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Abstract. Palette-based image recoloring is a popular image editing
technique in recent years. It allows users to perform global color edits
to an image by manipulating a small set of representative colors. Many
approaches have been proposed for palette extraction and palette-based
image recoloring. However, existing methods primarily leverage low-level
visual information to extract color palettes, so that different objects with
similar colors will share the same palette colors. It is impossible to in-
dividually recolor one of multiple objects with similar colors, as altering
a specific palette color may cause unwanted color changes to many non-
interesting objects. To address this issue, in this paper, we present a
novel, palette-based content-aware image recoloring approach. Different
from previous methods, we extract the color palette of an image in a high-
dimensional space that combines low-level visual features and high-level
semantic features, allowing generating separate palette colors for differ-
ent objects with similar colors. This enables users to perform targeted
local editing, i.e., distinguish and recolor objects with similar colors sep-
arately, without producing unexpected global color changes. Extensive
experiments demonstrate the flexibility, local control, and effectiveness
of our method.

Keywords: palette · recoloring · content-aware · semantic · local editing.

1 Introduction

Palette-based image recoloring has attracted increasing attention in recent years.
Many approaches have been proposed for palette extraction and recoloring, and
have demonstrated promising results in color editing. In these approaches, a color
palette consisting of a small set of colors is first extracted from the input image,
to characterize its color distribution. Subsequently, a predetermined mapping
function is employed to transfer the modifications made to the color palette to
⋆ Kun Xu is the corresponding author
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the entire image. So that users could easily adjust the image by modifying the
palette colors. These methods are generally efficient, easy to use and learn, and
can generate natural, artifact-free results.

Despite these advantages, a long-standing problem is that these methods are
limited to handle only global color editing while do not support content-aware
local color editing. For example, when an image comprises multiple objects with
identical or similar colors, users struggle to alter the color of one object without
impacting the others. The primary reason is that existing methods typically
extract color palettes in a low-dimensional color space (e.g., RGB or Lab color
space), objects with similar colors will share the same palette colors. Therefore,
modifying a palette color may cause all objects with similar colors to change
at the same time. Existing methods cannot distinguish different objects with
similar colors, nor can they recolor each of these objects separately.

To address this problem, in this paper, we present a novel, palette-based
content-aware image recoloring method. Our method contains two steps: color
palette extraction and content-aware recoloring. In the first step, unlike existing
algorithms that usually extract color palettes in 3D RGB or Lab color space,
we project the input image into a high-dimensional feature space that contains
both low-level visual information and high-level semantic information, and then
employ a variant K-means clustering to obtain the palette. So that different
objects with similar colors will be associated with different palette colors. In the
second step, we design a color transfer function to map the change of the color
palette to the whole image. In the color transfer function, the color change of
each pixel is defined as a weighted sum of palette color changes, while the weight
of a pixel with respect to a specific palette color is determined by their similarity.
Our approach is efficient and could generate desirable results that match user
edit intention. More importantly, it enables local and content-aware recoloring.

We have demonstrated the effectiveness of our method on extensive experi-
ments. Compared with existing methods, the contributions of our paper lie in:

– We propose to extract the color palette of an image in a high-dimensional
space that combines both low-level visual features and high-level semantic
features.

– With the extracted color palette, we design a color transfer function to map
the changes of palette colors to the whole image. Our approach enables
palette-based content-aware recoloring for the first time, allowing users to
perform targeted localized editing in complex scenes.

2 Related works

Image recoloring is a frequent operation executed by graphical designers. Its
purpose is to adjust the colors of an image to improve the quality, enhance the
artistic effects, or meet some specific design needs. Three types of methods have
been proposed for image recoloring, i.e., palette-based methods, stroke-based
methods (edit propagation), and example-based methods (style transfer). Next,
we will briefly review these three types of methods.
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2.1 Palette-based image recoloring

Palette-based image recoloring is a popular topic in image editing. It offers an in-
tuitive yet efficient solution for color adjustment. It enables users to interactively
change the color of an image by modifying a color palette.

