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Abstract. The task of temporal sentence grounding aims to localize the target
moment corresponding to a given natural language query. Due to the large burden
of labeling the temporal boundaries, weakly-supervised methods have drawn in-
creasing attention. Most of the weakly-supervised methods heavily rely on align-
ing the visual and textual modalities, ignoring modeling the confusing snippets
within a video and non-discriminative snippets across different videos. Moreover,
the error-prone caused by the sparsity of video-level labels is not well explored,
which brings noisy activations and is not robust to real-world applications. In
this paper, we present a novel Denoised Dual-level Contrastive Network, namely
DDCNet, to overcome the above limitations. Particularly, DDCNet is equipped
with a dual-level contrastive loss to explicitly address the incomplete predictions
by simultaneously minimizing the intra-video and inter-video loss. Moreover, a
ranking weight strategy is presented to select high-quality positive and negative
pairs during training. Afterward, an effective pseudo-label denoised process is in-
troduced to alleviate the noisy activations caused by the video-level annotations,
thereby leading to more accurate predictions. Comprehensive experiments are
conducted on two widely used benchmarks, i.e., Charades-STA and ActivityNet
Captions, manifesting the superiority of our method in comparison to existing
weakly-supervised methods.

Keywords: Temporal sentence grounding · Weakly-supervised learning · Con-
trastive learning · Video denoising.

1 Introduction

Temporal sentence grounding aims to localize the temporal boundaries of the target
moment that semantically corresponds to the given language query. As a fundamental
vision-language problem, temporal sentence grounding has attracted extensive attention
due to its broad applications, including surveillance [10], video summarization [25], and
so forth. With the rapid development of deep learning technologies, fully-supervised
methods [6] have made tremendous achievements in recent years, where precise tem-
poral boundaries of each query are required for the model training. However, such man-
ually eye-watching annotations are laborious and time-consuming, leading to expensive
annotation costs. In addition, labeling temporal boundaries corresponding with the spe-
cific query is usually subjective and ambiguous, which narrows its scalability and prac-
ticability potential in real-world scenarios. Therefore, the weakly-supervised learning
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schemes, where only video-level natural language queries are needed, have rapidly at-
tracted much more research interest due to the low annotation cost and time efficiency.

To identify the target moment that best matches the given query, it becomes crucial
to improve the snippet-wise feature discrimination ability of various video snippets.
Generally, the snippet-wise feature embedding space is expected to satisfy two prop-
erties: 1) the most relevant video snippet with the given query should be distinguished
from the other snippets within a video, i.e., intra-video separability; 2) video snippets
and queries with similar semantics should be closer than those of different semantics,
i.e., intra-semantic compactness & inter-semantic separability. This has raised sev-
eral studies exploring contrastive learning [21, 48, 49, 5, 23] to foster feature discrim-
ination. Fig. 1 shows different contrastive learning schemes and their distinction with
our proposed method. As illustrated in Fig. 1 (a), their focus is mostly on intra-video
separability. After performing query-guided attention, snippet-wise target moments are
pushed away from their backgrounds within a video. They unfortunately fail to capture
the inter-semantic separability and discard the useful “global” contrast across differ-
ent videos. In Fig. 1 (b), another type of effort strived to consider the matched and
mismatched video-language pairs and engage them in the feature contrastive training
process. Due to the uncertainty of sampling quality, this method would inevitably give
rise to suboptimal performance of sentence grounding.

Due to the lack of frame-level temporal boundaries, snippet-wise pseudo-labels are
often used to provide fine-grained supervision. For example, WSLLN [15] designs a
parallel network with an extra surrogate module to generate pseudo labels, which will
further encourage competition among candidate proposals and foster the feature dis-
crimination. This also led to several pioneer studies exploring self-supervised learning
[23], temporal adjacent network [37], pseudo-query generation [27] to refine the pre-
dictions. In spite of promising performance, the paradigm is easy to generate noisy
activations, i.e., false positives and false negatives in the learned feature space. Most of
the existing weakly-supervised temporal sentence grounding methods rely heavily on
the pseudo-label strategy to provide refined supervision but do not explicitly handle the
label noise.

To address the aforementioned problems, we propose a novel weakly-supervised
method namely Denoised Dual-level Contrastive Network (DDCNet), by incorporating
the label denoising process into video-language alignment under the constraints of intra-
video and inter-video contrastive losses. DDCNet is reconstruction-based, dual-level
contrast, and noise-label robust. As illustrated in Fig. 1 (c), for each video-language
pair, we force the network to disentangle the query-related snippets (foreground) and
other irrelative snippets (background) within a video. To attain the discriminative pro-
posals in each video, we devise a margin ranking based intra-video contrastive loss to
distinguish the foregrounds from backgrounds from easy to hard. Then all foreground
and background representations among different videos are collected to engage in inter-
video contrastive learning. As the natural language description is diverse and subjec-
tive, only foregrounds with similar semantic information or backgrounds with similar
contexts can make a positive effect. In this case, we propose a similarity-based rank
weighting module to reduce the impact of dissimilar positive pairs, and enhance the
positive impact of similar pairs. Furthermore, to mitigate the negative influence of noisy
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Fig. 1. Different contrastive learning schemes. (a) Exploiting intra-video separability to sep-
arate the target moments away from their backgrounds within a video. (b) Exploiting intra-
semantic compactness & inter-semantic separability within minibatch to contrast the matched
and mismatched video-language pairs. (c) Our denoised dual-level contrastive algorithm with
1) intra-video contrast, 2) inter-video contrast and 3) pseudo-label denoising module. The stars
stand for the video features, and squares stand for the query features. Different colors indicate
different videos or queries (better viewed in color).

