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Abstract. Despite recent advances in ray tracing hardwares, ray budgets are still
limited for many rendering applications, especially when global illumination is
enabled. This typically results in undersampling, which manifests as low reso-
lution and low frame-rate when displaying rendering contents. Previous works
address this issue by either supersampling a low-resolution input or extrapolat-
ing new frames to increase the frame-rate. We introduce a unified and learning-
based framework (dubbed FASSET) to conduct frame supersampling and extrap-
olation jointly, thus significantly reduce the number of pixels that are actually
shaded with heavy burden. To handles two tasks simultaneously, we propose im-
plicit neural representations for rendering contents, from which arbitrary-sized
frames can be generated using latent features extracted from input low-resolution
frames and some auxiliary buffers (e.g., G-buffers). By feeding them with prop-
erly warped frames, frame extrapolation with high output resolutions can be
achieved as well. Since the implicit neural representations are naturally contin-
uous and their weights are shared across all frames for a given scene, temporal
coherence is largely preserved. The proposed framework allows us to only gen-
erate 1/8 pixels every two frames, thus improving the frame-rate to a maximum
of 4×.

Keywords: Supersampling · Extrapolation · Neural representations · Real-time
rendering.

1 Introduction

Recent decades have witnessed dramatic increase of pixel resolutions, and refresh rates
in modern displays and this trend seems unlikely to stop in the near future, driven by
the enormous demand from virtual reality systems, AAA games, etc. On the other
hand, many real-time rendering engines still only afford the generation of relatively
low-resolution and low-frame-rate contents due to a limited computing power budget.
Moreover, with the emergence of hardware-accelerated APIs, the gaming industry has
huge appetite for real-time ray tracing to ensure both high fidelity and high performance
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Fig. 1. Visual comparisons of FASSET with other state-of-the-art methods. The left panel shows
the comparisons of frame supersampling and the right panel shows the comparisons of frame
extrapolation. Closeups highlight the superiority of our method as compared with its competitors,
including an extension of ExtraNet [17] (ExtraNet+), ExtraNet+NSRR [61], Zooming-Slow-Mo
[59] and TMNet [62].

in rendering contents generation [50, 5, 19]. The heavy pixel workload brought by ray
tracing presents a new and great challenge for existing real-time rendering pipelines.

An important and attractive strategy to reduce shading costs is to exploit inter-frame
coherence, since most shading results are spatially or temporally coherent [51, 65]. This
leaves space for sparse sampling and reuse of neighboring pixel values by gathering
samples across space and time, without increasing the total number of samples. Many
previous approaches apply such spatially and/or temporally coherent information for
anti-aliasing or spatial upsampling, including TAA (Temporal Anti-Aliasing) [66, 60,
65], TAAU (Temporal Anti-Aliasing Upsample) [16], TRM (Temporal Resolution Mul-
tiplexing) [12], DLSS (Deep Learning SuperSampling) [28] and NSRR (Neural Super-
sampling for Real-time Rendering) [61]. These techniques have raised great attention
in performance-critical graphical applications in industry. Recently, Guo et al. [17] pro-
posed ExtraNet that leverages temporal information for frame extrapolation, achieving
near 2x increase in frame-rates with almost zero latency.

In this paper, we take a step further by applying spatially and temporally coherent
information for joint frame supersampling and extrapolation, thus significantly low-
ering the shading costs. This is an extremely daunting task since only a very small
portion of rendering contents are available in this setting. To solve this highly ill-posed
problem, we propose FASSET (FrAme SuperSampling and ExTrapolation), a unified
framework that leverages deep neural networks for upscaling a low-resolution, low-
frame-rate video sequence in both space and time. FASSET first extracts deep feature
maps from existing low-resolution frames and several cheap G-buffers, through a U-Net
[48] style convolutional neural network (CNN). From these deep feature maps, FASSET
then learns implicit neural representations to map an image coordinate, conditioned on
several latent codes extracted from the deep feature maps around the coordinate, to the
corresponding RGB value. Since the coordinates are continuous, the output frames can
be presented in arbitrary resolutions in theory. By learning implicit neural representa-
tions from properly warped historical frames, the proposed FASSET is also allowed
to achieve efficient frame extrapolation, without a noticeable loss in the extrapolated
frame’s visual quality.