The pioneering work of palette-based image recoloring was introduced by
Chang et al. [4]. They employed a modified K-means clustering to extract the
color palette of an image and mapped the changes of the color palette to the
entire image with a radial basis function weighted transformation. Similarly,
Zhang et al. [29] also used a similar clustering method to obtain the color palette,
but they represented image pixels as the weighted sum of palette colors through
optimization. During recoloring, the weights are fixed, and users modify the
palette colors to change the color of the image. A series of methods based on
convex hull in RGB space have been proposed for image recoloring. Tan et
al. [25] calculated the simplified convex hull of image colors in RGB space
and used its vertices as the color palette. They then decomposed the input
image into ordered layers corresponding to the palette colors. Users adjust the
image by modifying the layers or the color palette. Later, Tan et al. [23, 24]
proposed a more efficient method for palette extraction and image recoloring
using RGBXY space geometry. Wang et al. [27] further proposed an optimization
method to iteratively move the vertices (colors) of the simplified convex hull
(palette), to improve the compactness and representativeness of the color palette.
Du et al. [9] Extended the palette-based image recoloring to video scenario, and
achieved natural yet time-varying color editing. More recently, Chao et al. [5]
proposed the “ColorfulCurves” to achieve both color and lightness adjustment.
So that users can directly modify palette colors’ hue and saturation and per-
palette tone curves, or image pixels, to recolor the input image. However, when
different objects or regions have similar colors, their method can not recolor them
separately. Chao et al. [6] introduced an adaptive solution for recoloring under
arbitrary image-space constraints and automatically splits the image into soft
sub-regions with more representative local palettes when the constraints cannot
be satisfied.

All these methods extract color palettes of input images in RGB or Lab color
space. That is to say, they only leverage the low-level color information to obtain
the palettes. Different regions or objects that have similar colors necessarily share
the same palette color. Thus, modifying some palette color will inevitably result
in color changes of multiple regions or objects with similar colors. However, in
this paper, we extract the color palette considering both the low-level visual
color information and the semantic information. It enables the color palette
to incorporate specific semantic information, thereby effectively differentiating
between objects with similar colors.

2.2 Edit propagation (stroke-based image recoloring)

Edit propagation is a well-studied technique for image recoloring. It allows users
to put sparse edits directly onto the image, which are then automatically propa-
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gated to the rest of the image. This technique has been widely used in coloriza-
tion, color editing, material editing, etc.

The first edit propagation method was presented by Levin et al. [16] for
stroke-based grayscale image colorization. They started by converting the grayscale
image into the YUV color space, and assumed that pixels that have similar lumi-
nance (Y) values should receive similar chrominance (UV) values. Based on this
assumption, the colorization task is formulated as a quadratic energy optimiza-
tion problem and further reduced to solving a linear system. Later, Lischinski
et al. [18] introduced the idea of edit propagation into tonal adjustment and
achieved impressive results. Pellacini et al. [20] further extended this method
to edit measured materials. An et al. [3] proposed the first edit propagation-
based approach for color editing. They calculated the similarities in all pairs of
pixels to achieve distant propagation. All of the above methods require solv-
ing large-scale linear systems, which are computationally and storage expensive.
To speed up these algorithms and reduce the memory burden, Xu et al. [28]
proposed an efficient affinity-based edit propagation using a kd tree, which sig-
nificantly accelerates this algorithm and saves memory overhead. Li et al. [17]
formulated the edit propagation task as an interpolation problem with radial ba-
sis functions (RBFs), which first achieved real-time color editing. Recently some
deep learning-based approaches have proposed to edit propagation. The first
deep learning-based edit propagation method was proposed by Endo et al. [10],
termed “DeepProp", which utilizes a convolutional neural network (CNN) to ex-
tract high-dimensional features for edit propagation. Gui et al. [12] formulated
edit propagation as a multi-class classification problem and utilized a fully con-
volutional network capable of end-to-end training to extract visual and spatial
features and predict the resulting image. These methods are sensitive to user
edits and cannot generate results in real-time.

Edit propagation-based approaches typically require users to make density
fine-tuned edits, and cannot enable content-aware color editing. Our method
only requires users to manipulate a small set of colors to adjust the appearance
of an image. Moreover, it can achieve content-aware recoloring.

2.3 Style transfer (example-based image recoloring)

Style transfer is another widely researched method for image recoloring, which
involves transferring the colors from a reference image to a target image.