pseudo-labels that are omnipresent in weakly-supervised methods, a determinant-based
denoised loss is designed to generate reliable pseudo-labels and suppress the noisy ac-
tivations. The denoised loss, on the other hand, is capable of encouraging a more robust
joint feature space by enhancing the mutual information (MI) between query-related
activations and pseudo-foreground within a video. To this end, the uncertainty of pre-
dictions is reduced, leading to more accurate predictions.

Our contributions are summarized as follows:

– We introduce a novel denoised dual-level contrastive network, named DDCNet, for
the problem of weakly-supervised temporal sentence grounding. To the best of our
knowledge, we are the first to explicitly address the pseudo-label noises that are
omnipresent in weakly-supervised methods.

– We present a dual-level contrastive loss to enhance the discriminability and com-
pleteness of the target moment. By disentangling each untrimmed video into query-
related foreground and irrelevant backgrounds, our proposed method achieves intra-
video separability, intra-semantic compactness and inter-semantic separability si-
multaneously.

– We design a pseudo-label noise removal process to guarantee the robustness of
temporal sentence grounding. In contrast to ignoring noisy activations in feature
interaction, our method reduces the negative impact and achieves refined predic-
tions.

– Comprehensive experiments are performed on Charades-STA and ActivityNet Cap-
tions datasets, which demonstrate the effectiveness of our DDCNet when compared
with existing weakly-supervised methods.
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2 Related Work

2.1 Weakly-supervised Temporal Sentence Grounding

Weakly-supervised temporal sentence grounding is becoming more attractive due to its
practical effects in reducing the burden of collecting frame-level annotations. Past ef-
forts can be categorized as either multi-instance learning (MIL) based methods [26, 15,
38, 37, 24, 47, 39] or reconstruction-based methods [12, 21, 48, 49, 32]. The MIL-based
methods treat an untrimmed video as a bag of instances with video-level query anno-
tations, and typically learn to predict temporal boundaries with a triplet loss. Among
them, TGA [26] first presents a text-guided attention to optimize the video-text align-
ment space. WSLLN [15] jointly learns the cross-modal alignment and discriminative
proposal selection. Follow-up works expand the MIL-based framework by designing
sophisticated cross-modal modules [38, 37, 33], proposing proposal selection strategies
[24, 47], or building effective objective functions [11, 39, 43]. However, these MIL-
based methods heavily rely on the quality of randomly-selected negative pairs, and can-
not provide enough strong supervision signal. In contrast, reconstruction-based methods
aim to select moments that can reconstruct the given language query, and use the inter-
mediate results for predicting temporal boundaries. Based on this concept, SCN [21],
where masked words and predicted moments are fed to reconstruct the origin query,
assuming localized moments should be able to accomplish those important words. Be-
sides, CNM [48] and CPL [49] recently introduce a learnable Gaussian mask to gener-
ate high-quality positive and negative proposals, which highly improves the grounding
performances due to the superiority of content-related proposal generation. Inspired by
such advances, our approach takes a further step to explore the denoised contrastive
learning from a large number of weakly annotated videos, which fosters the discrimi-
nation and robustness from both intra-video and inter-video aspects.

2.2 Contrastive Representation Learning

Contrastive learning presents a remarkable performance due to its great potential ca-
pability for un-/self-supervised representation learning [31, 40, 34]. These approaches
seek to learn such an embedding feature space in which similar (or positive) sample
pairs should be pulled together while dissimilar (or negative) ones are pushed apart.
Some approaches even achieve favorable performance without engaging negative pairs
[3, 16, 8]. Following the success of contrastive representation learning, some recent ef-
forts are making an attempt to adapt such a paradigm into the video domain. For in-
stance, VideoMoCo [28] employs the image-based MoCo method for video represen-
tation, which largely improves the temporal representation capability for video-related
tasks. In video grounding task, AsyNCE [11] proposes to reduce the impact of the
false positives by leveraging flexible AsyNCE loss, encouraging effective communica-
tion between cross-modal interaction for weakly-supervised grounding. To improve the
training efficiency, CCL [47] develops a counterfactual contrastive framework, which
verifies the effectiveness and robustness of vision-language grounding. However, these
methods are mostly based on NCE loss and its variants, while other types of loss formu-
lation have not been well explored. Different from these approaches, in this paper we
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Fig. 2. The overall framework of our DDCNet. The focus of our method is to jointly enhance
the discriminability and completeness of latent moment embeddings and addresses the pseudo-
label noisy omnipresent in weakly-supervised learning. The upper stream (a) presents our method
trained with dual-level contrastive loss, which consists of an intra-video and inter-video con-
trastive loss to optimize the proposal generation module P . In the bottom stream (b), we pro-
pose a denoised algorithm aiming to reduce the impact of noisy activations in temporal sentence
grounding. Besides query reconstruction loss Lrec in R, the network is trained jointly using loss
terms Lintra,Linter and Ld.

perform contrastive learning on weakly-supervised temporal sentence grounding with
both intra-video and inter-video contrast, and achieve compelling results both quantita-
tively and qualitatively.

