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Abstract. In recent years, Anomaly DeepFake Detection (ADFD) has
made significant breakthroughs in terms of generalization when meeting
various unknown tampers. These detection methods primarily enhance
generalization by constructing pseudo-fake samples, which involve three
main steps: mask generation, source-target preprocessing, and blending.
In this paper, we conducted a systematic analysis of some core factors
in these steps. Based on the aforementioned observations at the mask
generation step, we find that previous ADFD methods have limitations
as they only consider specific tampering types, which is not represen-
tative of real-world scenarios, and generate noise samples that closely
resemble real samples, causing confusion and hindering generalization.
To alleviate these issues, we propose our new method, which consists of
the Boundary Blur Mask Generator (BBMG) and the Noise Refinement
Strategy (NRS) modules. BBMG leverages the inherent characteristics
of boundary blur to simulate a comprehensive range of tampering tech-
niques, enabling a more realistic representation of real-world scenarios.
In conjunction with BBMG, the NRS module effectively mitigates the
influence of noise samples. Extensive ablation experiments and compar-
ative evaluations demonstrate the effectiveness of our method.

Keywords: Anormaly DeepFake Detection · Pseudo-fake · Noise Strat-
egy · DeepFake Detection.

1 Introduction

With the rapid advancements in artificial intelligence and deep learning, the
creation of fake facial content has become efficient. However, the misuse of such
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Fig. 1. Comparison of the previous method and our method. Previous methods
focused on either local or global tampering. In contrast, our method considers both
local and global tampering and employs a noise refinement strategy to mitigate the
impact of noisy samples.

technology can lead to harmful consequences, including the spread of false infor-
mation, social engineering attacks, political manipulation, reputation damage,
and financial fraud. Therefore, the emergence of deepfake detection technology is
crucial in order to discern between genuine and artificially generated fake faces,
thereby safeguarding societal security and order.

Prior arts, such as Face X-ray [17], SBI [29], SLADD [2] have greatly enhanced
the generalization capability of deepfake detection. These methods primarily
generate pseudo-fake faces through three typical steps: mask generation, source-
target preprocessing, and blending. As shown in the top left part of Figure 1,
most of them are primarily trained using only real face data, hence we refer to
this kind of approach as Anomaly DeepFake Detection (ADFD). Building upon
the breakthrough generalization capability of ADFD methods, we investigate
several key factors that influence the performance of these methods. Through
experiments, we make the following observations: 1) Local tampering based on
facial features, which involves making subtle changes to facial features (mouth,
nose, eyes, etc.), is less effective compared to global tampering, and simple fusion
of both does not improve generalization. 2) The generalization of the model is
sensitive to the choice of boundary blur processing methods.

During our exploration, we found that previous methods in ADFD have fo-
cused on specific tampering techniques, neglecting the importance of simulating
a comprehensive range of tampering scenarios. However, tampering can occur
in both local manipulations (e.g., subtle changes in facial features) and global
manipulations (e.g., complete face replacement) specifically related to facial im-
ages. Therefore, it is crucial to develop a solution that can effectively handle both
types of tampering challenges related to facial manipulation to ensure robust de-
tection of deepfake anomalies. Another key challenge is that previous research
has neglected the impact of noise samples introduced during the source-target
preprocessing step on the quality of generated facial images. As depicted in the
upper-right portion of Figure 1, these noise samples closely resemble real fa-
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cial images and can significantly affect the model’s performance. The similarity
between noise samples and genuine facial images can introduce confusion and
hinder the model’s ability to generalize and make reliable predictions.

In light of the aforementioned challenges, we propose a new method, including
Boundary Blur Mask Generator (BBMG) and Noise Refinement Strategy (NRS),
as shown in Figure 1. BBMG introduces boundary blur tampering traces at both
global and local levels to simulate attacks that are more closely aligned with real-
world scenarios. However, the randomness in the data augmentation process of
BBMG can still produce pseudo-fake samples that resemble real samples and
introduce noise. To alleviate this, we propose the NRS method, where we con-
struct a real feature memory to find the center of the real distribution and select
noise samples based on feature similarity. We assign lower weights to the noise
samples to suppress their interference with the model’s generalization capability.
We systematically validate the feasibility of these two methods, demonstrating
that our proposed approaches significantly improve the generalization of detec-
tion models, achieving state-of-the-art results. The main contributions of our
work are summarized as follows:

– We systematically explore a series of Anomaly DeepFake Detection (ADFD)
methods, analyzing core factors in the generation of pseudo-fake samples. We
find that the design of mask region size and the boundary blurring operation
have significant impacts on the generalization capability.