A bunch of methods have been proposed for style transfer. For instance,
Reinhard et al. [22] mapped the style from the reference image to the target
one by aligning their color distributions. Neumann et al. [19] employed a 3D
histogram matching technique for color transfer, enabling natural results even
when the correspondence between the reference and target images is faint. Pitie
et al. [21] developed a continuous transformation that maps one n-dimensional
distribution to another, effectively transferring color between two images with
varying content. However, these methods primarily focus on low-level visual
features, which may lead to significant artifacts when the reference and target
images are considerably different. In recent years, deep learning-based algorithms
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have made substantial advancements in the field of image style transfer. Notable
examples include CNN-based style transfer algorithms such as [11, 26] and GAN-
based style transfer algorithms like [8, 30]. These techniques take into account
semantic feature correspondence between the reference and target images.

Despite the style transfer is powerful, these approaches offer limited editing
controls to users beyond the selection of the reference image. Furthermore, these
methods focus on global color editing rather than object-level color adjustment.
Whereas palette-based approaches make a better balance between user control
and convenience, and support color editing for local objects.

tablecloth

coat

background

basketball

K-means

Neural networkInput image Semantic features 8D feature points
Extracted & modified 

palettes
Edited image

Fusion of semantic (3D), color (3D) & position (2D) information

1. Palette Extraction 2. Content-aware recoloring

Fig. 1. The pipeline of our approach. Given the input image, we first feed it into a
neural network to obtain per-pixel semantic features. Next, we combine it with color
and position information, and project them into an 8D feature space, followed by a
K-means clustering to extract the palette. Finally, the user modifies the palette colors
to locally adjust object colors. In the input image, the man’s coat and tablecloth have
a similar red color. It is challenging to recolor them separately with existing palette-
based methods. Our palette successfully extracts two similar red colors that correspond
to the coat and the tablecloth, respectively, so the user can easily recolor the coat and
the tablecloth into different colors.

3 Method

3.1 Overview

The goal of our method is two folded. First, we would like to extract a color
palette that can effectively capture the dominant colors of different objects or
regions in the input image, so that each palette color can be associated with a
specific object or region. Second, we would like to achieve content-aware color
editing based on the extracted palette.

Hence, our method could be naturally divided into two stages. The first stage
is palette extraction (Section 3.2). We first extract per-pixel semantic features
from the input image using a neural network. Then, we project the input image
into a high-dimensional feature space that incorporates semantic, color, and loca-
tion information, so that each pixel is regarded as a vertex in this feature space.
Finally, we acquire the color palette with a modified K-means clustering method.
The second stage is content-ware recoloring (Section 3.3). This is achieved by
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performing a color transfer function to map the changes of the palette colors to
corresponding objects or regions of the input image. The pipeline of our method
is illustrated in Fig. 1.

3.2 Palette extraction

Our palette extraction algorithm takes an image along with the palette size
as input and outputs a palette. Generally, it consists of two steps, i.e., high-
dimensional feature space construction and palette extraction with K-means.

High-dimensional feature space construction In this paper, we first utilize
the method proposed by Aksoy et al. [2] to generate per-pixel semantic features
of the input image. In their work, they designed a feature extractor based on
DeepLab-ResNet-101 [7], and cascaded with metric learning [14], to generate
features that are as similar as possible if they belong to the same class, and
distant from each other otherwise. This feature extraction network takes an
image as input and generates a 128-dimensional feature vector for each pixel,
and has shown impressive results in semantic segmentation of images.

To remove redundant data and reduce computational overhead, we adopt
principal component analysis (PCA) [15] to reduce the dimension of feature
vectors from 128 to 3. We visualize the reduced semantic feature map as a three-
channel color image and find that it contains some unwanted noise. To reduce
noises, we further smooth the extracted semantic features by guided filtering [13]
which takes the grayscale image of the input as the guiding image, to better
preserve the edges of objects or regions during smoothing. We provide such an
example in Fig. 2. From the results, we could find that the features extracted
by the neural network are intuitive and can roughly reflect the semantics of
different objects in the image. The initial semantic feature image contains a
lot of noise, while the filtered feature image is smoother and the boundaries of
different objects can be well preserved.