3 The Proposed Method

3.1 Problem Formulation

Given a pair of untrimmed video and associated language query (Vi, Qi), where Vi and
Qi separately represents a video and the corresponding language query. The goal of
weakly-supervised temporal sentence grounding is to ascertain a moment τ that tempo-
rally matches the query Qi with only the video-level annotation given. More specif-
ically, we denote the input video as a frame sequence with lV snippets, termed as
Vi = {vt}lVt=1, where vt represents the video snippet at timestamp t. Similarly, the
associated language query can be represented as Qi = {wj}lSj=1, where wj and lS rep-
resent the j-th single word in the language and the number of total words. Under this
primary notation, our model is to learn a mapping function for predicting the moment
boundary with parameter Θ, which can be formulated as follows:

fΘ : (Vi, Qi)→ (τs, τe) , τs < τe,

where τs and τe indicate the indices of the start and end timestamp of the predicted
boundary, respectively.
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3.2 Visual-Text Feature Extraction

Before generating more expressive representations, we first embed the given video and
its corresponding language query into a continuous high-dimension feature space. For
each video, we employ a pretrained feature extractor (e.g., C3D [35] or I3D[4]) to ex-
tract video representations V and then apply the temporal pooling operation on them
to reduce the feature dimension. Here the extracted video features can be represented
as V = {V1, V2, . . . , VlV } ∈ RlV ×dV , where dV stands for the video feature dimen-
sion. As for the language query, we employ the GloVe [29] model to obtain the query
embedding with respect to each word. In this case, the query embedding can be natu-
rally represented as Q = {Wi,W2, . . . ,WlS} ∈ RlS×dQ , where dQ denotes the query
embedding dimension. It’s worth noting that we didn’t finetune the pretrained feature
extractor on the given untrimmed video datasets in order to guarantee a fair comparison
with existing proposed methods.

3.3 Gaussian-based Proposal Generation

Following the standard practice, we utilize a Gaussian-based mask generator P [48]
to generate high-quality proposals with query-related semantics. Inspired by the recent
success of Transformer [36], we first use the multi-head attention module to capture
long-range semantic representations from the query, dubbed as F = MHA(Q), and
then arrive at fused hidden feature H that incorporate both video and query semantics,
given by

H = TransEncoder(V, F,V) ∈ RlV ×dH , (1)

where TransEncoder(·) represents a Transformer-based encoder architecture, and dH
denotes the feature dimension. As H combines both semantic and vision information,
we predict the center and width of our target proposal through a fully connected layer
followed by a Sigmoid calculation, which can be denoted as Gc and Gw respectively.
Afterwards, the Gaussian-based mask can be derived as

ϕp(i) = exp

(
−α(i/N −Gc)

2

G2
w

)
, i = 1, . . . , N (2)

where ϕp(i) represents the probability of the i-th video snippet being the foreground
proposal in the Gaussian mask, and α denotes a hyperparameter that controls the vari-
ance of the Gaussian curve.

To obtain more complete predictions, we encourage to produce K Gaussian masks
through a multi-branch module. To avoid the branches lazily concentrating on the same
video snippet, a diversity loss is imposed on them:

Ldiv =
1

K

K∑
k=1

max

(∥∥∥ϕpϕp> − I
∥∥∥2
F
− b, 0

)
, (3)

where K is the hyperparameter, b is a balance vector that controls the extent of overlap
between different masks. After that, we average K Gaussian masks to obtain the final
proposal:

ϕavg =
1

K

∑
ϕpk(i). (4)
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In this case, the average mask captures and combines different action parts, effectively
encode the entire action.

3.4 Intra-video Contrastive Learning

Although we have obtained a series of content-based proposals based on the Gaussian
generation module, there still exist a few highly-confusing snippets inside the video
that puzzle the generator, thereby leading to inaccurate boundary prediction. To enable
the generator more distinguishable, we study the intra-video contrastive representation
learning with both easy and hard negative snippets. Intuitively, we regard ϕe = (1 −
ϕp) ∈ RN as the easy negative sample, which corresponds to those video snippets that
mostly do not match the given query. As for the hard negative sample, we refer to the
entire video as it contains overlapping snippets with both foregrounds and semantically
related backgrounds, given by

ϕh = [1, 1, . . . , 1] ∈ RN . (5)

Training the generator with both easy and hard negative samples can help the model to
locate more accurate predictions and prevent the model from outputting longer bound-
aries that include the ground truth.

As discussed earlier, our goal is to highlight the salient moment that best matches the
language query. To measure the semantic relevance between the moment proposal and
query, we introduce the semantic completion moduleR [21] to calculate reconstruction
scores and regard them as feedback to refine previous proposals. Firstly, we mask 1/3
keywords of the original query and then attain the masked query embedding, dubbed
as Q̂, which is subsequently fed into the R together with original video features and
foreground Gaussian mask. The specific process can be formulated as follows:

Wp = TransDecoder
(
Q̂, U, ϕp

)
∈ RlS×dU , (6)

where Q̂ represents the masked query embedding, U = TransEncoder (V,V, ϕp)
aiming to attain visual representations with respect to ϕp, and TransDecoder(·) de-
notes the completion module that can be used to achieve the reconstructed feature with
respect to each word.

