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Abstract. Registering urban point clouds is a pretty challenging task due to the
large-scale, noise and data incompleteness of LiDAR scanning data. In this pa-
per, we propose SARNet, a novel semantic augmented registration network aimed
at achieving efficient registration of urban point clouds at city scale. Different
from previous methods that construct correspondences only in the point-level
space, our approach fully exploits semantic features as assistance to improve
registration accuracy. Specifically, we extract per-point semantic labels with ad-
vanced semantic segmentation networks and build a prior semantic part-to-part
correspondence. Then we incorporate the semantic information into a learning-
based registration pipeline, consisting of three core modules: a semantic-based
farthest point sampling module to efficiently filter out outliers and dynamic ob-
jects; a semantic-augmented feature extraction module for learning more dis-
criminative point descriptors; a semantic-refined transformation estimation mod-
ule that utilizes prior semantic matching as a mask to refine point correspon-
dences by reducing false matching for better convergence. We evaluate the pro-
posed SARNet extensively by using real-world data from large regions of ur-
ban scenes and comparing it with alternative methods. The code is available at
https://github.com/WinterCodeForEverything/SARNet.

Keywords: 3D Registration · Semantic Segmentation · Large-scale Point Cloud.

1 Introduction

Point cloud registration aims to estimate an optimal rigid transformation to align two
partially overlapping 3D point clouds. It is a fundamental task in computer graphics and
3D vision with numerous downstream applications, including 3D scene reconstruction,
autonomous driving, robotics, and augmented reality.

A typical pipeline of traditional registration is first building correspondences be-
tween point clouds using local similar features, then estimating the transformation
based on matched point pairs [24]. The registration result can be further refined by using
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Fig. 1. A human-intuitive experience is that the matching points between the source and target
point clouds should be in the same semantic category. Motivated by this human vision, we pro-
posed a novel registration neural network with the assistance of semantic segmentation.

an Iterative Closest Point (ICP) algorithm [6]. In order to increase the robustness and ef-
ficiency of correspondence searching between point clouds, researchers have proposed
a variety of approaches based on hand-crafted 3D feature descriptors and pose optimiza-
tion algorithms [12, 33, 61, 47, 48]. However, due to their locality, those feature-based
methods can not generalize well to highly noisy and non-uniform point clouds.

In the last decade, deep neural network has achieved remarkable success in many
3D vision tasks, such as point cloud classification and segmentation [18]. Thanks to
the advances in 3D representation learning and the availability of a large number of
annotated 3D datasets, deep point cloud registration has also drawn a lot of attention
recently. Such methods either estimate an accurate correspondence search by robustly
feature learning [55, 49, 10, 15, 50], or directly learn the final transformation matrix by
proposing end-to-end neural networks [3, 9, 23, 35, 53, 30]. Although they achieve en-
couraging results on object-level and indoor scenes, it is still a challenging problem
for those learning-based methods when registering large-scale point clouds. In real-
world outdoor scenes, the LiDAR scanning range is usually large (e.g., up to several
hundred meters), and the point cloud containing millions of points will incur a high
computational cost. The higher sparsity and data incompleteness, the presence of noise
and outliers, and the limited overlap also pose great challenges for urban point cloud
registration. Moreover, existing methods still struggle to handle a large proportion of
erroneous matches, due to many similar and repeated features present in large-scale
datasets.
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Essentially, most existing methods perform registration just in the point-level space
by utilizing the relationship between neighboring points, but do not consider higher-
level information. Recently, there have been some methods that exploit semantic infor-
mation to improve the registration robustness for LiDAR scans [34, 52, 54, 42, 4, 51].
Although these methods reduce the algorithm complexity and speed up computing
point correspondences, they just simply integrate semantic information into existing
traditional frameworks (e.g., ICP, Normal Distributions Transform (NDT)). Therefore,
they do not make full use of the semantic prior, i.e., the semantic information is only
used for classification and filtering inaccurate matches, but is not fully embedded with
geometric features in the core registration stage.

In this paper, we present a novel and efficient neural network that estimates 3D
rigid transformations by taking full advantage of semantic knowledge. Our framework
is built on the observation that large-scale semantic segmentation of 3D urban scenes
has reached high precision with deep learning technologies. As a result, utilizing the
semantic segmentation information to establish part-to-part correspondences is reason-
able and feasible. In our approach, we exploit SphereFormer [29] to segment point
clouds due to its lightweight and efficiency. To effectively incorporate semantic labels
into the learning-based registration pipeline, we design a semantic-based farthest point
sampling (FPS) approach to obtain a subset of key points and also remove outliers (e.g.,
dynamic objects). Then a more robust and discriminative point feature is learned in
which we not only encode local and global geometric information, but also perform
feature exchange between the source and target point clouds by using a cross-attention
mechanism. Furthermore, we concatenate the semantic feature with the geometric fea-
ture to obtain a semantic-augmented hybrid feature descriptor. Finally, after computing
a point-wise correspondence matrix, we propose to utilize a semantic similarity matrix
as a mask to reject unreliable point matches.

In summary, the main contributions of this work include the following:

– A novel and reliable neural network, called SARNet, which fully exploits semantic
consistency and geometric features to achieve almost state-of-the-art registration
performance for urban point clouds.