(a) (b) (c) (d)

Fig. 2. Visualization of initial and filtered semantic feature maps. (a) Input, (b) Initial
semantic feature, (3) The guiding image, (d) Filtered semantic features.

To facilitate the color palette to effectively capture different objects or regions
in the image and their representative colors, we project the input image into a
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high-dimensional feature space for palette extraction. Specifically, we build an 8D
feature space that combines semantic, color, and location information together.
So any pixel Ii in the input image can be viewed as an 8D point:

pi =
(
ri, gi, bi, xi, yi, f

1
i , f

2
i , f

3
i

)
(1)

Where (ri, gi, bi), (xi, yi) and
(
f1
i , f

2
i , f

3
i

)
are the color, location and semantic

features of pixel Ii, respectively. Therefore, the input image can be naturally
regarded as a point set in this 8D feature space.

Palette extraction with K-means Next, we employ K-means clustering to
extract the palette of the input image. However, directly performing clustering
on all pixels is computationally expensive. To speed up, we adopt a classical
superpixel segmentation method, i.e., Simple Linear Iterative Clustering (SLIC)
[1], to segment the input image into superpixels and use their centroids as the
sampling points. Subsequently, we perform K-means clustering on these sampling
points.

It is well known that the K-means algorithm is sensitive to the initial cluster
centers. To get better initial values, we utilize a similar algorithm to farthest
point sampling to choose the initial k cluster centers. The input of the algorithm
includes: the sampling point set that contains the centriods of all superpixels
P = {pi}, and the desired number of palette colors (i.e., desired number of
clusters) k. The output is the initial cluster center set C later used for K-means.
Initially, C = ∅. The algorithm performs as follows:

1) For each sampled point pi ∈ P , assign it a saliency value φi = ni, where ni

denotes the pixel count of the superpixel where pi is located.
2) Select the point pi ∈ {P −C} with the largest saliency value and add it into

the clustering center set C.
3) Update the saliency value of all candidate points by:

φj =
(
1− exp

(
−∥pi − pj∥2

))
· φj , (2)

where pi is the newly selected point and pj iteratives over all sampled points.
4) Return to 2) until k points are selected.

Once the initial cluster center set C = {Ci} is determined, we perform K-means
clustering on the sampling point set P for further refinement of C.

In the clustering process, the distance d (pi, Cj) from a point pi to a clustering
center Cj is defined as the weighted sum of a color term, a location term and a
semantic term:

d (pi, Cj) = θcd
(
pRGB
i , CRGB

j

)
+ θpd

(
pXY
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)
+θsd
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F
j

)
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(
pRGB
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)
, d
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j

)
and d

(
pFi , C

F
j

)
denote the L2 distance

of color, location and semantic feature between pi and Cj , respectively. θc, θp
and θs denote the relative contributions of these three terms, respectively. We
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empirically set θc = 1.0, θp = 0.2 and θs = 5.0 in our experiments. Finally, the
converged cluster centers C = {Ci} is the palette we need for the input image.

The algorithm mentioned above is presented in Algorithm 1. Note that we
have actually extended the original definition of a color palette. In our method,
each entry of a palette contains a 8D feature (i.e., 3D color + 2D location + 3D
semantics), which no longer solely represents a color, but also includes location
and semantic information. For the sake of clarity, we will continue to refer to it
as the color palette in this paper. Such an extended palette enables performing
content-aware recoloring.

Algorithm 1 Palette Extraction
Input:

an image I and the palette size k
Output:

an 8D palette C = {C1, C2, · · ·Ck}
1: build an 8D vector (3D color + 2D location + 3D semantics) for each pixel (Eq. 1)
2: segment the input image into superpixels S and sample a set of points P
3: let C = ∅
4: assign each sampled point pi a saliency value ϕi = ni

5: while not all k seeds are determined do
6: Select the point pi ∈ {P −C} with the largest saliency value and add it into the

clustering center set C.
7: update the saliency value of all candidate points (Eq. 2)
8: end while
9: perform K-means clustering on all pixels with the seeds C