To predict the masked words, we apply a single fully connected layer on Wp and
output the probability distribution Pp of total reconstructed query. Finally, we use the
cross-entropy loss to measure the similarity distance between the reconstructed query
and the original query, which is given by

Dpce = −
lS−1∑
i=1

logPp (wi+1 | V,Q1:i) . (7)

Similarly, we arrive at Dece and Dhce by replacing ϕp with ϕe and ϕh. As only positive
sample and hard negative sample contain video snippets corresponding to the query, the
final reconstruction loss is defined as:

Lrec = Dpce +Dhce. (8)
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To contrast positive and highly-confusing negative proposals, we utilize the ranking-
motivated loss for intra-video contrastive learning, which can be formulated as:

Lintra = [Dpce + λ1 −Dece]+ +
[
Dpce + λ2 −Dhce

]
+
, (9)

where [·]+ is the hinge function, λ1 and λ2 are hyperparameters with a constraint λ1 <
λ2.

3.5 Inter-video Contrastive Learning

While the intra-video contrastive learning gives us good representations for distinguish-
ing highly-confusing snippets and the real proposals, it fails to address the incomplete-
ness issue of proposals, especially when encountering condition variations with respect
to complex semantics (e.g. various scales, viewpoints, or illumination conditions). In
this case, it is natural to resort to exploring the correspondence and knowledge trans-
fer across different videos, extending intra-video contrastive learning into inter-video
contrastive learning. In this section, we embrace the fact that learning from cross-video
foreground-background contrast produces more reliable foreground proposals, and de-
sign an inter-video contrastive loss from two aspects: 1) the representation of different
video snippets of the same semantics should be close and 2) other representations of
opposite semantics should be pushed apart.

Given n video sequences, we first compute a set of Gaussian mask corresponding to
their queries based on the generation module P . Then, ϕp and (1− ϕp) are multiplied
by V to disentangle each video into a foreground f and a background b representation.
To this end, we can collect n negative foreground-background pair {(fi, bj)}ni=1 for the
total video set. In this case, the negative contrastive loss is designed as:

LNeginter = −
1

n2

n∑
i=1

n∑
j=1

log (1−∆(fi, bj)) , (10)

where ∆(i, j) is the cosine similarity between fi and bj . The LNeginter considers the se-
mantic contrasts both within a single video (i = j) and cross different videos (i 6= j).

To boost the discrimination of activated foregrounds and suppress the co-occurring
backgrounds, we consider the other two positive pairs (fi, fj), (bi, bj) from different
videos and intend to pull these positive pairs together in the feature space. However,
only positive pairs with similar semantics that really benefit the model training while
those with large distances will degrade the training process. To cope with it, we design
a distance-based rank weighting strategy to automatically learn the effect of different
positive pairs. It can reduce the impact of those dissimilar pairs to some extent for
better contrastive learning. Formally, the positive contrastive loss LPosinter is defined as a
combination of LPosf and LPosb , which is represented as:

LPosf = − 1

n(n− 1)

n∑
i=1

n∑
j=1

1[i 6=j]

(
wfi,j · log (∆(fi, fj))

)
(11)
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LPosb = − 1

n(n− 1)

n∑
i=1

n∑
j=1

1[i 6=j]
(
wbi,j · log (∆(bi, bj))

)
, (12)

where 1 is an indicator function that equals 1 if (i 6= j). To this end, the overall inter-
video objective loss can be formulated as a combination of LNeginter and LPosinter, which is
defined as:

Linter = LPosinter + L
Neg
inter. (13)

When contrastive loss Linter is applied, our proposed network will enhance more com-
plete proposal predictions and simultaneously suppress the co-occurring query-related
backgrounds in the training process.

3.6 Pseudo-label Noise Removal

The aforementioned two loss functions, however, only ensure ϕp to be more discrim-
inative and completely cover the target moment, without considering the noisy activa-
tion in multi-modal interaction process. To enhance the robustness of foreground snip-
pets and further refine the predictions, we propose to denoise the snippet-wise pseudo-
labels by capturing the mutual information between the temporal activation and their
corresponding pseudo-labels. Unlike directly reducing the impact of noisy features, the
pseudo-label denoising process can serve as initial fine-grained annotations and be more
applicable to existing weakly-supervised methods.

Based on the above observations, we first generate snippet-wise pseudo-label J to
refine foreground and background regions, then build a denoised loss Ld to improve the
robustness of foreground activation with respect to the noisy activation. Intuitively, we
calculate snippet-wise pseudo-labels by computing the similarity of each video snippet
and the corresponding query. The specific process is formulated as:

J (t) = 1

2
(1 +∆ (V(t),Qref )) , t ∈ [1, lV ], (14)

where V(t) is the video feature corresponding to the timestamp t, Qref denotes the
mean of query features over m iterations.

Let tf = {t : J (t) > 0.5} and tb = {t : J (t) < 0.5} represent the time slots for
selecting the foreground and background snippets with respect to J (t), we can estimate
the snippet-wise label for both foreground and background snippets.