In summary, the main contributions of this paper are:

– a continuous approximation of the rendering contents based on implicit neural rep-
resentations, named RenderINR,



– a lightweight CNN architecture for reliable deep feature maps extraction from ex-
isting frames and G-buffers,

– a unified framework that supports joint frame supersampling and extrapolation,
enabling a huge reduction of shading costs in rendering while still guaranteeing
high image quality.

2 Related work

Frame supersampling/superresolution. Frame supersampling (or superresolution) aims
to recover an aliasing-free and (potentially) high-resolution frame from its low-resolution
counterpart. Traditional methods resample the historical frames with the help of the
accurate motion vectors and some form of temporal reprojection operations [66, 65].
To eliminate the artifacts raised by the shading and visibility changes between adja-
cent frames, some heuristic neighborhood clamping strategies have been developed to
correct the historical samples [25, 49]. To reduce noise, spatial-temporal filters are de-
signed based on frequency analysis of light transport [64] or variance estimation over
time [52]. Despite the high efficiency, these heuristic methods are prone to errors and
thus easily incur ghosting and other artifacts including loss of details, temporal lag and
residual noise in the resultant frames. In the past several years, convolutional neural
networks offer a promising alternative for frame supersampling [61, 28, 10, 18]. Xiao
et al. [61] proposed a neural supersampling (NSRR) method which combines dense
motion vectors and depth with a typical encoder-decoder network. This network takes
four consecutive frames as input and predicts up to 4×4 upsampled frames with high
fidelity and temporal stability. Nvidia has released deep-learned supersampling (DLSS)
[28] that upsamples low-resolution frames with neural networks in real time. Intel also
developed a learning-based frame upsampling technique named XeSS [10]. Due to their
impressive performance, these learning-based solutions are replacing traditional super-
sampling and upsampling techniques in industry.

Inter-frame prediction. Inter-frame prediction is a straightforward way to reduce the
redundancy within video frames. In general, there are two types of techniques, namely
frame interpolation and frame extrapolation. The goal of frame interpolation is to syn-
thesize new frames in the middle of two adjacent frames. Frame interpolation methods
can be generally subdivided into four categories: phase-based [34, 33], flow-based [23,
55, 38, 39, 2, 63, 4], kernel-based [27, 40], and direct prediction with feed-forward neu-
ral networks [31, 9, 24, 30, 46]. Among them, flow-based methods currently achieve the
best performance, especially for rendering contents which provide accurate flow infor-
mation, i.e., motion vectors [13, 14, 67]. Accurate motion vectors facilitate the reuse
of shading information across frames through image warping techniques [32, 13, 14,
47, 53]. Yang et al. [67] interpolated a pair of consecutive rendered frames with bidi-
rectional reprojection. Bowles et al. [3] established a general framework for backward
image warping using fixed point iteration. Compared with frame interpolation, frame
extrapolation, which predicts future frames from only the past ones, is less studied in
either computer graphics or vision. Guo et al. [17] recently trained a deep neural net-
work to perform frame extrapolation, achieving real-time low-latency rendering. There



are some studies in computer vision that achieve spatial super-resolution and tempo-
ral interpolation simultaneously for natural videos [62, 8, 59]. However, unifying spa-
tial super-resolution and temporal extrapolation is far less exploited. Nvidia recently
announced DLSS 3.0 which combines DLSS super-resolution and frame generation
[41]. New frames are generated by optical flow based interpolation, and the Reflex low-
latency technology is adopted to minimize the temporal latency caused by interpolation.

Implicit neural representations. Implicit neural representations, which typically param-
eterize signals using MLP, have been shown to offer competitive advances over explicit
representations. In recent years, they have been successfully applied to model complex
signals like images [15], videos [6], 3D shapes [44, 29], 3D scenes [22], textures [43]
and radiance fields [35]. These neural representations are differentiable and generally
more compact compared to canonical representations [54]. They allow discrete signals
(such as meshes, voxels and point clouds) to be treated as continuous over bounded
domains, since they naturally support smooth interpolations to unseen coordinates. By
projecting the coordinates into a higher dimensional space via a positional embedding
prior to the MLP, implicit neural representations are capable of conveying fine details
[56]. In this paper, we apply implicit neural representations to rendering contents by
modeling each rendered frame as a continuous function parameterized by MLP. This
allows us recover dense contents from sparse samples, in both spatial and temporal
domains.