– Based on the above explorations, we propose a new method, which con-
sists of two parts: Boundary Blur Mask Generator and Noise Refinement
Strategy. Boundary Blur Mask Generator effectively simulates both local
and global tampering techniques, thereby improving model generalization.
Besides, Noise Refinement Strategy mitigates the impact of noise samples in
ADFD methods.

– Through extensive ablation experiments, we demonstrate that our proposed
methods for deepfake detection achieve state-of-the-art performance. These
contributions significantly advance the field of deepfake detection and pro-
vide valuable insights into improving the generalization capability of ADFD.

2 Related Work

2.1 Conventional DeepFake Detection.

In the early stages, deepfake detection algorithms relied on manual prior knowl-
edge. With the introduction of deep learning, algorithms started focusing on
spatial information and neural network design. For instance, compact network
Mesonet [1], capsule network [24], autoencoder [8], recurrent convolutional net-
works [12, 27], and attentional networks [34]. Some methods have also investi-
gated the utilization of frequency domain information [10, 16, 21, 22, 25, 28, 32],
leveraging the characteristics of frequency domain to effectively capture forgery
traces. Additionally, other methods have utilized temporal information to en-
hance the model’s ability to discriminate forgeries, such as local mouth mo-
tion [13, 35], Facial Action [30] and temporal consistency [11, 20, 33]. While these
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methods have shown good performance in detecting known tempering, many of
them struggle to generalize well to detect deepfakes created by unknown tem-
perings, resulting in poor generalization.

2.2 Anomaly DeepFake Detection

To improve the generalization of deepfake detection, several researches have
proposed Anomaly DeepFake Detection(ADFD) [2, 17, 29, 36] that mainly use
real training data to improve model’s discriminative ability towards unknown
tampering methods. OC-FakeDect [14] proposed a one-class anomaly detection
approach using a one-class Variational Autoencoder (VAE) trained solely on
real face images to detect Deepfakes. Some other methods tried to synthesize
pseudo-fake data, encouraging models to learn generalizable features for deep-
fake detection. Face-Xray [17] introduced blending the altered face into an exist-
ing background image to simulate forgery traces and generate synthetic training
data. PCL [36] proposed using an inconsistency image generator (I2G) to synthe-
size forgery data and detect whether an image is forged based on patch consis-
tency. SLADD [2] focused on local feature tampering using facial landmarks and
employs adversarial learning to generate more sophisticated and novel forgery
configurations, thereby improving detector performance. SBI [29] generated fake
faces by blending pseudo source and target images from single pristine images,
achieving higher generalization compared to previous methods.

3 Approach

3.1 Overview

In this section, we review previous Anomaly DeepFake Detection (ADFD) meth-
ods and explore influencing factors on pseudo-fake sample generation. Based on
these insights, we introduce our innovative methods, including the Boundary
Blur Mask Generator (BBMG) and Noise Refinement Strategy (NRS), as de-
picted in Figure 3.

3.2 Review and Exploration of ADFD

Previous ADFD methods [2, 17, 29, 36] generate pseudo-fake faces Dpf from real
faces Dr typically through blending, and then learn to distinguish real and fake
samples through feature extractor E(I;Θ) and classifier F (I;ω). The generating
process can be mainly divided into the following three steps, as shown in Figure
2:

1. Mask Generation. To obtain the tampered regions, it is necessary to gen-
erate corresponding masks M as the areas of manipulation. SBI, Face X-ray,
and SLADD propose a variety of mask generation methods, among which
Face X-ray and SBI are based on the global mask, and SLADD is based on
the local mask of the facial features, such as left eye, right eye, nose, and
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Fig. 2. The Pipeline of pseudo-fake face generation in ADFD.

mouth. Typically, various augmentations such as boundary-blurring are em-
ployed to obtain the processed mask M b. This approach helps to make the
mask softer, resulting in a more realistic simulation of tampering.

2. Source-Target Preprocessing. This part primarily involves preprocessing
the source images Is and target images It before tampering. For Methods
blending two different faces, such as Face X-ray, SLADD, alignment adjust-
ment, and color correction operations are typically performed to make the
source face better fit the target. In the case of methods like SBI, where It
and Is are derived from the same image, color transform, and frequency
transform are applied to accentuate the differences between It and Is in this
step. After the preprocessing step, the processed versions of Is and It are
obtained, denoted as I ′t and I ′s, respectively.