After generating snippet-wise pseudo-labels, we need to reduce the impact of label
noise caused by the absence of ground truth, thereby improving the accuracy of the
predicted moments. The denoised loss Ld is designed to assign a confidence score to
each snippet that estimates the probability of its pseudo-label being a trustworthy true
label, which exploits the mutual information between query-related activation and cor-
responding labels. Concretely, our denoised loss is inspired by the Determinant based
Mutual Information (DMI) [42], which is proposed for multi-class classification tasks
and robust to a variety of noise patterns. The original DMI is first defined to compute
the determinant of a joint distribution matrix, i.e., Determin(Z,Y) = |det(C)|. Here,
Z and Y denote the predicted probabilities and the ground-truth labels. C = 1/nZY is
the joint distribution over Z and Y . Therefore, the denoised loss function is defined as:

Ld = −E [log(Determin(C))], (15)
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where E represents the Expectation function. Taking the set of snippet-wise pseudo-
labels into account, we construct a prediction matrix that considers the set of pseudo-
foreground/background temporal locations. Therefore, the final prediction matrix and
pseudo-label matrix are given by

Ẑ =

[
Jf Jb

1− Jf 1− Jb

]
, Ŷ = 1/z

[
1nf

0nf

0nb
1nb

]
, (16)

where z = nf +nb, nf = |tf | and nb = |tb| represent the width of constructed pseudo-
foreground/background snippets. To avoid an explicit computation cost that caused by
a large number of video snippets, we use an approximate formulation [17] to replace
the original loss function. Finally, the denoised loss is defined as:

Ld = −E [log(Determin(ẐŶ))] = E [log (Γ )] , (17)

where Γ is the condition number of ẐŶ .

3.7 Training and Inference

In this section, we elaborate on the details of network training and the inference.
Training. The total loss of our DCCNet comprises four parts: the reconstruction

loss Lrec is in charge of optimizing the semantic completion module, which guarantees
the network to predict the reconstructed query that is conditioned on the given mask;
the dual-level loss Ldual is used to ensure the video feature more distinguishable and
distinct from highly confusing backgrounds within and without a video; the diversity
loss Ldiv is used to encourage the K proposals as different as possible (if added); the
denoised loss Ld is adopted to reduce the noisy activation caused by the absence of
frame-level annotations.

To encourage the candidate predictions to best reconstruct the given query, we opti-
mize the whole framework by alternately executing the following two steps:

1. Update reconstructor parameter by Lrec + Ld while freezing the mask generator:

α∗1 = argmin
α1

Lrec (α1, α2) + Ld (α1, α2) . (18)

2. Update the mask generator with optimal α∗1 by minimizing Ldual + Ldiv:

α∗2 = argmin
α2

Ldual (α
∗
1, α2) + Ldiv (α

∗
1, α2) . (19)

where Ldual = Lintra + Linter, α1 and α2 are the parameters of the reconstructor and
mask generator, respectively.

Inference. During inference, we can obtain the temporal boundary τ = (τs, τe) of
predicted Gaussian mask through Eqn. 2. The predicted start and end timestamps are
calculated as follows:

τs = max(Gc −Gw/2, 0) ∗ Tv
τe = min(Gc +Gw/2, 1) ∗ Tv,

(20)

where Tv represents the duration of the target video to be locate. Since we do not use
multi-scale sliding windows to generate proposal candidates, it’s noteworthy that we do
not have to perform complex post-processing operations like Non-Maximum Suppres-
sion (NMS).
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4 Experiments

4.1 Datasets

To validate the effectiveness of our proposed DDCNet, we perform experiments for
weakly-supervised temporal sentence grounding on two prevailing and challenging
datasets: Charades-STA [14] and ActivityNet Captions [20].

Charades-STA. The Charades-STA dataset is originally constructed from Charades
[30] dataset which contains 9, 848 untrimmed videos about human daily indoor activi-
ties. Based on the Charades dataset, Gao et al. [14] develops a semi-automatic method
to annotate each video with a moment-sentence pair. Concretely, the dataset consists
of 12, 408 moment-sentence pairs for training and 3, 720 pairs for testing. The average
duration, moment length, and query length are 29.8 seconds, 8.09 seconds and 7.22
words, respectively.

ActivityNet Captions. The ActivityNet Captions dataset is a large-scale dataset for
temporal sentence grounding. It originally stems from ActivityNet dataset [2] for human
activity understanding task, which comprises 14, 926 untrimmed videos and 71, 953
moment-sentence annotations. Following the standard experimental setting, we utilize
val1 as the validation set and val2 as the testing set, which consists of 37, 417 pairs of
video moments and descriptions for training, 17, 505 and 17, 031 pairs for validation
and testing, respectively. Each video has an average of 4.82 temporal moments with
their language descriptions. And the moment length and query length are about 37.14
seconds and 14.41 words on average.

4.2 Evaluation Metric

To evaluate the performance of our proposed method, we employ the commonly used
〈R@n, IoU@m〉 as our evaluation metric. Concretely, this metric is defined to compute
the percentage of language queries whose predicted moments have at least one correct
prediction in the top-n results. Specifically, a predicted moment is correct only if its
IoU (i.e., Inter-section over Union) is larger than m in contrast with the ground truth.
In our experimental setting, we report results for n ∈ {1, 5} with m ∈ {0.3, 0.5, 0.7}
on Charades-STA, and m ∈ {0.1, 0.3, 0.5} for ActivityNet Captions datasets.

