an example).

Our goal is to transform the collected MoCap data in its raw form directly
into the motion of the expected skeleton structure. We regard the MoCap solving
problem as a regression task and formulate it as given a sequence of corrupted
markers as input, producing corresponding smooth and accurate joint transfor-
mation matrix as output. Specifically, given a window size of T frames, and
a character of J joints with M markers placed on its surface, a temporal se-
quence of raw markers can be represented as X ∈ RT×M×3. Besides, the joint
transformation matrix is generally expressed as a 3× 4 matrix, which consists
of a 3 × 3 rotation matrix and a 3 × 1 translation vector. However, taking into
consideration the continuity of rotation representation contributes to regression
task, as mentioned in [44], we transform the 3 × 3 rotation matrix to its 6D
continuous rotation representation, so the output in our paper is represented as
Y ∈ RT×J×(6+3) instead of conventional representation Y ∈ RT×J×3×4.

Fig. 2. (a) Overview of U-Solver. (b) Decoupled spatio-temporal(DeST) Transformer.
The temporal self-attention network is followed by a motion-aware network. The
weighted sum is passed to the next network. (c) Motion-aware network(MAN). The
input is first permuted along temporal dimension, then processed through a MLP, and
finally re-permuted back to its original dimensions.

3.2 Overall Structure

As is illustrated in Fig. 2, the backbone structure of the U-Solver is based on
U-Net, which consists of L stages of encoder and decoder. Each encoder block or
its corresponding decoder block consists of a DeST Transformer, with the only
difference being the size of the data to be processed (i.e., [T,M, 3] for encoder
compared with [T, J, 9] for decoder). In particular, because of the dimensions of
the data are different sizes, we apply a projection to the output of encoder block
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before its skip connection with the parallel stage of decoder, i.e., the output of
the l-th stage of encoder Xl ∈ RT×M×3 is projected through a linear layer to fit
the input size X̂l ∈ RT×J×9 for the l-th stage of decoder, where l ∈ {1 : L}. At
bottom, the output of the final stage of encoder XL are passed through a simple
multi-layer perceptron network (MLP) to produce initial input for decoder:

X̂L = MLP(XL), (1)

where the hidden dimension in the MLP is two times wider than the output
dimension. Once the joint positions are obtained, the marker positions can also
be easily reconstructed by using a linear blend skinning function [19].

Decoupled Spatio-Temporal (DeST) Transformer Before proposing our
methods, we first clarify the notation to be used next. As mentioned above, the
encoder and decoder process data with different last two dimensions. In order to
simplify the description, we use new notation to uniformly refer to them. From
now on, the notation N refers to the number of tokens (i.e., N = M for encoder
and N = J for decoder, token refers to marker for encoder and joint for decoder),
and the notation D refers to the dimension of token (i.e., D = 3 for encoder and
D = 9 for decoder). Therefore, the dimensions of the data to be processed in
U-Solver is represented as [T,N,D].

Fig. 3. Computational cost of the decoupled spatial and temporal self-attention mech-
anism.

We build DeST Transformer based on the nature of motion dynamics that
the spatial and temporal information is contextually relevant. Since the compu-
tational cost of Transformer being quadratic with respect to the number of input
tokens, as shown in Fig. 3, it is difficult to achieve a good balance between low
memory requirements and high precision. Therefore, we introduce a decoupled
spatio-temporal self-attention mechanism to reduce the computational cost from
O(T × N × D) to O(T × D + N × D). Next, we present spatial self-attention
and temporal self-attention, respectively.

Spatial Self-Attention The spatial self-attention only calculates self-attention
of tokens within the same frame. At each timestamp t ∈ {1 : T}, given the full
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set of N tokens as input x−
t = {x1

t , ..., x
N
t } with xn

t ∈ RD, where the superscript
indicates index of token and the subscript indicates the timestamp. Like vanilla
Transformer [37], our spatial self-attention block first generates projection query
(Q), key (K) and value (V) using a single linear layer, then the self-attention is
computed as:

Attnspatial(Q,K, V ) = softmax(
QKT

√
dmodel

)V = WV, (2)

where Q,K, V ∈ RT×N×dmodel ,W = {W1, ...,WT } ∈ RT×N×N , dmodel denotes
the projection dimensions and KT ∈ RT×dmodel×N denotes the transposed K.
For the t-th frame, the spatial self-attention matrix denoted by Wt ∈ RN×N

shows how much attention the target token pays to the other tokens within this
frame.