3. Blending. This part generally blends the processed source image I ′s and the
processed target image I ′t to generate a pseudo-fake sample Ipf based on the
generated mask M b. The fusion formula for getting Ipf is as follows:

Ipf = M b · I ′s + (1−M b) · I ′t. (1)

Different ADFD methods offer various parameters for these three steps,
which may affect the generalization capability of the model on unseen tam-
pering scenarios. Therefore, we conducted experiments to explore the impact of
these parameters and identify key factors that contribute to the improvement of
model generalization. Comparative experiments are conducted based on a com-
mon baseline (SBI), and the specific experimental procedures and results can be
found in Section 4.2.

Based on our exploration of mask generation, we draw the following con-
clusions: 1) Local tampering based on facial features is less effective compared
to global tampering, and simple fusion of both does not improve generalization.
2) The model’s generalization is susceptible to the influence of boundary blur
processing methods.
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Fig. 3. Overview of our method. The overall process can be divided into three
steps. (a) We generate pseudo-fake training data using our proposed Boundary Blur
Mask Generator. (b) The real face image Dr and the pseudo-fake face image Dpf are
fed into the encoder and classifier, obtaining the features and scores for each image.
(c) We calculate the weighted CE loss using the Noise Refinement Strategy, which is
used to update the network.

3.3 Boundary Blur Mask Generator

In this part, we propose a Boundary Blur Mask Generator (BBMG), correspond-
ing to Figure 3. According to our previous exploration, existing methods have
difficulty in covering all types of tampering. Moreover, we observed that random
fusion methods did not improve generalization, possibly due to the limited effec-
tiveness of local masks in generating tampering traces. To cover a wider range
of tampering types and increase the visibility of tampering traces, we propose
to design a method that can simultaneously simulate both local and global tam-
pering. Our exploration revealed the significant impact of the boundary-blurring
operation on model generalization. Therefore, we propose our Boundary Blur-
ring Mask Generator (BBMG), which allows for simple modification of the mask
to learn both local and global tampering. This approach enhances tampering
traces and improves the generalization of the model.

First, we select the facial region of the input image as the mask (Mlandmark)
based on landmarks. Then, we further localize the facial features, i.e. left eye,
right eye, nose, and mouth, and randomly select some of these features. After
that, selected features are extracted from the global mask, resulting in two masks:
a local mask (Mlocal) containing only the selected features and a global mask
(Mglobal) with some features removed. The calculation of Mglobal is as follows:

Mglobal(i, j) = Mlandmark(i, j)−Mlocal(i, j), (2)
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where (i, j) represents the pixel position in the mask. Next, we apply Bound-
ary Blur to both Mlocal and Mglobal. Considering the widespread use of Gaus-
sian Blur, we also employ Gaussian Blur to blur the boundaries. After applying
Gaussian Boundary Blur, we obtain blurred masks M b

local and M b
global. Finally,

we merge the two blurred masks by taking the maximum value at each pixel
position, resulting in a final mask Mfinal with both local and global Boundary
Blur characteristics. Calculations are as follows:

Mfinal(i, j) = max(M b
global(i, j),M

b
local(i, j)). (3)

Through these steps, we successfully generate a mask with both local and
global Boundary Blur characteristics. Following SBI, we initialize source image
Is and target image It by copying input image I, then randomly apply image
transformations to either of them to get a processed source image I ′s and a
processed target image I ′t. We then blend the processed source and target images
based on the generated mask Mfinal using the blending operation, resulting in
a pseudo-fake face image. This pseudo-fake image is treated as a fake sample in
the training set and used to train the model. The calculation of the pseudo-fake
face image is as follows:

Ipf = Mfinal · I ′s + (1−Mfinal) · I ′t. (4)

Our proposed BBMG method generates a mask that incorporates both local
and global tampering traces, and experimental results have shown that this
mask-generation method can further improve the model’s generalization.

3.4 Noise Refinement Strategy

Since the use of random data augmentation to generate corresponding source or
target images introduces noise and makes the pseudo-fake samples too similar
to real samples in BBMG method, we propose Noise Refinement Strategy to
reduce the impact of noise samples on the model’s generalization, corresponding
to Figure 3. We measure the distance between N pseudo-fake sample features
Fpf = E(Ipf , Θ) ∈ RN×D and the centers C ∈ Rk×D of real sample features
Fr = E(Ir, Θ) ∈ RN×D to identify pseudo-fake samples that are too close to
the center of the real sample distribution. These samples are considered noise
samples and assigned lower loss weights to reduce their influence on the model’s
learning, thereby improving the model’s generalization.