4.3 Implementation Details

Data Preprocessing. For Charades-STA dataset, we utilize the publicly available I3D[4]
network to extract visual features. For ActicvityNet Captions dataset, we employ the
C3D [35] model pre-trained on Sport1M [18] dataset to obtain 4, 096 dimension fea-
tures, which is subsequently reduced to 500 dimensions with the PCA algorithm. For a
fair comparison, the feature extractor is not finetuned on both datasets. The input video
is downsampled every 8 frame and the maximum length of frames is set to 200. For
the sentence query, we adopt NLTK [22] to split each sentence into several words and
employ the pre-trained GloVe [29] word2vec model to initialize the word embeddings.
The maximum length of words is set to 20. And the vocabulary size is set to 1, 111 and
8, 000 for Charades-STA and ActivityNet Captions, respectively.



12 Y. Zhang et al.

Table 1. Performance comparison between the proposed model and the state-of-the-arts on
Charades-STA dataset.

Method
Rank@1, IoU= Rank@5, IoU=

0.3 0.5 0.7 0.3 0.5 0.7

CTRL [4] - 23.63 8.89 - 58.92 29.52

QSPN [41] 54.70 35.60 15.80 95.60 71.80 38.87

MAN [1] - 46.53 22.72 - 86.23 33.09

2D-TAN [45] - 39.81 23.25 - 79.33 52.15

TGA [26] 32.14 19.94 8.84 86.58 65.52 33.51

WSRA [13] 50.13 31.20 11.01 86.75 70.50 39.02

WSTAN [37] 43.39 29.35 12.28 93.04 76.13 41.53

VLANet [24] 45.24 31.83 14.17 95.70 82.85 33.09

SCN [21] 42.96 23.58 9.97 95.56 71.80 38.87

MARN [32] 48.55 31.94 14.81 90.70 70.00 37.40

CNM [48] 60.39 35.43 15.45 - - -

WSTG [5] 43.31 31.02 16.53 95.54 77.53 41.91

RTBPN [46] 60.04 32.36 13.24 97.48 71.85 41.18

DDCNet (Ours) 63.96 37.14 16.05 - - -

DDCNet*(Ours) 63.71 46.58 20.68 97.12 84.45 50.03

Model Setting. To improve the training stability, we utilize the multi-head mecha-
nism proposed in [36] for the mask generator and semantic completion module. Specif-
ically, the encoder and decoder are both equipped with 3 layers and 4 multi-attention
heads. And the dimension of the hidden state is set to 256. In the training phase, we
employ Adam [19] as our optimizer without weight decay. The learning rate is set to
4e−4 for Charades-STA and ActivityNet Captions. Besides, the hyperparameters λ1 and
λ2 are set to 0.1 and 0.15, respectively. K is set to 5. Following the standard practice,
we mask 1/3 important words in each sentence by replacing them with a special token
when reconstructing the origin query, in which nouns and verbs are more likely to be
selected to be the keywords. Moreover, the maximum width of the predicted moments
is limited to shorter than 0.45 as the inherent property on the Charades-STA dataset.

4.4 Comparisons with State-of-the-Art Methods

We compare our proposed DDCNet with existing state-of-the-art approaches in recent
years, including both fully-supervised and weakly-supervised methods.

Results on Charades-STA. We compare our DDCNet with the state-of-the-art
fully-supervised and weakly-supervised methods on the Charades-STA testing set. The
best results are highlighted in bold and the second best results are underlined in ta-
bles. As shown in Table 1, our method achieves impressive performance on almost all
metrics except a slightly worse one, which verifies the effectiveness of our proposed
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Table 2. Performance comparison between the proposed model and the state-of-the-arts on Ac-
tivityNet Captions dataset.

Method
Rank@1, IoU= Rank@5, IoU=

0.1 0.3 0.5 0.1 0.3 0.5

TGN [6] - 43.81 27.93 - 54.56 44.20

CTRL [4] 49.10 28.70 14.00 - 58.92 29.52

ABLR [44] 73.30 55.67 36.79 - - -

2D-TAN [45] - 59.45 44.51 - 85.53 77.13

WS-DEC [12] 62.71 41.98 23.34 - - -

VCA [39] 67.96 50.45 31.00 92.14 71.79 53.83

EC-SL [7] 68.48 44.29 24.16 - - -

MARN [32] - 47.01 29.95 - 72.02 57.49

SCN [21] 71.48 47.23 29.22 90.88 71.56 55.69

CTF [9] 74.2 44.3 23.6 - - -

WSLLN [15] 75.4 42.8 22.7 - - -

CCL [47] - 50.02 31.07 - 77.36 61.29
CNM [48] 78.13 55.68 33.33 - - -

DDCNet (Ours) 79.36 56.53 31.81 - - -

DDCNet*(Ours) 79.51 57.57 32.29 92.65 77.96 60.54

DDCNet. Specifically, it can be seen that our approach achieves 63.96% on “Rank@1,
IoU=0.3” and 37.14% on “Rank@1, IoU=0.5”, bringing the compelling result by a
large margin. Notably, we can see that a variant version of our approach (DDCNet*)
with a multiple proposal generation scheme (Eqn. 3 and 4) outperforms other previous
weakly-supervised methods at most of the IoU thresholds, demonstrating the superior-
ity of denoised contrastive learning criteria without the precise frame-level annotations.
It can be noticed that our method also attains competitive results even compared with
some fully-supervised counterparts (in upper parts of the tables).