10: return the converged centers as the palette of the input image

3.3 Content-aware recoloring

In this section, we design a color transfer function to map the changes of the
palette colors to the input image. Our color transfer function mainly follows the
principle of similarity, i.e., when a palette entry is changed during recoloring,
the colors of objects or regions that are semantically, chromatically, and spatially
similar to it will change accordingly, while other irrelevant objects or regions will
be kept as unchanged as possible. Specifically, for any pixel Ii (its corresponding
8D feature point is pi), its edited color I ′i is defined as:

I ′i = Ii +

k∑
j=1

wpi

j

(
C ′

j − Cj

)
0:3

and
k∑

j=1

wpi

j = 1 (4)

Where k is the palette size, Cj and C ′
j are the j-th palette entry before and

after modifying, (·)0:3 denotes the color component of an 8D vector, wpi

j ∈ [0, 1]
denotes the similarity weight of pi with respect to the palette entry Cj .

Before defining wpi

j , we first define a similarity function Sj(x) for any palette
entry Cj , to measure the similarity between any pixel x and it. It is defined as
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a linear combination of a set of radial basis functions:

Sj(x) =

k∑
i=1

λj,iϕ (x,Ci) (5)

Where λj,i is the coefficient to be solved, and ϕ (x,Ci) is a radial basis function
which is defined as the product of three Gaussian kernels:

ϕ(x,Ci) = exp

(
−
(
xRGB − CRGB

i

)2
2σ2

c

)
· exp

(
−
(
xXY − CXY

i

)2
2σ2

p

)
·

exp

(
−
(
xF − CF

i

)2
2σ2

s

) (6)

These three kernels are used to measure the color, location and semantic
similarity between x and Ci, respectively. σc, σp and σs denote the corresponding
standard deviation of color, location and semantic feature, respectively. This
is derived by calculating the average of the colors, coordinates and semantic
features of all palette entries.

We design this radial basis function (Eq. 6) based on the idea that the simi-
larity between a pixel and a palette entry should be determined by a combination
of their colors, positions and semantic features. From the definition, we could
know that x and Ci are similar if and only if all their features are close.

We would like to constrain that Sj(x) = 1 if x = Cj , and Sj(x) = 0 if
x = Ci ̸=j . That is to say, each entry in the palette is most similar to itself
(with a similarity of 1) and least similar to other entries in the palette (with
a similarity of 0). Given the constraints, we can build a linear system with k2

equations, and the coefficients λj,i(j, i ∈ 1, 2, · · · k) in Eq. 5 can be efficiently
obtained by solving this linear system.

Once the similarity function of each palette entry is determined, the similarity
weight wpi

j could be obtained through:

wpi

j =
Sj (pi)∑k
j=1 Sj (pi)

(7)

During recoloring, the semantic and location components of each palette entry
are fixed, and users are allowed to modify the color components of the palette
entries to adjust the appearance of the input image. When users modify a palette
color, only objects or regions that are semantically close to it (belonging to the
same class of objects), similar in color, and close in position will have color
changes, thus achieving good local control in color editing. The process of image
recoloring is presented in Algorithm 2.

4 Experiments

We perform all experiments on a desktop computer with an Intel i7-11700
2.5GHz CPU and 16 GB RAM. Our algorithm is implemented in C++ language.
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Algorithm 2 Image Recoloring
Input:

an image I, the palette C, the modified palette C′

Output:
the recolored image I ′

1: solve for the coefficient λj,i of the similarity function (Eq. 5)
2: determine the similarity weights of each pixel to the palette entries (Eq. 7)
3: generate the recolored image (Eq. 4)
4: return the recolored image I ′

recolored image

original image

0

1

2

Open Image & Semantic map Extract Palette 3 Calculate Weights

Import Palette Export  Palette Export  Recolored Image

Hue

Saturation

Value

Red

Green

Blue

Alpha

Hex #2B7B3B

132

Image Recoloring Tool

Import and Export

Fig. 3. Our recoloring GUI. Which presents the original and modified color palettes
on the left, and the original and recolored images on the right. The numbers below the
palette colors correspond to objects or regions in the original image. The color picker
(lower left) is used to change the palette colors.

We employ the source code provided by Aksoyet al. [2] to extract per-pixel se-
mantic features from an input image. Besides, we developed a GUI for interactive
recoloring using Qt as shown in Fig. 3.