Temporal Self-Attention The calculation of temporal self-attention is similar
to above-mentioned spatial self-attention. For simplicity, we assume that a token
is only related to the same token in contextual frames. i.e., given a temporal
sequence of T frames, for each token n ∈ {1 : N}, we take xn

− = {xn
1 , ..., x

n
T } as

input, generating corresponding projection Q
(n)

,K
(n)

, V
(n)

, thus the temporal
self-attention is formulated as follows:

Attntemporal(Q,K, V ) = concat(softmax(
Q

(1)
K

(1)T

√
dmodel

)V
(1)

,

...,

softmax(
Q

(N)
K

(N)T

√
dmodel

)V
(N)

)

= concat(W
(1)

V
(1)

, ...,W
(N)

V
(N)

)

= WV ,

(3)

where Q
(n)

,K
(n)

, V
(n) ∈ RT×dmodel and K

(n)T ∈ Rdmodel×T denotes the trans-
posed K

(n)
. The temporal self-attention matrix for token n is denoted as W

(n) ∈
RT×T , which represents how much attention the target token pays to its previous
and future state.

Motion-Aware Network (MAN) Despite supporting long-range receptive
fields, Transformer focuses primarily on extracting semantic correlations between
any two tokens and tends to ignore the continuity of motion in the presence of
noise. The Fig. 2 (c) presents the motion-aware network, which draws inspira-
tion from the SmoothNet [43] and consists of a two-layer MLP with the hidden
dimension two times wider than input dimension and a residual connection from
the input. In challenging frames with long-term jitters, MAN is employed to
model the continuity of motion from untrustworthy temporal features, as well
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Fig. 4. Motion-aware network models the continuity of motion for each token. The
weights and bias are shared among different tokens. For each token (column), T frames
temporal self-attention (The weight value is represented by color intensity) are fed into
MAN to learn temporal relations for smoothing without considering spatial correlation
among tokens.

as to deal with noisy temporal information (See Fig. 4). In addition, in order
to facilitate MAN to explicitly learn the temporal relations between consecutive
frames, the dimensions of the input data are permuted along the temporal axis
as follows:

[T,N,D] → [N,D, T ]. (4)

After processing, the data is re-permuted back to its original dimensions:

[N,D, T ] → [T,N,D]. (5)

Moreover, in our implementation, the multi-head attention mechanism is applied
to both spatial self-attention and temporal self-attention to learn attention from
different subspaces.

Weighted Sum as Decoupled Spatio-Temporal Attention The spatial
self-attention and temporal self-attention are calculated in parallel, then aggre-
gated together to get the weighted sum of self-attention as follows:

AttnDeST = (1− α)×Attnspatial + α×MAN(Attntemporal), (6)

where α ∈ [0, 1] is a learnable trade-off parameter and MAN denotes the
motion-aware network. The overall architecture of DeST Transformer is shown
in Fig. 2 and a comparison between DeST self-attention and vanilla 2-D self-
attention is shown in Fig. 5. Thanks to the designed decoupled spatio-temporal
self-attention mechanism, DeST Transformer can better leverage its advantages
in capturing long-range dependencies. This allows DeST Transformer to sepa-
rately learn the temporal and structural characteristics of motion data, while
reducing mutual interference between them.
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Fig. 5. DeST self-attention vs. 2-D self-attention. For DeST self-attention, the red circle
represents spatial self-attention and the blue circle represents temporal self-attention.
Compared to vanilla Transformer, the decoupled spatio-temporal design allows the
model to explicitly learn the spatial and temporal correlations of every token while
maintaining a low computational cost.

Loss Function The motion is often featured by its first-order and second-
order information (i.e., velocity and acceleration), which are based on temporal
dimension. At each timestamp t the velocity Y ′ and acceleration Y ′′ of motion
can be defined as the difference between consecutive frames:

Y ′
t = Yt − Yt−1, (7)

Y ′′
t = Y ′

t − Y ′
t−1. (8)

In order to obtain results with precision and smoothness, we define objective
functions as follows:

Lpose = ∥Ŷ − Y ∥1, (9)

Lacc = ∥Ŷ ′′ − Y ′′∥1. (10)

So joint loss function is then formulated as:

L = λposeLpose + λaccLacc, (11)

where Ŷ denotes the estimated results, λpose = 0.95 and λacc = 0.05 are the
trade-off hyperparameters.