Results on ActivityNet Captions. As shown in Table 2, we also give a thorough
study of the ActivityNet Captions dataset and report the corresponding results. Sim-
ilarly, we compare the overall performance with both fully-supervised and weakly-
supervised methods, where DDCNet* indicates an advanced version of our method
with multiple proposals generation. As can be seen, our method shows significant im-
provements over existing weakly-supervised methods while maintaining competitive
results with other fully-supervised methods. Specifically, we observe that our DDCNet
attains the highest performance except for the “Rank@1, IoU=0.5” metric. This may
stem from the intrinsic characteristics of this dataset. Since the query characteristics in
ActivityNet Captions are diverse and complicated, there is a high probability to make
the training models confused and ineffective. Compared with other recently proposed
methods, however, like CCL [47] and CNM [48], our DDCNet still outperforms the
MIL-based and reconstruction-based methods to a large extent. This suggests that our
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Table 3. Ablation studies of the proposed model on Charads-STA dataset.

ID Lrec Lintra Linter Ld Ldiv IoU=0.1 IoU=0.3 IoU=0.5 mIoU

1 X 76.85 53.74 29.20 53.26

2 X X 76.79 60.54 35.59 57.64

3 X X X 78.75 61.43 37.21 59.13

4 X X 74.35 58.58 36.42 56.45

5 X X X X 79.89 63.96 37.14 60.33

6 X X X X X 79.94 63.71 46.58 63.41

method is robust and applicable to a large-scale dataset of various query semantics. By
extending the framework to multiple proposal generation, our method nearly achieves
consistent improvements among different IoU metrics beyond all doubt. Besides, our
method achieves favorable performance even in contrast with existing fully-supervised
methods, which reduces the performance gap by a large margin and benefits the practi-
cability to real-world applications.

4.5 Ablation Study and Analysis

To investigate the effectiveness of our proposed DDCNet for weakly-supervised tem-
poral sentence grounding, we conduct extensive ablation studies on both datasets. The
results are summarized in Table. 3∼ Table. 5.

Q1: How does the proposed multi-task loss help? To evaluate the effectiveness
of our carefully-designed multi-task loss, we conduct ablation studies with respect to
different losses, i.e., Lintra, Linter, Ld and Ldiv . The results are summarized in Ta-
ble 3. As we can see, introducing the intra-video contrastive learning loss Lintra im-
proves the Rank@1 mIoU from 53.26% to 57.64%, demonstrating that snippet-wise
variances within the same video are essential for capturing discriminative representa-
tions. Furthermore, our method, which adds Linter to perform inter-video contrastive
learning, boosts the Rank@1 mIoU to 59.13%. This suggests Linter effectively guides
the network to produce more complete predictions by exploring cross-video relations.
In addition, we also find that adding the denoised loss Ld achieves an absolute 1.2%
improvement. And the modified version DDCNet* with Ldiv achieves the best average
performance on Charades-STA dataset. This shows that each component provides an
indispensable contribution to the learning model.

Q2: Is it necessary to consider both HP and HN terms in Linter loss? While
we have validated that our inter-video loss helps the training model achieve better per-
formance, it should also be considered whether both HP and HN terms are essential
components. To explore this, we conduct experiments that use two variants of theLinter
loss, each of which contains one kind of the loss term in Eqn. 13, i.e., LPosinter and LNeginter,
respectively. We summarize the corresponding results in Table 4. As we can see, the
performance drops largely when either type of sub-loss is removed, demonstrating that
both loss terms contribute to the improved prediction. Compared with the baseline, our
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Table 4. Ablation studies of on Linter terms on Charads-STA dataset.

Setting Loss IoU=0.5 (4)

DDCNet (Ours) Lrec + Linter 37.14%

baseline Lrec 29.20% (-7.49%)

DDCNet w/o HN trm. Lrec + LPosinter 36.11% (-1.03%)

DDCNet w/o HP trm. Lrec + LNeginter 36.38% (-0.76%)

Table 5. The effectiveness of training strategy.

Setting
Rank@1

IoU=0.1 IoU=0.3 IoU=0.5 mIoU

minα1,α2 (Lrecon + Lgen) 67.38 54.28 23.05 48.57

minα1 Lrecon +minα2 Lgen 79.89 63.96 37.14 60.33

DDCNet is beneficial to make representations of similar snippets closer and helps to
transfer informative knowledge. Overall, the above analyses strongly justify the signif-
icance of the two items in our proposed Linter loss.