First, we need to determine the centers of the real sample distribution. Con-
sidering that real samples will dynamically change during training, in order to
obtain the latest distribution of features for real samples, we use the encoder
trained in the last epoch to get the real features Fr = E(Ir, Θ) ∈ RN×D. To
obtain a more accurate center of the real feature distribution, we select the
top ks correctly predicted real features, i.e. features with the highest prob-
ability value Pr ∈ RN×1, as the memory of real features. These features in
memory are then clustered using k-means clustering to obtain k center features
C = {c1, c2, ..., ck} ∈ Rk×D, which serve as the clustering centers of the real
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samples and are used as references for selecting noise samples in the current
epoch.

Once we have obtained the distribution centers C ∈ Rk×D of the real features,
we can filter out noise samples by measuring the feature distances. For the
pseudo-fake samples features Fpf = E(Ipf , Θ) ∈ RN×D, we calculate the cosine
distance between the pseudo-fake features and each center point to determine
the distance, selecting the minimum distance as the final noise distance score
Dist(Fpf , C). Samples with noise distance scores below a threshold value λ are
considered noise samples. As the discriminative ability of the model is relatively
poor in the early stages, we introduce the epoch parameter β when calculating
weights of loss w(F,C) to gradually reduce the importance of the noise samples
as the epoch increases. The weights of loss can be calculated as:

w(F,C) =

{
αpf (F,C) , Dist(F,C) < λ ∧ F ∈ Fpf

1 , Dist(F,C) ≥ λ ∨ F ∈ Fr,
(5)

αpf (Fpf , C) = Dist(Fpf , C) ∗ (epoch/β) + 1 ∗ (1− epoch/β), (6)

The cross-entropy loss is represented as:

p(I) = F (E(I,Θ), ω), (7)

Lce(I, y) = −(y log(p(I)) + (1− y) log(1− p(I))), (8)

where y represents the label of the image I. Combining Equ. 5 and Equ. 8, we
obtain the final loss function as follow:

L = 1/N ∗
∑

I∈Dr,Dpf

(w(E(I,Θ), C) ∗ Lce(I, y)), (9)

where N represents the number of training samples.

3.5 Algorithm

The training pipeline of the proposed algorithm can be roughly divided into two
stages. In the early stage, before the Tkth epoch, we focus on learning the differ-
ences between real and generated samples. For each step, we first generate fake
samples using the Boundary Blur Mask Generator. Then, we feed the generated
fake samples and real samples from the training set into the Encoder E(I;Θ)
and the Classifier F (F ;ω), updating the weights using a simple Cross-Entropy
(CE) loss to learn the distribution of real and fake samples. After reaching the
Tkth epoch, the model has acquired some discriminative ability between real and
fake samples. At this stage, we introduce the Weighted Loss Noise Refinement
Strategy. This strategy assigns lower loss weights to noise samples to reduce their
impact on learning real-face features. The specific training strategy is shown in
Algorithm 1.
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Algorithm 1 Algorithm of our proposed method
Input: Real Training Images Dr

Parameter: Encoder E with Θ, Classifier F with ω, epoch Tk and Tmax, fixed λ,β,k,
ks, batch size B
Output: the model parameter W = {Θ,ω}
1: for t=1,2,...,Tmax do
2: shuffle training set Dr.
3: for n=1,...,|Dr|/B do
4: Fetch n-th mini-batch Dn

r from Dr.
5: Read preprocessed landmark Ln

r .
6: Obtain pseudo-fake data Dn

pf by BBMG using Dn
r and Ln

r .
7: pnr = F (E(Ir, Θ), ω), ∀Ir ∈ Dn

r .
8: pnpf = F (E(Ipf , Θ), ω),∀Ipf ∈ Dn

pf .
9: Fn

r = E(Ir, Θ),∀Ir ∈ Dn
r .

10: Fn
pf = E(Ipf , Θ), ∀Ipf ∈ Dn

pf .
11: if t >= Tk then
12: Calculate loss L by NRS using λ,β,C and Fn

pf .
13: else
14: Calculate cross-entropy loss L.
15: end if
16: Update {Θ,ω};
17: end for
18: if t >= Tk − 1 then
19: select ks real features Frm from Fr = {F 1

r , F
2
r , ..., F

|Dr|/B
r } according to Pr =

{p1r, p2r, ..., p
|Dr|/B
r }.