4 Experiments and Evaluation

In this section, quantitative and qualitative research for U-Solver are performed
on publicly available datasets. We also compare our framework with previous
state-of-the-art methods, and demonstrate that our framework consistently out-
performs them. Due to memory limitations, we implement the U-Solver with
two-stage encoder and decoder. All the experiments in this paper are conducted
on a sever with an Inter Xeon Gold 6142M CPU and an NVIDIA GeForce RTX
3090 GPU.
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4.1 Experimental Settings

Datasets We adopt the subsets CMU [10] and MPI-HDM05 [33] in AMASS
dataset [30] for our experiments. The AMASS dataset unifies the existing dif-
ferent optical marker-based MoCap datasets, with more than 300 subjects and
11000 motions, making it the largest human motion database available. Specifi-
cally, we first split the CMU dataset into training set and test set, with a ratio
of 2.5:1, then train our model on the training set of CMU and evaluate it on
the test set of CMU and MPI-HDM05. Adopting the same method as in [9], the
marker layouts as well as joint transformation are generated and sampled from
different SMPL models [28], which ensures that our dataset has an adequate
variety of human body shapes and marker distributions. Besides, for simulating
raw markers, a simple but effective corruption function proposed by Holden [19]
is used. As for the parameters of the corruption function, the probability of oc-
clusion σo is set to 0.1, the probability of shifting σs is set to 0.1, and the scale
of the random shifting β is set to 0.3m respectively. The detailed information of
the datasets used in our experiments is shown in Table 1.

Datasets Frames Motions Markers
(M)

Joints
(J)

Marker
Layouts

CMUtrain 5415k 1082
56 24 30CMUtest 2150k 1000

MPI-HDM05 1147k 1000

Table 1. Details of the datasets.

Metrics We use mean per joint position error (MPJPE, mm), mean per joint ro-
tation error (MPJRE, ◦), and mean per marker position error (MPMPE, mm) as
our evaluation metrics. The MPJPE and MPMPE are both the mean Euclidean
distance between predicted positions and ground truth positions. Considering
a sequence with T frames, we use the geodesic distance to measure the joint
rotational difference, which is computed as:

MPJRE =
1

T

T∑
t=1

∣∣∣∣∣arccos Tr((Rt)
−1R̂t)− 1

2

∣∣∣∣∣ , (12)

where R denotes the ground truth rotation matrix, and R̂ denotes the estimated
results.

4.2 Quantitative and Qualitative Research

In this sub-section, we compare U-Solver with other state-of-the-art frameworks
including deep learning based [9, 20, 19, 37, 29] and optimization based [30] meth-
ods in various scenarios.
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In our experiments, we set batch size to 64, the optimizer is Adam [21],
the learning rate is 0.001 with a decay factor of 0.9 for every 5 epochs, and
the number of training epochs is 200. As for the other frameworks, for a fair
comparison, we follow their origin parameter settings except that the batch size
is set to 64. Note that all models presented next are trained only on the training
set of CMU dataset and tested on the other two datasets.

Frameworks Normalization Evaluation Results

Pose Skeleton MPJPE MPJRE MPMPE

U-Solver ✗ ✗ 5.3 1.9 5.1

MoCap-solver [9]
✗ ✗ 18.6 7.2 20.5
✓ ✗ 16.1 6.3 18.3
✓ ✓ 13.8 5.7 15.8

ResNet [19]
✗ ✗ 38.7 19.4 35.5
✓ ✗ 29.1 11.5 25.4
✓ ✓ 24.7 9.4 19.6

MoSh++ [30]
✗ ✗ 66.7 28.0 61.2
- - - - -
- - - - -

Joint-Space
CNN [20]

✗ ✗ 41.0 21.1 45.4
✓ ✗ 34.7 14.4 34.8
✓ ✓ 29.8 12.1 30.2

Transformer
Encoder [37]

✗ ✗ 207.0 39.7 221.2
✓ ✗ 199.0 35.1 212.6
✓ ✓ 188.1 31.6 200.6

MEMformer [29]
✗ ✗ 31.1 21.8 28.8
✓ ✗ 26.5 15.0 25.0
✓ ✓ 24.4 12.0 21.3

Table 2. Performance of different frameworks on the test set of CMU dataset.

Precision To alleviate the difficulty of convergence, pose normalization (rigid
body fitting) [5] is introduced to convert markers in global coordinates into local
representations before processing [19, 9, 11]. The pose normalization procedure in
MoCap solving task refers to robustly find a reference frame to represent contex-
tual data in local space. Generally, a set of markers around torso are selected as
reference markers, for reasons that the torso part of the human body is the least
prone to deformation and these markers are the least prone to be blocked when
capturing, and used to calculate the global rigid transformation matrix relative
to the T-pose of the local reference frame. However, this method relies on trust-
worthy reference markers and may fail when suffers from noise. Although Chen
et al. [9] has come up with an neural solution named reliability function, which
can retrieve frames in a sequence that contain least noise in reference markers,
it still fails to address the extreme cases where all reference markers in all can-
didate frames are noisy. Therefore, the pose normalization was removed from
our framework pipeline. In addition, the skeleton normalization, which scales all
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MoCap data to a uniform height by calculating an average skeleton length, was
also removed from our framework pipeline as it is not applicable in production
environments.