Q3: How does different training strategy effect the performance? As Table
5 shows, we conduct experiments to study how different training strategies influence
the performance on the Charades-STA dataset. The first row indicates our DDCNet is
trained by optimizing the mask generator and reconstruction module separately, where
the weight of the generator is frozen when optimizing the query reconstruction mod-
ule, and vice versa. In contrast, the second row demonstrates the entire model is op-
timized with Lrecon and Lgen jointly. As we could see, the DDCNet performs better
results when Lrecon and Lgen work separately, with a consistent improvement in terms
of Rank@1 metric at all IoU thresholds. This is because the iterative training manner
can avoid a trivial solution that the reconstruction module always gives the predicted
negative samples low scores at early training, thereby contributing to superior results.

4.6 Qualitative Results

Intuitively, we provide qualitative results from Charades-STA and ActivityNet Captions
to further demonstrate the superiority of our DDCNet. As shown in Fig. 3, each video
is presented with a human-annotated query description, along with the ground truth and
predictions with different methods.

Specifically, Fig. 3 (a) displays two typical examples of the detected moments on
the Charades-STA dataset. Compared with the ground truth, we can easily find that our
method is capable of detecting more precise boundaries than CNM, especially when
dealing with the easy-confusing backgrounds. In Fig. 3 (b), we visualize two qualita-
tive examples on the large-scale ActivityNet Captions dataset. The first example demon-
strates a set of consecutive scenes, where several firemen are washing windows while
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Query: Person drinks a glass of water from the shelf. Query: Person pours a cup of coffee.

0.5s 9.2s

2.67s 14.96s

0s 10.16sDDC:

CNM:

DDC:

8.6s 17.7s

CNM:

GT:

10.08s 19.17s

9.26s 18.52s

GT:

(a) Examples of different methods on the Charades-STA dataset.

Query: He plays the instrument on his shoulders and continues to demonstrate how to play.Query: Clips are shown of men hanging off of buildings washing windows while another man 
speaks to the camera.

37.57s 126.79 s

62.58s 156.53s

41.19s 132.33 sDDC:

CNM:

GT:

136.12 s

33.16s 104.1s

10.29s

21.33s 121.41sDDC:

CNM:

GT:

136.12s

(b) Examples of different methods on the ActivityCaptions dataset.

Query: Person putting pillow aside.
Reconstruction: Person placing the cushion aside.

5.9s 11.7s

7.09s 13.68s

4.66s 12.71sDDC:

CNM:

GT:

Query: The man begins to rock climb while being holstered.
Reconstruction: The man starts climbing rocks while holstered.

60.29s 145.29s

26.74s

35.20sDDC:

CNM:

GT:

145.29s

145.29s

(c) Examples about query reconstruction and moment prediction on the Charades-STA and Ac-
tivityCaptions datasets.

Fig. 3. Qualitative visualization on both two datasets, i.e., Charades-STA and ActivityCaptions.
The horizontal axis denotes the timestamps.

another man is speaking to the camera. As we can see, even though the backgrounds
are diverse and the language description is complicated, our model successfully local-
izes the entire salient moment and suppress the false positive predictions. The second
example demonstrates a “play the instrument” action observed with highly-confusing
backgrounds, leading to inaccurate predictions with the CNM model. Our DDCNet,
however, still performs well in this case except for a few failures in the end. In addition,
we simultaneously present the reconstruction and prediction results to better reveal the
rationale behind our DDCNet. We show two examples from both Charades-STA and
ActivityNet Captions in Fig. 3 (c). As expected, we observe that our DDCNet achieves
higher IoU results between the predicted moment and the ground truth, and the recon-
structed query is also close to the original one. This demonstrates that our denoised
dual-level contrastive framework captures more fine-grained semantic information in-
side and outside the video to reconstruct the query, leading to more complete and robust
predictions.

Furthermore, we also visualize the frame-by-word attention to understand the cross-
modal interaction process. As a fundamental component in temporal sentence ground-
ing, this type of visualization also helps our model explain how frame-by-word attention
works when reconstructing the original sentence. As shown in Fig. 4, the correlation of
the pair of frame and word representations is displayed, where the darker color repre-
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A person takes their shoes off in the kitchen.

Fig. 4. Visualization results of the frame-by-word attention. The darker the color is, the larger the
related attention value is.

sents a higher correlation. The typical case depicts that our DDCNet tends to seek more
semantically related words in the sentence while ignoring other irrelevant words with
subtle information. For instance, the 4-th positional frame is focused on the seman-
tic correlated words “person”, “takes off” and neglects the remote irrelative words like
“their” and “the”. This suggests our DDCNet is able to capture the semantic connections
between visual and text representations, thereby leading to more accurate predictions.

5 Conclusion

In this paper, we propose a Denoised Dual-level Contrastive Network, DDCNet, for
weakly-supervised temporal sentence grounding. Our method aims to encourage the
completeness and robustness of the predicted moment. Specifically, we present a dual-
level contrastive learning strategy to enable the completeness and robustness of the
predicted moments. Then a ranking weight strategy based on the feature similarity is
devised to guide the selection of positive and negative proposals. Furthermore, we intro-
duce an effective pseudo-label denoised process to alleviate the false activations, which
can ease the model training and enables DDCNet to predict more accurate localizations.
The experiments are conducted on two publicly available datasets, namely Charades-
STA and ActivityNet Captions, demonstrating the effectiveness and superiority of our
DDCNet when compared with existing weakly-supervised methods.
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