20: Get k centers C = c1, c2, ...ck using Kmeans by Frm

21: end if
22: end for
23: return {Θ,ω}

4 Experiments

4.1 Experiments Setting

Dataset. We trained our model on the widely used FaceForensics++ (FF++)
dataset [26], and evaluated its generalization performance on the Celeb-DF-v2
(CDF) [19], DeepFake Detection Challenged Preview (DFDCP) [7], DeepFake
Detection Challenge (DFDC) [6], and FFIW-10K (FFIW) [38] datasets.
Comparison. We compare our method with previous methods includes DSP-
FWA [18], Face X-ray+BI [17], LRL [3], FRDM [22], PCL+I2G [36], SBI [29] and
SLADD [2]. At the video-level, we compare our method with previous approaches
using the receiver operating characteristic curve (AUC). Frame-level predictions
are typically averaged over video frames.
Data preprocessing. Following the preprocessing method in SBI, during the
testing phase, we used the 81 facial landmarks shape predictor from Dlib[15] and
RetinaFace[5] to extract facial landmarks and bounding boxes for each frame.
The facial region was randomly cropped with margins ranging from 4% to 20%.
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Table 1. Implementation details of the three steps of pseudo-fake face gen-
eration in the ADFD approach.

Step Part Parameters

Mask Generation Local and global
mask regions

Local(SLADD),
Global(SBI, landmark augmentation library)

Parameter settings
of mask

Mask LineType(LINE_88, LINE_AA),
Mask DataType(Uint8, Float32),
Mask Value(1, 255)

Boundary-blurring
operations

Blurring Operation(Gaussian, Average, Median),
Blurring Degree(Gaussian Blur Kernel Size)

Source-Target
Preprocessing Transform methods RGBShift, HueSaturation,

RandomBrightnessContrast, etc.
Transform Objects Source Transform, Target Transform

Blending Blending types Dynamic Blending, Alpha Blending

During inference, we only use RetinaFace to detect the facial region and fixed
the cropping margin at 12.5%.
Implementation Details. We used the EfficientNet-b4 [31] pre-trained on Im-
ageNet [4] as the encoder and trained it for 100 epochs using the SAM [9] opti-
mizer. The learning rate was set to 0.001, and the batch size was 32, including
16 real faces and corresponding 16 generated pseudo-fake faces. During training,
we only used the real samples from the FF++ and extracted 8 frames from each
video as the training set. It is worth noting that our BBMG and NRS modules are
training strategies applied during the training phase. During inference, we only
utilize the forward propagation of the EfficientNet model to obtain the predic-
tion results. Therefore, our proposed method does not introduce any additional
parameters or increase the inference FLOPs. For data augmentation, we ap-
plied techniques including ImageCompression, RGBShift, HueSaturationValue,
and RandomBrightnessContrast. The hyperparameters used in our algorithm,
as shown in Algorithm 1, are λ = 0.5, β = 200, k = 5, ks = 500. During testing,
we extracted 32 frames from each video and selected the maximum predicted
value among all the faces in each frame as the prediction score for that frame.
The average of all frame prediction values was taken as the confidence score for
the video. To ensure fairness, for videos where no faces were detected, we set the
confidence score to 0.5.

4.2 Exploration Experiments of ADFD Methods

In this section, we provide an experimental exploration of Anomaly DeepFake
Detection methods, with a focus on the Mask Generation, Source-Target Pre-
processing, and Blending step, as details in Table 1.

Exploration of Mask Generation Exploration of Local and Global
Mask Regions. We summarize the mask generation strategies into three types,
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Table 2. AUC comparison of different mask generation strategies based on
SBI.

Test Set AUC(%)
Name FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
SBI w/ global mask 99.01 80.31 70.40 82.37 79.58 82.33 78.17
SBI w/ LAL 99.56 91.23 72.10 86.25 83.68 86.56 83.32
SBI w/ local mask 95.89 73.99 61.70 60.89 72.08 72.91 67.17
SBI w/ LAL and local mask 99.29 88.73 71.70 81.55 84.49 85.15 81.62

Table 3. AUC comparison of different parameter settings of the mask.

Parameters Test Set AUC(%)
LineType DataType Value Size FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
LINE_8 uint8 1 facehull 99.01 80.31 70.40 82.37 79.58 82.33 78.17
LINE_8 uint8 255 facehull 99.01 80.31 70.40 82.37 79.58 82.33 78.17
LINE_AA uint8 1 facehull 99.05 79.67 70.37 83.19 79.88 82.43 78.28
LINE_8 float32 1 facehull 99.36 89.74 71.52 84.05 85.76 86.09 82.77
LINE_AA float32 255 facehull 99.36 88.23 71.46 84.54 85.41 85.80 82.41
LINE_AA float32 255 LAL 99.56 91.23 72.10 86.25 83.68 86.56 83.32

uint8

float32

Fig. 4. Comparison of the mask with different data types. We visualize the
blurred mask with uint8 and float32 data types respectively. Mask with float32 data
type shows slightly higher blurring at the boundaries.