3 Methodology

While previous work typically views frame supersampling and extrapolation as two sep-
arate problems, we solve them jointly with the proposed FASSET framework and thus
significantly reduce the overall shading costs. In this section, we describe the details of
FASSET.

3.1 Motivation and overview

In most rendering engines, shading usually constitutes a significant part of the work-
load, especially when global illumination effects are enabled. Therefore, there is always
a trade-off between visual quality and runtime performance (frame-rate) for real-time
graphical applications. On the other hand, many studies have shown that shading results
are spatially or temporally coherent [51, 65]. In viewing of this, the essential motiva-
tion behind our FASSET is to significantly reduce the number of pixels that should
be actually shaded and leverage light-weight image-space techniques to increase the
frame-rate, without sacrificing too much visual quality.

To this end, we opt to render low-resolution frames with advanced shading algo-
rithms. From each frame i with a resolution of w × h, our FASSET conducts two tasks
simultaneously:

– performing spatial supersampling to increase frame i’s output resolution from w×h
to 2w × 2h,



Fig. 2. High-level overview of our method. FFE extracts reliable feature maps from low-
resolution frames and G-buffers, while RenderINR handles the query at arbitrary spatial position
with the help of the extracted feature maps. Running FFE and RenderINR sequentially allows us
to achieve both frame supersampling and extrapolation, thus significantly improving the frame-
rate.

– extrapolating a new frame i+ 0.5 with the output resolution of 2w × 2h.

Under this setting, only 1/8 pixels are actually shaded every two frames, while others
are inferred in the image space. This avoids full and dense shading in a frame sequence
and enables a huge reduction of shading costs in rendering. The usage of FASSET in a
typical rendering engine is demonstrated in Fig. 2.

The first task, supersampling a rendered frame, is well-studied in computer graphics
[61, 18]. Aided by cheap G-buffers, such as albedo, normal and depth, we can generate
high-resolution frames with high visual quality. In comparison, high-resolution frame
extrapolation, which contains both frame extrapolation and supersampling, is a rarely
explored field. It seems that we could first perform low-resolution frame extrapolation
(e.g., using ExtraNet [17]) and then supersample the frame, or vice versa. However,
conducting two tasks sequentially will cause large computational overhead and also
easily yield inaccurate results due to error accumulation. To lower the cost and guaran-
tee high image quality, we choose to jointly extrapolate and supersample the frame in
our FASSET, using a deep learning-based method.

The proposed FASSET consists of two modules: a CNN-based frame feature ex-
tractor (FFE) and an implicit neural representation (dubbed RenderINR) for rendering
contents. The goal of FFE is to generate feature maps to capture the spatial and tempo-
ral relationships within the frames. RenderINR, which is realized by coordinate-based
multi-layer perceptron (MLP), is designed to decode each input code from the generated
feature map (as well as some other auxiliary information) to RGB values. As a con-
tinuous rendering frame representation, RenderINR can generate arbitrary-resolution
frames in theory.



3.2 Implicit neural representations of rendering contents

Given a rendered frame sequence with limited spatial resolution and frame-rate, we
would like to construct a continuous representation for each frame, including the poten-
tially extrapolated frame. This representation interprets an arbitrary spatial coordinate
c into the pixel value p. To achieve this goal, we introduce implicit neural representa-
tions of rendering contents (RenderINR), which can be queried at an arbitrary spatial
coordinate c, enabling continuous spatial supersampling.

Fig. 3. Illustration of RenderINR. Input of RenderINR includes two feature maps produced by
FFE and some coordinate-related information.