4.1 Results

We generated four recoloring results with our method in Fig. 4. For each example,
we provide the input image, the extracted and modified palettes (modified colors
are marked with red underlines), and the recolored result. All these examples
contain objects or regions with similar colors, and our method is able to modify
them to different colors. For example, in Fig. 4 (a), our palette captures two
similar blue colors of the sky and balloon, and we can separately alter the sky’s
color to cyan and change the blue regions in the balloon into purple. In Fig. 4
(c), our method extracts the dominant colors of multiple yellow objects, and
successfully recolored them into different colors. Note that while there may be
several entries with very similar or identical colors in the palette (e.g., the palette
below the input image in Fig. 4 (c)). This is because each entry in the palette is
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Fig. 4. Recoloring results generated by our method.

in fact an 8D vector, and the semantic and location components of these entries
may be quite different.

4.2 Evaluation

Evaluation of weight parameters in distance measurement. Here, we
evaluate the weighting parameters of the distance metric function (Eq. 3) in the
K-means clustering, including the weight of the color term θc, the weight of the
location term θp and the weight of the semantic term θs. We give an example in
Fig. 5, and provide the extracted palettes and corresponding weight maps with
different parameter settings. The results generated with the default parameters
(θc = 1.0, θp = 0.2, θs = 5.0) are presented in the first row. Followed by the
results generated by adjusting θc, θp and θs, respectively. When evaluating one
parameter, others are fixed to default values.

Here, a weight map wi can be viewed as a single-channel grayscale image of
the same size as the input image I and is associated with a palette entry Ci.
Where any pixel’s color wp

i ∈ [0, 1] equals the weight of Ip to Ci (Eq. 7).
From the definition of the color transfer function (Eq. 4), the weight map

actually denotes the regions affected by the corresponding palette entry during
recoloring. In theory, we expect each weight map to contain only a single object
with similar semantics and colors, so that this region can be accurately edited
by modifying the corresponding palette color.

For θc, a small value usually causes the palette entry to affect a larger region
containing pixels with quite different colors (i.e., the 2nd weight map in row 2
contains both yellow hair and red skirt), while a larger value leads to the region
contains multiple semantically different objects (i.e., the 3rd weight map in row
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𝜃𝑐 = 0.3

𝜃𝑐 = 10

Default parameters：𝜃𝑐 = 1.0, 𝜃𝑝= 0.2, 𝜃𝑠= 5.0

𝜃𝑝 = 10

𝜃𝑠 = 1

𝜃𝑠 = 10

Param. setting Extracted palette & corresponding weight maps

Input

Fig. 5. Parameter evaluation.

3 contains both the red skirt and the red carpet). For θp, a larger value leads
to the same object being scattered across multiple weight maps, thus it will
be affected by multiple palette colors during recoloring (i.e., the background is
divided into two parts in the last two weight maps in row 4). For θs, a small
value leads to the region containing different objects (i.e., the 3rd weight map
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in 5 contains both the red skirt and the red carpet), while a larger value usually
leads to better results.

In summary, the default values of these parameters could generate the most
satisfactory palettes and weight maps.

d
im

 =
 1

d
im

 =
 3

d
im

 =
 5

Input

Weight maps generated by reducing semantic feature to different dimensions

Fig. 6. Evaluation of the semantic feature dimension.

Evaluation of the dimension of semantic features. Here we reduce per-
pixel’s semantic feature from 128D to different dimensions (dim = 1, 3, 5), and
combine the color and location information to build a high-dimensional feature
for each pixel, and finally perform K-means to extract the palette. In Fig. 6,
we expect to extract a palette consisting of 4 entries that correspond to the
sky, trunks and branches of the trees, and the earth. We provide weight maps
generated using semantic features of different dimensions. It can be seen that
using lower dimensional semantic feature cannot accurately distinguish between
different objects (e.g., the 2nd weight maps in rows 1). In contrast, using higher
dimensional semantic feature yield more accurate distinctions. In this example,
it yields improved results when the dimension of the semantic feature is 3 or
higher. To reduce storage overhead and effectively differentiate the semantics of
various objects, we use the 3D semantic feature along with the 3D color and 2D
location as the feature of each pixel.