i.e. global mask used in the source code of SBI, the global landmark augmenta-
tion library (LAL) from Face X-ray, and the local mask proposed by the SLADD.
We conducted ablation experiments on these strategies and the corresponding
combinations, the results are shown in Table 2. From Table 2, we can observe
several interesting phenomena: 1) Despite both being based on landmark-based

https://github.com/mapooon/SelfBlendedImages
https://github.com/AlgoHunt/Face-Xray
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global masks, the mask generation method based on SBI performs much worse
in terms of generalization compared to the method based on LAL. 2) The local
mask generation method based on SLADD ignores the global tampering pat-
terns and produces images that are too close to the real images, resulting in
low generalization performance. 3) By randomly selecting between the LAL and
local masks, the results are still lower than those obtained using the global LAL
tampering. The above experiments illustrate that different mask strategies have
a significant impact on generalisability.

Exploration of Parameter Settings of Mask. To further explore the
factors at the heart of the performance differences between the global mask and
LAL, we identify four main areas of distinction: line drawing method (Line-
Type), mask data type (DataType), mask value range (Value), and mask size
selection(Size). We conduct experiments by adjusting these parameters, and the
results are shown in Table 3. Through this exploration, we find that the core
influencing parameter causing this difference lies in the mask DataType. Simply
changing the mask DataType from uint8 to float32 leads to a 4.6% improvement
in average generalization performance (Avg w/o FF++). Then, we visualize the
masks with uint8 and float32 data types, as shown in Figure 4. We observe that
after applying Gaussian blur, the float32 data type shows slightly higher blurring
at the boundaries. Therefore, we can preliminarily conclude that the boundary-
blurring approach has a significant impact on the model’s generalization.

Exploration of Boundary-blurring Operation. We further investigate
the extent to which boundary blurring affects generalization in the Exploration
of Boundary-blurring Operation. Firstly, we explored three different boundary
operations: Gaussian, Average, and Median. The results are shown in Table 4.
The experiment revealed that there was not much difference in the results be-
tween the Gaussian method and the Average method, while the Median method
yielded significantly lower performance. The main difference between the Median
method and the other two methods is that Gaussian and Average blur the bound-
aries of the mask, while the Median method does not. Hence, we hypothesized
that the blurring of boundaries has a substantial impact on the model’s general-
ization. To validate this hypothesis, we further selected Gaussian blur and fixed
the regions in the mask without any blurring, i.e. regions with a mask value of
1, to solely examine the effect of boundary-blurring degree on the model’s gen-
eralization, which is shown in Figure 5. The experiment confirmed that different
boundary blurring degrees, i.e., different sizes of the Gaussian blur kernel, have
a significant difference in the model’s generalization. Therefore, we further prove
that the generalization of ADFD methods is sensitive to boundary-blurring oper-
ations. The maximum difference in average generalization can reach up to 9.64%
(from 62.39% to 72.03%).

Exploration of Source-Target Preprocessing Exploration of Transform
Methods. In the Source-Target Preprocessing step, most methods employ aug-
mentation techniques such as transformations to help generate pseudo-fake sam-
ples that facilitate model learning. Taking SBI as an example, we categorize
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Table 4. AUC comparison of different boundary-blurring operations.

Test Set AUC(%)
Name FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
Gaussion 99.37 88.45 71.57 84.79 83.19 85.47 82.00
Average 99.31 89.41 71.80 84.67 87.02 86.44 83.23
Median 96.16 83.08 63.52 83.63 73.95 80.07 76.05
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Fig. 5. AUC comparison of different boundary-blurring degrees. We visualize
the experiments with different Gaussian kernel sizes with fixed regions in the mask.

different transformation methods into three types: color transform, frequency
transform, and affine transform. For color transformation, we select data aug-
mentation techniques related to image color, including RGBShift, HueSatura-
tionValue, and RandomBrightnessContrast. Frequency transform primarily in-
volves random downscaling or sharpening. Affine transform mainly involves ran-
dom translation, scaling, and elastic deformation. According to the results shown
in Table 5, we observed a significant improvement in model generalization with
affine transform, achieving an average generalization improvement of 10.15%.
This indicates the importance of affine transformations in enhancing model gen-
eralization. On the other hand, the effectiveness of frequency transforms varied
across different datasets, which could be attributed to the variations in the types
of forgery present in each dataset. Overall, combining all three transformation
methods yielded the best results in terms of average improvement.

Exploration of Transform Objects. The Source-Target Preprocessing
step primarily involves applying various transform operations to two objects, i.e.
source images and target images. We explored different combinations of trans-
form objects to investigate their impact on model generalization, as shown in
Table 6. We observed that performing transforms on both the source and target
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Table 5. AUC comparison of different transform methods.