RenderINR is realized by fully-connected MLP (denoted as fθ with θ being its
parameters) and shared across all frames. Its input includes latent codes z and zg , as
well as some coordinate-related information. Code z is extracted from the feature map
M and zg is from MG. M and MG are both generated by FFE. Specifically, the pixel
value at a queried coordinate c is evaluated as

p(c) = fθ(z
∗(c), z∗g(c), a) (1)

where z∗ and z∗g is the latent code in M and MG, extracted by bilinear sampling. c
is its corresponding coordinate in the 2D image space. Inspired by [7], we also incor-
porate the pixel size a into the input. This is beneficial for presenting the continuous
representation in a give high resolution. fθ has parameters θ = {Wi,bi} containing
weights Wi and biases bi of each layer i.

In our current implementation, we use an MLP with three hidden layers that have
a width of 128 neurons, ReLU activation functions on the hidden layers, and a linear
output layer. This compact and light-weight design of MLP leads to a small number of
trainable parameters (less than 40K), offering fast training/inference and a good gener-
alization behavior.

3.3 Frame feature extractor

MLPs alone have no capability to model the spatial relationships within the represented
signals, thus are not performant for image synthesis applications such as image super-
sampling. The situation becomes worse for the task of frame extrapolation, due to the
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Fig. 4. The detailed network architecture of FFE. Input frames and G-buffers are fed into
FrameEncoder to extract a temporal feature map M with a resolution of w × h. G-buffers are
fed to GEncoder to extract another feature map MG. Feature reweighting module takes original
frames and G-buffers as input, and outputs corresponding weights for M and MG.

existence of invalid pixels at dis-occluded areas. We address these issues by extract-
ing the feature map M from the input frames and another feature map from G-buffers.
To handle frame supersampling and extrapolation simultaneously, the feature map M
should have:

– the awareness of spatial relationships inside the input frame,
– the guarantee of temporal coherence between adjacent frames, and
– the ability to inpaint disoccluded areas when performing image warping for frame

extrapolation.

We leverage a typical CNN architecture to address the above issues since stacked con-
volutional layers are apt at capturing multi-scale spatial structures. Temporal coherence
is enabled by shared weights of the networks across all input frames. By incorporat-
ing some light-weight gated (LWG) convolutional layers [68], the CNN-based model is
able to inpaint dis-occluded areas after image warping.

Overall pipeline We name our CNN-based model as Frame Feature Extractor (FFE)
which contains a FrameEncoder, a GEncoder and a feature reweighting module, as
illustrated in Fig. 4. The ultimate goal of FFE is to extract proper feature map M and
MG from input frames (warped for the extrapolation task) and some auxiliary buffers
(G-buffers and masks indicating holes after frame warping). To this end, we construct a
feature map M with FrameEncoder and a G-buffers feature map MG with GEncoder.
A continuous implicit neural representation, i.e., RenderINR, is then constructed on top
of the output feature maps M and MG.

Frame warping and FrameEncoder Frame warping is required for the task of frame ex-
trapolation. Inspired by ExtraNet [17], we warp frames using traditional motion vectors.
In order to remove the influence of ghosting, we multiply the input by a corresponding
mask indicating holes after warping. This warped frame, together with the mask and



some G-buffers (depth and normal), are fed into FrameEncoder. For frames that require
only supersampling, we do not need to warp the input, but we also multiply the input
by the mask. There are two benefits to this method of data processing:

– guaranteeing that the supersampled frames and extrapolated frames have inputs of
the same type, enhancing temporal coherence between adjacent frames.

– increasing the number of training examples for image inpainting, augmenting the
ability of hole filling.

The masks for supersampling are generated by making holes of warped previous frames.
The detailed network architecture of FrameEncoder is shown in Fig. 4 in blue. This

is a typical U-Net architecture that contains skip connections between mirrored layers
in the encoder and decoder stacks. This is beneficial for preserving high-frequency de-
tails after convolution operations. LWG convolutional layers are employed to fill holes
after frame warping. We add recurrent module after three convolution operations in the
encoder to reuse the information of history frames. Moreover, we use a residual learning
strategy across our pipeline.