– A semantic-augmented feature extraction module for learning rich and representa-
tive point descriptors. This module is built on a novel semantic-based FPS scheme
that efficiently filters out dynamic objects and other outliers to improve registration
accuracy.

– A semantic-refined transformation estimation module that utilizes prior semantic
part-to-part matching as a mask to refine point correspondences, thus reducing the
searching space of pose hypotheses for better convergence.

2 Related work

2.1 Traditional feature-based registration

Traditional point cloud registration methods mainly transfer the registration into an
optimization problem, whose critical idea is to develop a sophisticated optimization
strategy to find the optimal transformation. They can be further divided into global
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registration and local registration methods. Global registration methods usually design
handcraft local features, and search the feature correspondence, finally estimate the
optimal transformation. The commonly used local features include Spin image [26],
FPFH [40], SHOT [41], PPF [11, 16, 46], RoPS[17] etc. In addition to point-level fea-
tures, Zhang [58] applies hybrid structural features which are constructed by extract-
ing geometric primitives from point clouds to solve the low overlap even no overlap
challenges. After defining the point features, efficient feature correspondence searching
strategies are proposed to improve the registration efficiency and accuracy [13, 1, 61].
For example, RANSAC [13] is a common feature-matching algorithm that randomly
samples small subsets of correspondences and finds optimal correspondences for trans-
formation estimation. Using FPFH features, Zhou et al. [61] present an optimization
algorithm for fast global registration with partially overlapping 3D surfaces. Zhang et
al. [59] recently proposes a geometric-only 3D registration method by using the maxi-
mal clique constraint to produce accurate pose hypotheses from initial correspondences.
However, without considering semantic information, this method often fails to find ac-
curate hypotheses for sparse and simple geometric features.

Local registration methods often start from an initial transformation and solve the
refined problem after global registration. ICP [6] is the most representative algorithm,
which iteratively finds the closest points and updates the transformation by solving the
least square problem. There are several variants of ICP to improve its effectiveness or
robustness, such as [39] by selecting suitable points, [14] by weighting point correspon-
dences, and IMLP [7] by incorporating the measurement of noise. Classical registration
methods don’t require large quantities of training data but may not perform well on
point clouds with noises and outliers.

2.2 Learning-based registration

Learning-based registration methods can be roughly classified into feature-learning
methods and end-to-end learning registration [24]. Feature-learning methods leverage
the deep neural network to learn a robust feature correspondence search. PPFNet[10]
uses PPF [11] which is rotation invariant to process point cloud patches. 3DSmooth-
Net [15] designs a rotation-invariant handcraft feature and input it into the network
for deep feature learning. SpinNet [2] introduces a spatial point transformer to map
the input local surface into the designed cylindrical space, and utilize 3D cylindri-
cal convolutional neural layers to derive a compact feature descriptor. SiamesePoint-
Net [60] produces the descriptor of interest points by a hierarchical encoder-decoder
architecture. As for end-to-end learning registration, PointNetLK [3] is a pioneering
work that combines PointNet and Lucas&Kanade algorithm into a trainable recurrent
deep neural network. Deep Closest Point (DCP) [44] extracts features for each point
to compute a soft matching between point clouds, then utilizes a differentiable SVD
module to compute rigid transformation parameters which is widely imitated by later
work. RPMNet [50] implements a variant of ICP in an end-to-end learnable way. Deep
Global Registration (DGR) [25] utilizes fully convolutional geometric features and a
weighted Procrustes algorithm for pose estimation. The above methods except DGR
are almost designed for object-level point clouds and unsuitable for complex large-scale
point clouds. HRegNet[32] is an efficient hierarchical network for large-scale LiDAR
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point cloud registration. It hierarchically extracts keypoints and feature descriptors and
matches them with bilateral consensus and neighborhood consensus, which could bal-
ance the efficiency and registration accuracy. To solve the low-overlap challenge in
registration, PREDATOR [22] introduces an overlap attention block which could con-
centrate on the points in the overlap region and predict the saliency of overlap points.
Following PREDATOR’s [22], GoeTransformer [38] also tries to solve the low-overlap
challenge by introducing a geometric transformer to learn geometric features for robust
superpoint matching.

At present, point cloud registration work based on semantic information is rel-
atively rare. A few methods have incorporated deep semantic priors to estimate 6D
poses for robot localization and mapping [20, 57], or point cloud registration [31, 51].
These methods establish instance-to-instance correspondence between semantic clus-
ters, where the instances are usually obtained by applying Euclidean point cloud cluster-
ing to separate different instances in the same semantic category. However, this method
may fail for point cloud scenarios containing few instances. Besides, 3D instance seg-
mentation is still a very challenging task, and the accuracy of instance segmentation is
much lower than semantic segmentation [19].