Transform Method Test Set AUC(%)
Color Frequency Affine FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
✓ ✓ ✓ 99.56 91.23 72.10 86.25 83.68 86.56 83.32
- ✓ ✓ 99.54 90.81 69.70 82.05 82.71 84.96 81.32
✓ - ✓ 91.19 71.79 66.99 86.72 89.81 81.30 78.83
✓ ✓ - 99.62 80.50 61.47 78.26 73.66 78.70 73.47

Table 6. AUC comparison of different transform objects.

Test Set AUC(%)
Name FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
source transform 99.19 74.09 65.73 84.82 86.06 81.98 77.68
target transform 98.10 90.76 66.16 77.65 64.90 79.51 74.87
target and source transform 98.89 89.19 71.95 89.57 80.83 86.09 82.89
target/source transform 99.56 91.23 72.10 86.25 83.68 86.56 83.32

Table 7. AUC comparison of different blending types.

Test Set AUC(%)
Name FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++
dynamic blend 99.56 91.23 72.10 86.25 83.68 86.56 83.32
alpha blend 98.61 87.02 67.83 80.80 81.25 83.10 79.23

simultaneously ("target and source transform") or randomly selecting one with
a probability of 0.5 ("target/source transform") allows for a greater variety of
tampering simulations. Consequently, these approaches exhibit stronger gener-
alization compared to solely applying transforms to either the source or target
image.

Exploration of Blending Exploration of Blending Types. We experi-
mented with two blending types: dynamic blend and alpha blend. Dynamic blend
refers to a blending method where the blending ratio µ between two images is dy-
namically adjusted, i.e. we sample µ from {0.25, 0.5, 0.75, 1, 1, 1} following SBI.
On the other hand, alpha blend is a traditional blending technique that uses
a fixed blending ratio µ = 1. The experimental results for these two blending
types are shown in Table 7. Compared to alpha blend, dynamic blend provides
more variations and can simulate a wider range of tampering scenarios. Besides,
the dynamic blend enables a seamless and natural transition between the source
and target images, making it more closely resemble real-world attack scenarios.
Therefore, dynamic blend exhibits superior generalization compared to alpha
blend.
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Table 8. Cross-dataset evaluation on CDF, DFDC, DFDCP, and FFIW. The
results of prior methods are directly cited from SBI and the original paper, and their
subsequences for fair comparisons. Bold and underline represent the first and second
highest results, respectively. * denotes results reproduced by our own.

Training Set Test Set AUC(%)
Method Real Fake CDF DFDC DFDCP FFIW Avg
DSP-FWA[18] ✓ ✓ 69.30 - - - 69.30
Face X-ray + BI[17] ✓ - - 71.15 - 71.15
Face X-ray + BI[17] ✓ ✓ - - 80.92 - 80.92
Two-branch[23] ✓ ✓ 76.65 - - - 76.65
DAM[38] ✓ ✓ 75.30 - 72.80 - 74.05
LipForensics[13] ✓ ✓ 82.40 - - - 82.40
FTCN[37] ✓ ✓ 86.90 71.00 74.00 74.47 76.59
LRL[3] ✓ ✓ 78.26 - 76.53 - 77.40
FRDM[22] ✓ ✓ 79.40 - 79.70 - 79.55
PCL+I2G[36] ✓ 90.03 67.52 74.37 77.31
SBI[29] ✓ 91.23∗ 72.10∗ 86.25∗ 83.68∗ 83.32∗

SLADD[2] ✓ ✓ 79.70 - 76.00 - 77.85
Ours ✓ 91.37 72.98 85.89 87.77 84.50

Table 9. Cross-manipulation validation on FF++.

Test Set AUC(%)
Method DF F2F FS NT FF++
Face X-ray + BI[17] 99.17 98.57 98.21 98.13 98.52
PCL+I2G[36] 100.00 98.93 99.86 97.63 99.11
SLADD[2] - - - - 98.40
SBI[29] 99.99∗ 99.77∗ 99.90∗ 98.57∗ 99.56∗

Ours 99.98 99.83 99.89 98.38 99.52

4.3 Comparison Experiments

Cross-Dataset Evaluation. We conducted Cross-Dataset Evaluation to demon-
strate the generalization of our method. The model was trained on FF++ and
evaluated on other datasets, i.e. CDF, DFDC, DFDCP, and FFIW. From Ta-
ble 8, our method basically outperformed all methods, with an average AUC
of 84.50%. Furthermore, it shows improvements over the SBI on other datasets
such as CDF, DFDC, and FFIW. Particularly on the FFIW dataset, our method
achieves a significant improvement of 4.09% (from 83.6% to 87.77%) compared
to the second-ranked method SBI, surpassing other methods by a large margin.