4.3 Comparisons
Comparison of palettes and weight maps. We first compare the palettes
and corresponding weight maps generated by Chang et al. [4] (1st row), Tan
et al. [23] (2nd row), Wang et al. [27] (3rd row) and our method (4th row)
in Fig. 7. In this example, the banana and background share a similar yellow
color. Existing methods fail to separate them in weight maps. For example,
in the 1st weight map in Chang et al. [4], in the 4th weight map in Tan et
al. [23], and in the 4th weight map in Wang et al. [27]), both the banana and
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Fig. 7. Comparison of color palettes generated by different algorithms.

upper background are included in the same weight map. This means users can’t
edit them individually. In contrast, our palette captures three primary objects
much better: the banana’s yellow, the upper background’s yellow, and the lower
background’s blue, are presented in three separate weight maps. This allows
users to edit the colors of these objects separately during recoloring without
affecting each other.

Comparison of recoloring results In Fig. 8 and Fig. 9, we show more recol-
oring examples to compare our method against approaches proposed by Chang
et al. [4], Tan et al. [23], Wang et al. [27] and Chao et al. [5]. For each example,
we give the input, two editing intends (red and blue texts below the input),
the extracted palettes (1st row), the recoloring results generated by different
methods, and the modified palettes (below the recolored images). The changed
palette colors are marked with red underlines.

All provided examples contain at least two objects with similar colors. It
is challenging for existing palette-based methods to recolor these objects in-
dividually. While our method could effectively capture the dominant features
(semantics + color + location) of different objects with similar colors, which
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Fig. 8. Comparison of recoloring results of different methods.
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thus generates better recoloring results. For example, in Fig. 8 (a), the teddy
bear, the chair, and the upper light share similar yellow colors. The two edit
intentions given are 1) to change the bear’s color to light blue and 2) to change
the bench’s color to light yellow. Existing methods struggle to recolor them sep-
arately without affecting each other, our method accurately recolors them to
different colors, aligning well with the user’s intent. In Fig. 8 (b), the man’s
shirts, the TV, and the table have similar colors. When changing the color of
a table to beige, existing methods make all these objects’ colors unexpectedly
beige. Our method successfully adjusts the color of the table without affecting
other non-interested objects. In Fig. 8 (c), the input image depicts a beautiful
view of the sea melted into the sky. Users want to 1) make the sky’s color clear
blue and 2) muddy the sea. Existing methods cannot distinguish the sky and the
sea effectively, when modifying the sky, the color of the sea changes accordingly
and vice versa. Our method better fulfills the user’s intention.

Comparisons show that our approach has natural advantages in content-
aware recoloring. This is primarily due to the palettes extracted from the high-
dimensional feature space contain semantic information. As a result, each palette
entry corresponds to a specific object or region. This makes content-aware image
recoloring possible.

5 Conclusion, Limitation and Future work

In this paper, we have presented a novel palette-based approach that enables
content-aware image recoloring for the first time. To achieve this goal, we first
extract the palette of an image in a high-dimensional feature space which fuses
the semantic, color and spatial information. This makes our color palette con-
tain semantic information and enables each palette entry to correspond to a
particular object or region. We then transfer the changes of palette colors to the
input image through a color transfer function. Our method is simple and easy
to implement, making it useful for users to perform content-aware local editing.
Extensive experiments have demonstrated the effectiveness of our method.

Our method still has two primary limitations to be further improved. First,
currently, the palette size k needs to be specified by the user. A color palette
with numerous hues might make it challenging to semantically distinguish be-
tween different objects, while a limited palette size may result in the inability
to accurately represent the colors of certain objects. Therefore, determining the
appropriate size of the color palette may require users to invest some time in
experimentation. We provide such a failure case in Fig. 10. In the future, it is
desirable to explore ways to automatically determine the palette size, by consid-
ering both color diversity and semantic complexity of the input image. Second,
the accuracy of our palette extraction algorithm builds on top of a semantic
feature detection neural network while it is not always accurate, especially for
complex scenes. In the future, we would like to explore adaptive palette extrac-
tion, and detect semantic features with a more advanced neural network to make
the palette extraction and recoloring more robust.
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Fig. 9. Comparison of recoloring results of different methods.
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