2.3 3D point feature learning

To solve the disorder and unstructured nature of point clouds, it is important to ex-
tract discriminative features in most 3D learning tasks, such as classification, seg-
mentation and registration [18]. The pioneering work PointNet [36] and its extension
PointNet++ [37] are general frameworks for mapping unorganized points into high-
dimensional spaces through feature transformation and aggregation. DGCNN [45] is
another milestone as it introduces k-nearest neighbors searching to construct the graph
structure in the feature space and dynamically update after each layer of the network.
SOCNN [56] is proposed to focus on the representation learning of the underlying shape
formed by neighboring points, which combines the global and local context information
to get representative features. Different from these methods focusing on geometric or
context feature mapping, we aim to design a novel feature extraction module that not
only encodes geometric information, but also fully utilizes semantic knowledge.

3 Problem Statement and Overview

The input to SARNet includes a source and a target point cloud Px =
{
pi ∈ R3

}m
i=1

and Py =
{
qj ∈ R3

}n
j=1

, which may be noisy, incomplete, and with non-uniform den-
sity distribution. We aim to compute an optimal rigid transformation T = [R, t;0, 1]
to align these two point clouds, i.e., minimize the following objective function:

argmin
(M,R,t)

m∑
i=1

n∑
j=1

M(i, j) · ∥Rpi + t− qj∥2 (1)

where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. M is a
permutation matrix which maps points in Px to Py .
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Fig. 2. Network architecture of our proposed SARNet. Given the source and target point clouds
taken from the urban scene, we first apply an efficient semantic segmentation to predict per-point
semantic labels. Then a semantic-based FPS module is proposed to adaptively downsample the
clouds as well as remove outliers (e.g., dynamic objects). After that, the semantic-augmented
feature extraction module extracts high-dimensional features combining semantic and geometric
information, where c⃝ means feature concatenation. Finally, the semantic-refined transforma-
tion estimation module optimizes the initial point-wise correspondences by filtering semantic-
mismatched pairs (the refining operation is represented by +⃝). In the correspondence matrix,
the black color indicates corresponding point relationships and the gray color means an incorrect
match, while in the semantic mask we use green color to indicate the points belonging to the
same semantic class and otherwise use the purple color.

The core idea of our SARNet is that for large-scale point clouds, especially collected
in autonomous driving, there are rich easily-gained semantic cues that could help to con-
struct a more accurate correspondence between the source and target. Thus we can ef-
fectively integrate both semantic and geometric information for robust registration. The
major steps of our algorithm are shown in Fig. 2. We first perform a semantic segmen-
tation on both source and target point clouds to predict per-point semantic labels, which
are represented as one-shot vectors. Then we downsample the initial points by designing
a new semantic-based farthest points sampling approach to obtain a set of key points.
Those key points are fed into a feature extraction module to obtain high-dimension
features that encode both global and local geometric information. We concatenate the
geometric features with semantic priors to form the final semantic-augmented features.
Next, a point matching module is conducted by measuring the feature distance between
the source and target to estimate a point-wise corresponding matrix, which can be fur-
ther refined by using semantic masks. At last, the final transformation is recovered from
the corresponding matrix through a weighted Singular Value Decomposition (SVD).

4 Methodology

In our approach, we propose to introduce semantics into deep point cloud registra-
tion. For both source and target point clouds, we apply a deep neural model, Sphere-
Former [29], to predict point-wise semantic labels and generate a semantic map. Briefly,
SphereFormer [29] achieves new state-of-the-art results of LiDAR-based semantic seg-
mentation by directly aggregating information from dense close points to sparse distant
ones. However, this may result in the loss of some crucial features from distant points.
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Fig. 3. The structure of our semantic-augmented feature extraction (SAFE) module. Taking the
source point cloud Px as an example, SAFE first learns the geometric feature. We concatenate all
the GeoConv output features to form a 512-dimensional descriptor for each point in Px, which
encodes the local geometry and global contextual information of Px. To further improve the
feature representation ability for registration, SAFE introduces a cross-attention block to learn
the structure of the target point cloud Py . In the last step, we concatenate the crossed-geometric
feature with the semantic feature to form the final semantic-augmented feature.

To solve this issue, our network introduces a local feature aggregation module to pre-
serve geometric information. A byproduct of the semantic segmentation is a learned
semantic feature for each point, which will be used in later stages. Note that we do not
rely on any specific semantic segmentation method. Other advanced segmentors, such
as RandLA-Net [21], can also be used.

After segmentation, we could obtain the semantic part-to-part correspondence by
measuring the similarity between semantic features. Then the semantic segmentation
information is utilized in three ways: (1) In the semantic-based FPS process, we filter
moving objects and only sample points in other semantic overlapping regions. We use
the semantic proportion defined by the percentage of points number in one semantic
category as weight, which means more points will be chosen in larger semantic regions.
(2) We concatenate the semantic feature with local and global geometric features to ob-
tain a more robust and representative point descriptor. We will measure the enhanced
descriptor distance to generate a correspondence matrix. (3) We utilize the semantic
part-to-part correspondence as a mask to refine the correspondence matrix. Inspired
by RPM-Net [50], our pipeline is implemented as a recurrent neural network to ap-
proximate the ground-truth transformation iteratively. Note that in our approach, the
semantic segmentation module and the registration network are trained simultaneously
with a weighted combination of the loss terms. In such a way, we do not need to rely
on a priori semantic knowledge. Second, we can also use dynamic weights to better
balance the relationship between the segmentation and registration networks.