GEncoder G-buffers are fed to GEncoder in FFE before RenderINR. The GEncoder
consists of three convolutional layers and output a G-buffers feature map MG. The
structure of GEncoder is shown in Fig. 4. There are two benefits to add this module.
First, GEncoder will extract more information in G-buffers and provide more details in
results. Second, feeding the G-buffers to RenderINR directly will give incorrect infor-
mation on pixels, leading to artifacts.

Feature reweighting Before feeding M and MG to RenderINR, FFE adds a feature
reweighting module to reweight these two feature maps. The structure of this module is
shown in in Fig. 4. This module is a 3-layer convolutional neural network, which takes
the RGB input and G-buffers as input, generating pixel-wise weighting maps for M
and MG. Tanh activation function follows last convolution, and then maps the values
from (-1, 1) to (0, 10), where 10 is a hyper-parameter.

3.4 Network training

Loss function We train our network using three types of loss functions. The first loss
is pixel-wise error between the predicted frame F and ground-truth G. This is the L1
distance between F and G:

Ll1 =
1

n

∑
i

|Fi −Gi| (2)

where n is the number of pixels in the frames.
For inpainting in the hole regions, we use the mask loss to enhance the loss of

masked pixels by hole masks. This loss is expressed as:

LholeMask =
1

n−
∑

i hi

∑
i

|Fi −Gi| · (1− hi) (3)



where h is the binary mask indicating holes.
The third loss is designed for correcting shading. The loss of hole mask can not

include all wrong pixels such as incorrect shadow and highlight. Therefore, we use
hard loss to overcome this problem. We select k pixels with top k largest errors from
the L1 loss and regard these pixels as regions of incorrect shading results where k is
1/10 of the total pixels. This loss is expressed as:

LhardPixels =
1

n

∑
i∈Ptop−k

|Fi −Gi| (4)

where Ptop−k is the k largest L1 loss in all pixels. Our final loss function is the summa-
tion of all above losses:

L = Wl1Ll1 +WholeLholeMask +WhardLhardPixels (5)

The losses above are all borrowed from ExtraNet [17]. L1 loss ensures the overall qual-
ity of results. While hole loss is beneficial for inpainting the holes caused by warping.
Different from ExtraNet [17], we set Whole to 5, because we find this weight can get
better results in hole regions. Hard loss is necessary for our method, since shadow and
highlight will stay in the original position in previous frames without this loss.

Training details Our FASSET is implemented using the PyTorch framework [45].
Adam optimizer [26] is used for optimization. Specifically, we set mini-batch size as
8, the parameters (β1, β2) of Adam optimizer are set as (0.9, 0.999). Every model
is trained for 150 epochs. The learning rate is 0.001 initially and decays half every
30 epochs. Before feeding images into our network, logarithm transformation y =
log(1 + x) is applied to HDR images to avoid large values.

4 Experiments

4.1 Dataset

Our training and test datasets are generated using a modified version of Unreal Engine
4. We record several sequences for each scene, and the splitting of training and testing
sets as well as some statistics are shown in Table 1. The training and testing sets have
no overlap.

Sequential frames are rendered and dumped into the .exr file format. We implement
a Compute Shader within the render passes of Unreal Engine 4. For each frame, Unreal
Engine 4 generates the following buffers for our dataset:

1. The shading frame before tone mapping (PreTonemapHDRColor).
2. Three kinds of G-buffers used in our network, including albedo, scene depth and

world normal.
3. Other auxiliary buffers for data preprocess, including motion vector, world position,

NoV (the dot product of world normal and view vector) and customized stencil (a
stencil buffer for masking dynamic objects).



Table 1. Statistics of the training and testing datasets used in validating our method. Here, we list
the number of sequences and the number of total frames of each scene.

Scenes
Training

Sequences
Testing

Sequences
Training
Frames

Testing
Frames

Hideout (HO) 4 4 2838 1400
Factory (FE) 4 3 2423 1248
Temple (TP) 4 4 2840 1162

Note that scene depth, world normal and albedo are rendered in low-resolution for
our pipeline. We use high-resolution masks for the calculation of our loss function and
feed low-resolution masks into networks, while other buffers in our dataset are rendered
in low-resolution. Our method can replace the actual shading pass in Unreal Engine 4.
Therefore, post-processing passes like anti-aliasing are still required to generate the
final sequence.