We evaluate all frameworks on the test set of CMU dataset and report the
mean prediction error of these frameworks in Table 2. It is evident that the
data normalization plays an important role in improving the precision of the
results. It can be noted that our proposed U-Solver substantially outperforms
other frameworks even without the intervention of above-mentioned normaliza-
tion procedures and achieves the highest precision on all three metrics (For a
visual comparison of different solving results please see Fig. 6).

To further evaluate the generalization ability of our proposed framework,
we then evaluate these frameworks on the MPI-HDM05 dataset and present
the prediction performance in Table 3. For fairness, the frameworks used in the
following experiments do not use above two data normalization methods. It is
observed that our framework still achieves the best results over all evaluation
metrics.

Fig. 6. Visualization of the solving results. From left to right: the ground truth (or-
ange), ResNet (green), MoCap-solver (blue), ours(red). (a) Visualization through a
SMPL model. (b) Visualization through a render engine. The ground truth is over-
lapped with the results of other three frameworks for a better comparison.
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Frameworks MPJPE MPJRE MPMPE

U-Solver 6.6 2.7 6.1
MoCap-solver [9] 24.7 15.9 29.6

ResNet [19] 51.3 34.5 49.1
MoSh++ [30] 54.7 19.3 48.2

Joint-Space CNN [20] 62.0 27.0 67.6
Transformer Encoder [37] 324.7 52.5 346.9

MEMformer [29] 48.4 36.7 44.5

Table 3. Performance of different frameworks on the MPI-HDM05 dataset.

Frameworks Training Inference Parameters

U-Solver 37 536 5793k
MoCap-solver [9] 67 3560 -

ResNet [19] 22 10863 22282k
MoSh++ [30] - 100 -

Joint-Space CNN [20] 30 2543 5654k
Transformer Encoder [37] 38 2746 9008k

MEMformer [29] 45 108 185907k

Table 4. Average training time, inference speed and trainable parameters of framework.

Time The Table 4 presents the average training time (hours) and inference
speed (fps) of the evaluated frameworks. The ResNet takes the shortest training
time because it has the simplest structure, while the MoCap-solver takes the
longest training time due to its complex non-end-to-end structure. MoSh++ [30]
as a pre-trained model dose not require training but has the slowest inference
speed. The number of parameters of MEMformer [29] is the largest compared to
other frameworks.

Visualization of Self-Attention We extract the self-attention weights from
the first stage of U-Solver and visualize them in Fig. 7. We note that the spatial
self-attention mechanism pays more attention to the noisy markers (See left part
of (a)), especially for those who are obviously heterogeneous (i.e., marker 30, 2
and 9). Besides, joint 0, 2, 3 and 13 have higher weights in frame 16 (See left
part of (b)). These, to some extent, prove that the spatial self-attention mecha-
nism has learned structural characteristics of human body. As for the temporal
self-attention mechanism, some correlations between frames are captured. We
note that the temporal self-attention of markers (See right part of (a)) tends
to focus on those abnormal frames (e.g., frame 16 and frame 56). Meanwhile,
the heat map of temporal self-attention of joints shows some frames are highly
correlated, indicating that the long-term global dependencies are captured by
DeST Transformer (See right part of (b)).

Robustness to Noise In order to evaluate the robustness of our proposed
framework in different noise environments, we first trained a framework on the
training set of CMU dataset with a fixed noise intensity, and then conducted
several experiments on the test set of CMU dataset with different noise intensity.
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Fig. 7. Visualization of self-attention. (a) The scatter plots (top) and the heat maps
of self-attention weight matrix (bottom) for markers. The spatial self-attention (left)
and temporal self-attention (right) related to markers are extracted from the encoder
of U-Solver. (b) The joint self-attentions from the corresponding decoder of U-Solver.
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Specifically, we trained our framework on the training set with parameters of the
corruption function fixed as σo = 0.1, σs = 0.1 and β = 0.3, then, by varying
the parameters of the corruption function, we tested our framework on the test
set of different noise intensity. The experimental results in Fig. 8 show that the
prediction error of our framework increases with the increase of noise intensity,
yet it remains within an acceptable range. Among all the noises, the occlusion
noise plays an important role. Although the distribution of noise has changed,
our framework still performs well compared to other frameworks.
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Fig. 8. Comparison of performance of frameworks on the test sets of CMU dataset.
All frameworks are trained with fixed noise intensity (σo = 0.1, σs = 0.1 and β = 0.3)
and test on test sets with different noise intensity.