4.1 Semantic-based Farthest Point Sampling

The neural network is unable to handle large-scale point clouds with hundreds of thou-
sands of points. The input is usually downsampled to obtain a spare set of candidate
keypoints. Different from previous methods, we design a new weighted farthest point
sampling approach by exploiting semantic labels. Our approach is based on the obser-
vation that some kinds of objects will be outliers for point cloud registration, especially
in realistic outdoor environments. For example, moving cars and humans often appear
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in different locations in the source and target point clouds, which will hinder the reg-
istration of complex traffic scenes. As a result, if we can filter these dynamic objects,
we will build more accurate point mapping. To this end, according to the predicted per-
point semantic information, we label the dynamic points as ”ignored” by setting their
weights to zero in weighted FPS, which means these points will not be chosen for fu-
ture registration. By checking semantic consistency, we only conduct FPS in semantic
overlapping regions between the source and target point clouds except for the moving
objects. To further keep the same distribution with initial point clouds, the weight of
each point p belonging to one semantic label corresponds to the number of points in
this category. So the final weights of points in weighted FPS can be computed as:

W k
p =

{
Nk/N, k ∈ Cx ∩ Cy and k /∈ Cm

0, k /∈ Cx ∩ Cy or k ∈ Cm

(2)

where Nk is the number of points belonging to semantic category k, and N is the total
number of points in the point cloud. Cx and Cy represent the semantic categories of
source and target clouds, respectively. Cm is the semantic category of moving objects.

4.2 Semantic-augmented Feature Extraction

Next, we design a novel semantic-augmented feature extraction (SAFE) module. The
detailed network architecture of this module is illustrated in Fig. 3, which mainly con-
sists of two components: learning geometry feature Fg and learning semantic feature
Fs. As mentioned above, the semantic feature Fs can be efficiently learned by Sphere-
Former when performing semantic segmentation.
Geometric feature embedding. A powerful feature descriptor for point cloud regis-
tration should describe the local and global geometric features well. A new geometric
feature embedding block, called GeoConv, is designed to extract both robust local fea-
ture L and global interactive information G. The resulting feature of GeoConv for a
point pi is thus described as:

F intra
i = MLP (As (MLP (L (pi)))⊕MLP (G (pi))) (3)

where MLP represents a multi-layer perception network, ⊕ is the concatenation oper-
ator, and As is the aggregation function where we choose the maximization operator
here.

Fig. 4 shows the structure of our GeoConv module. First, to extract the local feature,
we concatenate the feature of pi with those of its k-nearest neighbors. We utilize the
reciprocal of feature distances between the neighbors and pi as weights to measure the
contribution of each neighboring point, which means the weight should be higher when
the neighbor point is closer to pi. So the local geometric feature L can be described as:

L (pi) = KNN (fpi)⊕ Rep (fpi)⊕
1

d (Rep (fpi) ,KNN (fpi))
(4)

where fpi
means the resultant feature of the prior GeoConv or MLP. KNN(fpi

) repre-
sents the k-nearest neighbors of fpi

and Rep(fpi
) means the feature of pi is repeated

K times. d(fa, fb) means the L2-norm distance between two feature vectors fa and fb.
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Fig. 4. Illustration of GeoConv. The upper half part mainly extracts local geometric feature for a
point pi by searching its k-nearest neighbors in the embedded feature space, while the bottom
half part utilizes the self-attention mechanism for the interaction of global features extracted from
the prior GeoConv.

Second, we consider the interaction between any point pair in one point cloud to
describe the global salience of each point pi. The self-attention mechanism is applied
to capture contextual information. In detail, for any two points (pi and pj) in the point
cloud, we compute vector-valued keys kj ∈ Rb and queries qi ∈ Rb, which are then
used to retrieve values vj ∈ Rb. The key kj and value vj are learned from the feature
of pj in prior GeoConv or MLP operation, and the query qi is learned from pi in the
same way. b is the embedding dimension of the current GeoConv feature. Then the
intra-global feature G(pi) is a weighted sum of values, where the attention weight aij
assigned to each value is computed by the scaled matrix dot-product of the query with
the corresponding key:

aij = Softmax

(
qT
i · kj√

b

)
, G (pi) =

∑
j:(i,j)∈P

aijvj . (5)
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Inspired by DGCNN [45], we cumulatively utilize GeoConv to embed geometric
features into hierarchical feature spaces, and concatenate all the features learned by each
GeoConv. Then after applying an MLP function, we can get the feature that encodes
both local and global geometric information.
Inter-geometric information perception. The above feature F intra only encodes the
geometric information in the source or target point cloud independently, but has no
knowledge about the structure of the other point cloud. Learning the co-contextual in-
formation between the source and target is important for the point cloud registration
task. To this end, we introduce a cross-attention block [43] for the inter-geometric in-
formation perception which mixes the embedding features of the source and target.
Following the work of Deep Closest Point (DCP) [44], the cross-attention block learns
a function as a residual term of each embedding feature:

FCA
x = F intra

x +Θ(F intra
x ,F intra

y ),

FCA
y = F intra

y +Θ(F intra
y ,F intra

x ).
(6)

where F intra
x and F intra

y are the learned high-dimensional feature of source and target,
respectively. The asymmetric function Θ : R(N×b) × R(N×b) → R(N×b) is the cross
attention block introduced by the Transformer [43]. Finally, we set the complete geom-
etry feature as Fg

x = FCA
x ,Fg

y = FCA
y .