When a previous frame is warped to the current frame, some pixels in the warped
frame will be invalid. These pixels cause “holes” and should be marked out before feed-
ing into our networks. Inspired by ExtraNet [17], we mark holes from three different
dimensions including custom stencil difference (Sstencil), self occlusion (Swn) and oc-
clusion caused by camera’s movement (Swp). The methods of marking holes are the
same with ExtraNet [17]. The final mask S combines the these three sets of invalid
pixels:

S = Swp ∪ Swn ∪ Sstencil. (6)

4.2 Baselines and Settings

In the following experiments, we take 2× as the scale factor of frame supersampling.
For training sets, we render the frames and corresponding G-buffers at 640×360 (360P)
as low-resolution input and 1280× 720 (720P) as high-resolution images, respectively.
For test sets, the data at 720P is generated as low-resolution frames and the frames of
ground truth are rendered at 2560× 1440 (1440P).

To demonstrate the effectiveness of our FASSET, we compare it against the state-
of-the-arts. DLSS 3 [41] is similar to our method, but it has little available public in-
formation. Therefore, we choose NSRR [61] for rendering frame supersampling and
ExtraNet [17] for rendering frame extrapolation. They are combined as two two-stage
baselines: ExtraNet+NSRR and NSRR+ExtraNet. ExtraNet and NSRR are trained sep-
arately in these two baselines. For a fair comparison, we use low-resolution G-buffers
in ExtraNet and upsample them to high-resolution for NSRR+ExtraNet. Additionally,
we choose two space-time video supersampling methods for comparison: Zooming-
Slow-Mo [59] and TMNet [62]. At last, ExtraNet+ is a modified version of ExtraNet
[17] which generates extrapolated frames end-to-end at high-resolution space. For Ex-
traNet+, we zero-padding the input frames and history frames, which are fed to the net-
work of ExtraNet directly. Therefore, ExtraNet+ take high-resolution input and outputs
high resolution extrapolated frames which needs to inpaint the holes caused by warping
and zero-padding. The models above are all trained on the training datasets with 150
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Fig. 5. Comparison on frame extrapolation/interpolation against other render-based and video-
based methods. The first two rows are the example frames from our test datasets, and the last four
rows are cropped respectively from the red rectangles in the images. From left to right: ExtraNet+,
Zooming-Slow-Mo [59], TMNet [62], ExtraNet [17]+NSRR [61], NSRR+ExtraNet, Ours, GT.

epochs for fair comparison. All tests are run on a PC equipped with an NVIDIA RTX
3090 GPU.

Quantitative Comparison To quantitatively analyze these results, we choose signal-to-
noise ratio (PSNR), structural similarity index (SSIM) [58] and LPIPS [70] as the error
metrics. We evaluate three scenes and the quantitative results are reported in Table 2.
As ExtraNet+ generates extrapolated frames only, we do not report its results of frame
super-resolution. NSRR is the method for frame supersampling and the same history
frames and buffers are fed into network in both Extranet+NSRR and NSRR+ExtraNet.



Therefore, ExtraNet+NSRR and NSRR+ExtraNet have the same results for frame su-
persampling.

Table 2. Quantitative comparison of PSNR, SSIM and LPIPS on all scenes. Hideout (HO), Tem-
ple (TP), Factory Environment (FE) are the names of different scenes. The results on the interpo-
lated/extrapolated frames (the left indicator of /) and the supersampling frames (the right indicator
of /) are separately shown in the table.