Smoothness Although the Savitzky-Golay filtering [35] or other low-pass filter-
ing is used as post-processing to ensure the temporal continuity of the predicted
results, this kind of smoothness was achieved without considering that the high-
frequency details about the motion are damaged, resulting in over-smoothed
motion and significant errors under long-term jitters. To demonstrate the effec-
tiveness of our framework in smoothing results, a visual comparison is shown
in Fig. 9. It can be observed from the visualization results, our U-Solver can
produce smoother results without the post-processing. Apart from the temporal
continuity, the prediction results of our framework are also the closest to the
ground truth. Furthermore, we show the prediction results of the two frame-
works (ResNet and MoCap-solver) before and after the post-processing using
the Savitzky-Golay filter. It can be seen that large instantaneous jitters and
long-term jitters lead to biased errors.

4.3 Ablation Study

Several experiments were conducted to evaluate the impact on performance of
the various components in our framework. The results are presented in Table 5,
where → denotes the module replacement, w/o denotes that this component is
removed from our framework, while w/ denotes the opposite.

In Table 5, the 1-D TCN represents that a 1-D convolution with a kernel
size of 7 is performed along the temporal dimension of data in each layer, and
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Fig. 9. Position of the joint at right wrist on the z-axis. Top-Left: The raw results of
ResNet. The jitters on the trajectory may result from the neural network regarding the
noise in markers as the introduction of a large acceleration on movements. Top-Right:
The smoothed results of ResNet. The Savitzky-Golay filter is used to filter the raw
results of ResNet. Middle-Left: The raw results of MoCap-solver. Middle-Right: The
smoothed results of MoCap-solver. Bottom-Left: Comparison of results.

Methods MPJPE MPJRE MPMPE

U-Solver (base framework) 5.3 1.9 5.1
MAN → 1-D TCN 7.1 4.1 6.9
DeST → 2-D self-attn 24.2 10.4 20.9
U-Net [34] 35.0 15.3 39.1
w/o 6d representation 7.3 6.5 7.4
w/o temporal self-attention 12.4 4.7 12.4
w/o spatial self-attention 16.9 4.3 17.2
w/o encoder 38.4 11.9 37.7
w/o decoder 12.0 6.5 13.5
w/o MAN 7.9 2.8 7.7
w/o Lacc 6.1 2.1 6.4
w/ filtering (S-G filter) 5.5 - 5.3

Table 5. Performance of various methods applied to the U-Solver.
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the 2-D self-attn represents a non-decoupled 2-D self-attention module. It is
observed that the decoupled spatio-temporal Transformer performs better than
non-decoupled counterpart. It is also observed that all components in our frame-
work are indispensable. Both the DeST Transformer and the MAN contribute to
the improvement of performance, and the combination of them will have better
results. Moreover, the 6D continuous rotation representation also plays an im-
portant role in reducing the rotation error and also helps to reduce the position
errors. In contrast, the use of Savitzky-Golay filter for data post-processing de-
grades the performance. The position errors were found to increase, indicating
that the prediction results are overly smoothed.

5 Limitations and Future Work

Although the proposed framework shows better performance according to the
experiment results, several limitations need to be discussed and further research
in the future. Firstly, our framework is data-driven and may produce imprecise
results when it comes to completely “unfamiliar” poses, which is an inherent
flaw in the data-driven approach. Secondly, our framework is not capable of
processing data that is inconsistent with the skeleton topology in the training
set. The topological changes in body skeleton is not permitted, which requires
a new trained framework. Therefore, a more general solution suitable for all
skeletal topologies is worth further investigation. Besides, in the future we will
extend to evaluate how our framework performs on datasets with more detailed
human skeletons (e.g., finger joints). Finally, we will explore how to leverage
temporal information for further facilitating automatic marker labeling.

6 Conclusion

In this paper, we have presented U-Solver, which attempts to deal with the opti-
cal MoCap data solving problem in a robust and accurate way. By combining the
decoupled spatio-temporal Transformer and the motion-aware network in a hier-
archical and end-to-end architecture, our U-Solver achieves better performance
compared with existing state-of-the-art methods even without the intervention
of pose normalization and skeleton normalization. Particularly, our framework
pipeline can remove post-processing while preserving temporal continuity of the
results, which not only reduces the processing time of the pipeline, but also elim-
inates biased errors. Experimental results show that the U-Solver outperforms
other methods and is more suitable for production usage.
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