Semantic-augmented feature: Since we represent the semantic feature as a one-hot
vector, there is no improvement for using cross attention block on the semantic fea-
ture. In our approach, the geometric feature after cross attention block will be directly
concatenated with the semantic feature to form the final semantic-augmented feature:

F = MLP(Fg ⊕Fs) (7)

where Fs is the semantic feature output by SphereFormer [29].

4.3 Semantic-refined Transformation Estimation

Once obtaining enhanced feature descriptors Fx and Fy for the source and target point
clouds, we compute an initial point-wise correspondence matrix Mini by measuring the
similarity between Fx and Fy . Ideally, Mini(i, j) = 1 if the point pi ∈ Px exactly
corresponds to qj ∈ Py and Mini(i, j) = 0 otherwise. However, such a discrete per-
mutation matrix is undifferentiable, causing the gradient to not be backpropagated for
network training. Besides, due to the presence of noise in LiDAR scanning, the points
after alignment may not coincide exactly. Therefore, instead of the one-to-one corre-
spondence, we assume that one point in the source corresponds to the weighted mean of
points in the target. In our approach, the correspondence matrix constraint is relaxed to
a doubly stochastic constraint:

∑m
i=1 M

ini(i, j) = 1,
∑n

j=1 M
ini(i, j) = 1,Mini(i, j) ∈

[0, 1].
Since there are a lot of similar local geometric structures (e.g., a plane in the road

and a plane in a building) in the scene, the initial correspondence matrix Mini may have
many incorrect matches. To improve the matching accuracy while reducing the search-
ing space of pose hypotheses, we quickly prune bad hypotheses based on semantics.
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We find that if two points are labeled in different semantic categories, we do not need
to build a correspondence between them, i.e., we would only attempt to match key-
points that belong to the same semantic category. Therefore, we compute a semantic
correspondence matrix MS = {0, 1}I,J as a mask by multiplying the one-hot semantic
features, which can be written as:

Ms(i, j) =

{
1, if Cx(i) = Cy(j)

0, if Cx(i) ̸= Cy(j)
(8)

Then we assign the value Mini(i, j) to the negative-infinity where Ms(i, j) = 0. Af-
ter applying a Softmax function, those negative-infinity values in corresponding matrix
will be zero:

Mini(i, j) =

{
−∞, if Ms(i, j) = 0

Mini(i, j), if Ms(i, j) = 1
(9)

So the final correspondence matrix becomes:

M (i, j) =
exp

(
Mini (i, j)

)∑N
j=1 exp (Mini (i, j))

(10)

Finally, we utilize M to compute the corresponding point ỹi in Py for each point xi

in Px to obtain P̃y:

ỹi =

N∑
j=1

M(i, j) · yj (11)

Therefore, we can build the cross-covariance matrix by using Px and P̃y [44], which
is then decomposed by weighted singular value decomposition (WSVD) to estimate
the transformation T. Most recent deep learning-based registration methods compute
weights of SVD by directly operating on the initial features Fx and Fy . However, we
find that the point-wise order in Fx doesn’t correspond to that in Fy , thus the computed
weights will hinder to obtain the optimal transformation T as the learning process goes
on. Differently, we first use M to adjust the point-wise order in Fy , then we concatenate
Fx with the adjusted Fy and feed them into a MLP to compute the final weights:

W = MLP(Fx ⊕M · Fy) (12)

4.4 Loss Functions

Our SARNet model integrates the above-described modules in a unified end-to-end
network architecture as shown in Fig. 2, which is trained in a supervised fashion by an
efficient joint loss function. We use a transformation loss for registration and a cross-
entropy loss function for semantic segmentation. Different from previous registration
methods, we use the uncertainty weighting method proposed in [27] to combine the
transformation loss and the semantic loss which could automatically balance the two
tasks instead of complicated manual attempts during end-to-end training.
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Transformation loss. our transformation loss is the L2-norm distance between the
source point cloud Px transformed using the ground-truth transformation {Rgt, tgt}
and the predicted transformation {R′, t′}. Since we design the registration network as
a recurrent neural network, we need to compute the loss for every iteration k. Following
RPMNet [50], we weigh the losses by (1/2)K−k to give later iterations higher weights,
where K is the total number of iterations:

Ltrans
k =

1

N

N∑
i=1

√
[(Rgtpi + tgt)− (R′

kpi + t′k)]
2 (13)

Ltrans =

K∑
k=1

1

2K−k
· Ltrans

k (14)

where N is the number of points in the source point cloud, {R′
k, t

′
k} is the predicted

transformation in the k-th iteration.
Semantic loss. we choose the cross-entropy loss function to supervise the learning of
semantic segmentation module. Given the ground-truth semantic labels Cx, Cy ∈ R
with the learned source features Fx ∈ Rb and target features Fy ∈ Rb, the semantic
loss can be described as:

Lsem = −log

(
eFx[Cx]∑c−1
i=0 e

Fx[i]

)
− log

(
eFy [Cy ]∑c−1
j=0 e

Fy [j]

)
(15)

where c is the total number of semantic classes. Since the semantic segmentation mod-
ule is conducted before the semantic-based FPS and doesn’t need an iteration process,
the semantic loss will be computed only once.
Total loss. We find that transformation loss and semantic loss have different conver-
gence speed during the training process. It is difficult for us to find suitable fixed pa-
rameters, especially the convergence speed of cross-entropy loss is changing. To solve
this problem, we use the learnable parameters σt and σs to weigh the transformation
loss and semantic loss respectively for optimal trade-off. To maintain their stability, the
uncertainty can be reduced as two log terms:

Ltotal =
1

2σ2
t

· Ltrans +
1

2σ2
s

· Lsem + log (σt) + log (σs) (16)

4.5 Implementation Details

Our SARNet is implemented in PyTorch on a server equipped with an Intel Xeon Gold
6226R CPU and NVIDIA RTX 2080 Ti (11 GB memory) graphics cards. We train the
entire neural network end-to-end on our training dataset for 60 epochs with Adam op-
timizer [28]. The initial learning rate is set to 10−4 and reduced with an attenuation
coefficient of 0.5 every 10 epochs. The initial learnable parameters σt and σs are ran-
domly sampled from the continuous uniform distribution in the range of [0.2, 1.0]. The
training task is completed in about 40 hours.
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5 Experimental Results

In this section, we demonstrate the effectiveness of our approach on two real-world out-
door LiDAR datasets. We also evaluate the proposed algorithm qualitatively and quan-
titatively through the visual inspection of our results and a comparison with traditional
registration approaches and state-of-the-art deep learning-based methods.

5.1 Experimental Setup

Datasets. We carry out experiments on two large-scale outdoor LiDAR point cloud
datasets, namely SemanticKITTI dataset [5] and NuScenes dataset [8], which are most
commonly used for 3D point cloud recognition. The SemanticKITTI dataset consists
of 43552 densely annotated LiDAR scans. We select 11 sequences with ground-truth
annotation for our experiments. To keep the semantic consistency between the training
and testing datasets, we choose the first 70% of point clouds in each sequence as training
data, the next 10% for validation, and the final 20% for testing. In total, we obtain
16233 frames for training, 2319 frames for validation, and 4649 frames for testing.
The NuScenes dataset has 34149 scans with semantic annotation which belongs to 850
scenes (on average there are 40 or 41 scans in each scene). We separate the point clouds
in every scene into training set (75%), validation set (10%), and testing set (15%).
Finally, we get 25500 scans for training, 3400 scans for validation and 5200 scans for
testing.
Pre-processing. To maintain the consistency of semantic annotation, we generate the
source and target point clouds by adding random rotations and translations on each point
cloud during the training and testing stages. Specifically, for an original point cloud P
in the dataset, along each coordinate axis, we randomly apply rotations (Rx,Ry,Rz)
with angles in the range of [0, 45◦], and provide translations (tx, ty, tz) within the range
[−5, 5] meters. As a result, the rigid transformation applied to P can be computed as
rotation matrix R = Rx · Ry · Rz with a translation vector t = tx + ty + tz . We
record R and t as the ground truth for subsequent evaluations. To simulate the moving
objects in the real world which should appear in different positions in the source and
target point clouds, we specially add another random offset to the points belonging to
the class of moving objects. To this end, we randomly sample Euler angle rotations in
the range [0, 3◦] along each axis, and apply random translations in the range [−5, 5]
meters along the x-axis, [−1, 1] meters along the y-axis and [−0.1, 0.1] meters along
the z-axis.

Furthermore, we shuffle the points order and add random Gaussian noise to both
source and target in training data, where the noise is relative to the size of point clouds.
For SemanticKITTI, the average diagonal of the bounding box for each point cloud
is about 102 meters, so the noise for each point is sampled independently from the
distribution N (0, 0.01 ∗ 102) and will be clipped to [−0.05 ∗ 102, 0.05 ∗ 102] on each
axis. Similarly, the average diagonal of NuScenes is 80 meters, so the distribution of
sampled noises is N (0, 0.01 ∗ 80) and clipped to [−0.05 ∗ 80, 0.05 ∗ 80].
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Table 1. Quantitative performance comparison of different registration methods on Se-
manticKITTI dataset and NuScenes dataset. The best results are marked in red color, and the
second best results are in blue color. The symbol ‘-’ means the results are unavailable.