Scene ExtraNet+ NSRR+ExtraNet ExtraNet+NSRR Zooming TMNet FASSET

PS
N

R
(d

B
)↑ HO 29.54/* 26.84/33.20 32.22/33.20 30.09/31.66 28.25/32.17 30.62/31.15

TP 22.94/* 23.98/25.20 24.34/25.20 23.67/26.48 22.58/26.00 24.56/25.46

FE 28.35/* 26.70/31.04 29.28/31.04 31.60/32.25 31.68/32.46 30.93/31.59

SS
IM

↑ HO 0.8120/* 0.7159/0.9001 0.8770/0.9001 0.7830/0.9038 0.6631/0.8972 0.8308/0.8503

TP 0.6889/* 0.8157/0.8809 0.8509/0.8809 0.8228/0.8933 0.7388/0.8870 0.8460/0.8716

FE 0.8508/* 0.8254/0.9137 0.8930/0.9137 0.9001/0.9215 0.9010/0.9245 0.8968/0.9093

L
PI

PS
↓ HO 0.3068/* 0.2963/0.2080 0.2364/0.2080 0.3257/0.1935 0.4092/0.2043 0.2667/0.2497

TP 0.4033/* 0.2839/0.2164 0.2467/0.2164 0.2641/0.2062 0.3152/0.2150 0.2499/0.2194

FE 0.2940/* 0.2760/0.2182 0.2455/0.2182 0.2633/0.2095 0.2696/0.2064 0.2483/0.2172

As seen, we generate better results in both frame supersampling and frame extrap-
olation, while other methods have a significant performance drop on extrapolated or
interpolated frames except ExtraNet+NSRR. However, in terms of metric values be-
tween extrapolated and supersampled frames, FASSET shows smaller delta than Ex-
traNet+NSRR, which presents FASSET can get more stable results than ExtraNet+NSRR.

Among these methods, only ExtraNet+ has similar inference time with FASSET ac-
cording to Table 3 and its quantitative results are far below FASSET. For other methods,
FASSET also have competitive results in some metrics such as extrapolated results on
TP. Because FASSET is faster than other methods except ExtraNet+, especially meth-
ods for video, there is a trade-off between inference time and quantitative results for
FASSET. Despite all this, our results are also very close to best results for other met-
rics, while our method is at least 5 times faster than these methods.

Qualitative comparison In Fig. 5, we show the qualitative comparisons of different
methods for frame extrapolation/interpolation. It is worth noting that Zooming-Slow-
Mo and TMNet require future frames which should be rendered beforehand, while his-
torical frames that have already been rendered are needed in FASSET. ExtraNet+ tends
to generate artifacts as highlighted in the last three rows in Fig. 5. Because of redundant
information from G-buffers, NSRR+ExtraNet and ExtraNet+NSRR generates incorrect
color like the yellow triangle sign in the fourth row and ropes tied to wooden stakes in
the fifth row. TMNet and Zooming-Slow-Mo are originally designed for slow-motion
videos, and their results are plagued with over blurriness caused by large movements.

Fig. 6 show visual comparisons of different methods for frame supersampling. In
the last row, we can see that other methods reduce the rutting stains on the yellow guide
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Fig. 6. Comparison on frame supersampling against other render-based and video-based methods.
The first two rows are the example frames from test datasets, and the last two rows are cropped
respectively from the red rectangles in the images. From left to right: LR, ExtraNet [17]+NSRR
[61], Zooming-Slow-Mo [59], TMNet [62], Ours, GT.

belt. In contrast, FASSET can capture useful features from low-resolution images and
G-buffers, and have better supersampling performance in details.

4.3 Analysis of runtime performance and model efficiency.

Table 3 lists the computation cost, memory throughput, model parameters and run-
time for processing a single frame. NVIDIA TensorRT is used for acceleration when
calculating the inference runtime of all models. NSRR+ExtraNet need to extrapolate
the frames at high-resolution space and feed data at 1440P into ExtraNet, while Ex-
traNet+NSRR feed data at 720P into ExtraNet. FASSET needs 20.46ms per frame for
network inference and has 0.27M parameters only, which is significantly lower than
video methods and basically equal to ExtraNet+ compared to others. Even consider-
ing all the benefits from reduced precision computation, the network structures of other
methods still take more computation cost than ours. In particular, TMNet and Zooming-
Slow-Mo need future rendered frame for interpolation, which causes the extra time la-
tency.

We display runtime breakdown of our method which targets at 1440P resolution in
Fig. 7. In practice, we will save more time with two GPUs because the processes of
frame supersampling and extrapolation are independent which can run in parallel. This



Table 3. The network computation cost, memory throughput comparison, model parameters and
runtime among FASSET and other methods. The metric is measured for the 720P to 1440P. All
tests are run on an NVIDIA RTX 3090 GPU.