Methods SemanticKITTI Nuscenes

RRE (deg) ↓ RTE (m) ↓ Recall ↑ Time (ms) RRE (deg) ↓ RTE (m) ↓ Recall ↑ Time (ms)

FGR 0.77± 0.44 0.26± 0.12 36.7% 506.1 1.14± 0.46 0.27± 0.12 19.6% 284.6

RANSAC 0.80± 0.45 0.22± 0.10 67.3% 549.6 0.78± 0.47 0.21± 0.10 74.2% 268.2

DCP 0.84± 0.46 0.30± 0.11 40.0% 46.4 1.04± 0.48 0.29± 0.12 38.9% 45.5

FMR 0.60± 0.34 0.22± 0.15 78.9% 85.5 0.64± 0.39 0.23± 0.11 75.3% 61.1

DGR 0.32± 0.25 0.17± 0.11 95.2% 1496.6 0.24± 0.22 0.15± 0.11 94.9% 523.0

HRegNet 0.23± 0.21 0.12± 0.10 96.9% 106.2 0.14± 0.08 0.07± 0.04 98.5% 87.3

Segregator 0.27± 0.18 0.12± 0.11 99.0% 150 - - - -

Ours 0.11± 0.10 0.09± 0.06 99.7% 83.9 0.05± 0.04 0.05± 0.03 100% 58.4

5.2 Evaluation Metrics

To determine the registration accuracy, we measure the deviation between the predicted
values and the ground-truth values by using the metrics of relative rotation error (RRE)
and relative translation error (RTE). RRE is computed as:

RRE = arccos
(
1

2
·
(
Tr
(
R−1

gt R̂
)
− 1
))

(17)

where Rgt and R̂ are the ground-truth and estimated rotation matrices, respectively. Tr
is a function for calculating the trace of a matrix and arccos represents the arc cosine
function. RTE can be calculated as:

RTE =
∥∥tgt − t̂

∥∥
2

(18)

where tgt and t̂ are the ground-truth and estimated translation vectors. Obviously, the
closer the RRE and RTE are to 0, the more accurate the predicted values.

After defining the error functions, we define the registration recall as the ratio of
successful registration, where a transformation is accepted as positive if the RRE and
RTE are within the thresholds ξr and ξt. We set ξr = 2(deg) and ξt = 0.5(m) as default
values in all of our experiments. We find that some failed registrations can cause dra-
matically large RRE and RTE, which will result in unreliable error metrics. Therefore,
we only calculate RRE and RTE for successful registrations. In addition, we also record
the mean and the standard deviation of RRE and RTE as the form of ± in the results.

5.3 Comparisons

We thoroughly compare our method against various registration competitive methods.
For traditional competitors, we select two representative global registration methods,
Fast Global Registration (FGR) [61] and RANSAC [13], because local registration
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Fig. 5. Visual comparison of different point cloud registration methods using SemanticKITTI
dataset. The first row shows the input source and target point clouds, and the second row shows
the ground-truth registration result. Then the results of all comparison methods are sorted by the
registration recall. The detailed comparisons are shown in the zoomed-in insets.
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Fig. 6. Visual comparison of different point cloud registration methods using NuScenes dataset.
The first row shows the input source and target point clouds, and the second row shows the
ground-truth registration result. Then the results of all comparison methods are sorted by the
registration recall.

methods like ICP usually fail to generate reasonable transformation if the source and
target are not initially aligned. FGR and RANSAC are implemented using Open3D li-
brary [62], where we need to compute the Fast Point Feature Histograms (FPFH)[40]
features in the same voxel size. In addition, we compare our method to four recent deep
learning-based methods, including Deep Closest Point (DCP) [44], Feature-metric Reg-
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istration (FMR) [23], Deep Global Registration (DGR) [9], and HRegNet [32]. Finally,
we compare with Segregator [51], which is a semantic global point cloud registration
framework using both semantic and geometric information. These methods provide a
plethora of comparisons to other techniques and establish themselves as state-of-the-
art methods. Not that Segregator’s code compilation, parameter configuration, and data
flow processing all focus on the KITTI dataset and do not support other datasets. There-
fore we only report the performance of Segregator on SemanticKITTI.

Fig. 5 and Fig. 6 show the qualitative comparison results on several scenes selected
from SemanticKITTI and NuScenes datasets, respectively. The numerical statistics of
each method on the whole dataset are reported in Table 1. From both qualitative and
quantitative comparisons, it can be seen that FGR generates large rotation and transla-
tion errors, and the registration recall is below 40% on SemanticKITTI and even worse
on the Nuscenes dataset. RANSAC can achieve a relatively good performance thanks to
its powerful outlier rejection mechanism, but it is still worse than most learning-based
methods except DCP.

As for the learning-based methods, the recall rate of DCP on SemanticKITTI and
Nuscenes dataset are both less than 40% and the average of RRE and RTE is quite
large. FMR performs well to some extent and its recall is more than 70% on both
datasets, however, it gets pretty large RRE and RTE compared to our methods. DGR
could achieve a quite good performance in terms of recall rate. But it is still far from
our methods in terms of RRE and RTE, because the voxel-based representation of point
clouds in DGR limits the accuracy of the registration. HRegNet obtains a similar av-
erage RTE to ours on both SemanticKITTI and NuScenes, while its average RRE is
more than twice as large as that of our proposed method. In terms of the recall rate, we
still outperform HRegNet. In addition, to pursue high registration accuracy, HRegNet
designs a quite complex neural network and consumes a large time and memory to train
the network. It also has to pre-train its key point detection module and feature extraction
module in two periods. We spent four days training HRegNet and it took less than two
days to train our network.