Method #Params (M) Flops (G) GPU (MiB) Time (ms)

ExtraNet+ 0.10 32 2639 9.94
E+N 0.76 695 15849 131.50
N+E 0.76 836 18608 157.51

TMNet 10.88 25421 17547 1043.94
Zooming 10.29 55860 21296 967.18
FASSET 0.27 216 14433 20.46

Fig. 7. Runtime (ms) breakdown of our method targeting at 1440P resolution. The statistics are
measured and averaged over the all test scenes.



allows us to improve the frame-rate to 3.68x using the reasonable settings of parallel
computing. It is also worth noting that FASSET can run faster with delicate engineering,
such as using CUDA and cuDNN optimization or compute shaders.

4.4 Ablation study

Validation of GEncoder Before feeding G-buffers to RenderINR, we feed them to GEn-
coder first for feature extraction. It is beneficial for reproducing the details in images
and removing artifacts. Moreover, we do not choose feeding G-buffers directly, which
is possible to generate artifacts because G-buffers can not replace pixel colors directly.
As shown in Fig. 8, the result with GEncoder has more details compared to the one
without GEncoder.

w/o GEncoder w/ GEncoder GT

Fig. 8. Comparison between models trained without/with GEncoder

Validation of mask multiplying on frame supersampling When input frames are super-
sampled, the encoder has no need to deal with the inpainting problem during training,
and it will influence the training of inpainting ability. Therefore, we employ additional
masks to supersampled frames to enhance the inpainting ability of encoder. As shown
in Fig. 9, without additional masks, our pipeline may fail to inpaint the hole of moving
person.

w/o mask w/ mask GT

Fig. 9. Comparison between models trained without/with additional mask



Validation of Extra/Super shared weight of encoder Because networks need to achieve
different goals between adjacent frames, there will be instability if we use different
weights of encoder for extrapolated frames and supersampled frames. As shown in
Fig. 10, shared weights of encoder are beneficial for stability between frames. Without
shared weights, adjacent frames have obvious differences in highlights on the pillar.

frame i frame i+1 frame i frame i+1

Fig. 10. Comparison between models trained with/without shared weight of encoder. The left two
are generated by our method and the right two are generated by model without shared weight.

Table 4 shows the ablation experiments for above modules. We observe that all of
these modules can improve quantitative results, and overall visual quality.

Table 4. Ablation study of GEncoder, additional masks and shared weights on the Hideout (HO)
scene. We show the metrics for supersampled frames and extrapolated frames separately.

PSNR↑ SSIM↑ LPIPS↓

FASSET 30.62/31.15 0.8308/0.8503 0.2667/0.2497
- GEncoder 29.21/30.38 0.8175/0.8365 0.2807/0.2593

- Additional mask 29.88/30.31 0.8212/0.8381 0.2783/0.2536
- Shared weights 29.66/30.44 0.8248/0.8458 0.2772/0.2581

4.5 Limitation

We present a joint framework for both frame supersampling and extrapolation on render
contents. As motion information is extracted from motion vectors generated by render-
ing engines, we can not handle shadows, highlights and glossy reflections well when
the corresponding areas have strong motions.

Because of the huge amount of memory and time cost on training, we do not test
the generalization ability of FASSET. Employing powerful hardware optimization and
network quantization to further decrease the inference time while still preserving high
image quality is also an interesting topic. We leave them for future research.



5 Conclusion

In this paper, we have introduced FASSET which integrates an implicit representation
of rendering contents and a CNN-based frame feature extractor in a unified end-to-end
framework, where the implicit neural representation is adopted in the decoding stage to
learn continuous-resolution representation. Frame feature extractor consisting of three
parts including frameEncoder, GEncoder and feature reweighting module is used to
extract feature maps and solve the inpainting problem, following RenderINR, which is
realized by MLP to get high-resolution results. Because our method supports joint frame
supersampling and extrapolation and has lightweight network, its inference time is far
less than other methods, and also has competitive quantitative results and qualitative
results compared with others.
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