Segregator shares a similar idea with ours by exploiting both semantic information
and geometric distribution to build up outlier-robust correspondences and search for
inliers. It achieves a good recall rate, but the value of RRE is much worse than ours.
Besides, Segregator is a non-deep learning method and does not fully utilize the ability
of point feature learning. Finally, our method creatively introduces semantic constraints
into the deep registration process and achieves state-of-the-art performance compared
to previous alternatives.

5.4 Ablation Study

Finally, we conduct experiments on the SemanticKITTI dataset to evaluate the in-
fluence of different components of our designed network. To demonstrate the effec-
tiveness of semantic information for registration, we progressively add the proposed
modules to a baseline network, and prove the functionality of semantic-based FPS,
semantic-augmented feature extraction module and semantic-refined transformation es-
timation module, respectively. To build the baseline network, we use traditional FPS for
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Table 2. Ablation studies on SemanticKITTI dataset. The best result of each measurement is
marked in bold font.

Module RRE (deg) RTE (m) Recall
baseline network 0.33± 0.28 0.30± 0.12 37.6%
baseline+SFPS 0.28± 0.25 0.28± 0.12 52.8%

baseline+SFPS+SAFE 0.19± 0.18 0.22± 0.11 89.3%
baseline+SFPS+SAFE+SRTE 0.11± 0.10 0.09± 0.06 99.7%

points down-sampling, DGCNN [45] for feature extraction, and correspondence indi-
cator without semantic mask.
Semantic-based FPS. We validate the effectiveness of the semantic-based FPS (SFPS)
by comparing it to the conventional FPS. We divide the points in SemanticKITTI into
20 categories by remapping the original semantic label of points to 20 different kinds.
We exclude the moving-object categories because they will hinder the registration. As
shown in Table 2, the strategy of using SFPS slightly decreases the mean of RRE and
RTE, while improving registration recall by almost 15% than the baseline network.
Semantic-augmented feature extraction. After adding the SFPS module, instead of
using the popular DGCNN to embed high-dimensional features, we use our designed
semantic-augmented feature extraction module (SAFE) to learn point features. SAFE
can generate new features that encode both semantic and geometric information. Ac-
cording to the results, the SAFE module significantly improves registration recall from
52.8% to 89.3%, and makes great progress on RRE from 0.28± 0.25 to 0.19± 0.18.
Semantic-refined transformation estimation. To demonstrate the ability of the semantic-
refined transformation estimation module (SRTE), we compare it to the traditional rigid
transformation estimation approach. We find SRTE could not only improve the registra-
tion precision greatly but also speed up the training process. Our network can converge
within 60 epochs when using the proposed SRTE module and converge until 100 epochs
using the traditional transformation estimation module.
Impact of semantic label deterioration. Finally, we investigate the performance of
SARNet against semantic label deterioration, i.e., , we explore the impact of different
semantic segmentation accuracies on the performance of the entire registration network.
To this end, we gradually increase the noise ratio in the semantic label predicted by
SphereFormer [29] by randomly setting part of predicted true labels as ‘false’. Fig. 7
shows that as semantic segmentation accuracy decreases, the point cloud registration
accuracy also decreases, highlighting the effectiveness of semantic information in the
point cloud registration task. However, when the mean Intersection over Union (mIoU)
is greater than 60%, the proposed method can provide satisfactory registration results,
indicating the robustness of our method to semantic segmentation performance.

5.5 Limitations

We successfully applied our method for registering large-scale urban point clouds.
However, there still exist several limitations in our SARNet. First, our registration pro-
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Fig. 7. The impact of varying semantic segmentation accuracy on point cloud registration perfor-
mance. (a) and (b) represent the evaluation metrics on the SemanticKITTI and the Nuscenes test
set, respectively.

cess partially depends on good semantic segmentation. Therefore our registration accu-
racy drops when we can not obtain a good segmentation, especially for scenarios under
very challenging semantic mask deterioration (e.g., , when semantic segmentation ac-
curacy is lower than 40%, see Fig. 7). Therefore, we may have poorer generalization
performance compared to other geometric-only methods. Second, using semantic in-
formation can improve the registration accuracy for the testing scenes in which the
object classes are similar to the training set. Thus, object types that do not exist in the
training dataset can not be precisely segmented, leading to unsatisfactory registration
results. Fortunately, the semantic categories of common urban objects are limited, and
enriching the training dataset can partially solve this problem.

6 Conclusion and Future Work

In this paper, we have proposed a new deep neural network for large-scale outdoor
point cloud registration. Our key idea is to introduce semantic information to improve
both registration accuracy and efficiency. We design three neural modules for taking
full advantage of semantic information in points sampling, feature extraction, and rigid
transformation estimation. We demonstrate the effectiveness and advantages of our ap-
proach by ablation studies and comparing it to state-of-the-art methods on real-world
data.

In future work, instead of just using semantic information, we would like to con-
struct a more general registration framework that utilizes part-to-part structural corre-
spondences, such as planes or cylinders. In addition, we have verified the enhancement
of semantic segmentation for registration, and we will explore the possibility that point
cloud registration promotes the segmentation in turn. We intend to achieve iterative
promotion for both registration and segmentation.
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