Cross-Manipulation Evaluation. Following the evaluation protocol used
in previous methods, we tested our method on the FF+ with different tamper-
ing techniques, i.e. DeepFake (DF), Face2Face (F2F), FaceSwap (FS), and Ne-
turalTextures (NT) to validate its generalization across various manipulations,
as shown in Table 9. The experimental results demonstrate that our method
performs on par with the SOTA for each manipulation method. Therefore, our
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Fig. 6. Qualitative Analysis. We compare our method (second row) with the baseline
(first row) by showing a cross-section of visual examples of real (Green) and fake (Red)
faces with different anomaly scores.

method not only improves cross-dataset generalization but also maintains accu-
racy on the FF++ (cross-manipulation).

Qualitative Analysis. We compare our method with the baseline by show-
ing a cross-section of visual examples of real and fake samples with different
anomaly scores. This analysis helps us understand the strengths and limitations
of our method. According to Figure 6, it can be observed that our method has
improved the generalization of the model in distinguishing real faces, particu-
larly in real facial images with noticeable contrast (corresponding to the second
column in the figure) and color deviations (third column). This demonstrates
the effectiveness of our NRS method in suppressing noise and enhancing gen-
eralization. In addition to the improvement in generalization for real faces, our
method also exhibits significant enhancements in the accuracy of detecting fake
faces, both in cases of full-face tampering (fourth column) and localized tam-
pering (mouth area of figures in the fifth column). These results provide further
evidence of the effectiveness of BBMG method. However, admittedly, there is
still room for improvement when dealing with highly realistic fake face images
(corresponding to the sixth column in the figure).

Robustness Study. To evaluate the robustness of our method, we applied
different image distortion methods to raw images from all test datasets. Our ro-
bustness testing is conducted using weights trained on raw images without any
fine-tuning. The result is shown in Table 10. The distortion types we considered
include 1) "Resize": the process of downsampling the original image to an s× s
size and then upsampling it back to the original image size, simulating the com-
pression process during image transmission, 2) Gaussian blurring with a kernel
size of k, and 3) JPEG compression with a quality factor q. The experimental
results demonstrated that our method consistently outperformed the baseline in
terms of generalization, regardless of the distortion method applied. Moreover,
in most cases, our method exhibited superior performance on the FF++ dataset
compared to the baseline. These findings confirm the robustness of our proposed
method in handling various image distortions.
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Table 10. Robustness analysis of the proposed method.

Operations Baseline Ours
FF++ Avg FF++ Avg

Raw 99.56 83.32 99.52 84.50
Resize(s=128) 98.00 81.17 98.16 82.26
Resize(s=256) 99.29 83.20 99.29 84.34

GaussianBlur(k=3) 99.35 80.34 99.32 82.09
GaussianBlur(k=5) 98.81 79.50 98.90 81.33

JPEGCompress(q=50) 92.48 81.95 93.35 83.04
JPEGCompress(q=100) 99.48 81.71 99.51 82.53

Table 11. Ablation study of the proposed method.

Methods Test Set AUC(%)
BBMG NRS CDF DFDC DFDCP FFIW Avg

- - 91.23 72.10 86.25 83.68 83.32
✓ - 91.37 72.57 85.66 86.31 83.98
- ✓ 91.38 72.80 86.50 86.18 84.22
✓ ✓ 91.37 72.98 85.89 87.77 84.50

Table 12. Ablation study of Boundary Blur Mask Generator with different
types of masks. We experimented with three forms of masks, which are visualized in
Figure 7.

Test Set AUC(%)
Method FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++

1 99.64 91.30 71.96 84.40 83.79 86.22 82.86
2 99.60 90.90 72.04 84.37 85.76 86.53 83.27
3 99.55 91.37 72.57 85.66 86.31 87.09 83.98

Ablation Study of the proposed method. In Table 11, we conducted an
ablation study on the Boundary Blur Mask Generator (BBMG) and the Noise
Refinement Strategy (NRS). From the experimental results, we observed that
the inclusion of both methods improved performance on most datasets and the
average AUC. Furthermore, the fusion of these two methods resulted in a further
improvement in the average AUC. This confirms that both Boundary Blur Mask
Generator and Noise Refinement Strategy contribute significantly to enhancing
the model’s generalization capabilities.

Ablation Study of Boundary Blur Mask Generator. To provide a
clearer representation of the mask effects, we excluded the Weighted Loss Noise
Refinement Strategy in this experiment and solely utilized our Boundary Blur
Mask Generator. We experimented with three types of masks generated by the
Boundary Blur Mask Generator. These three masks are 1) Using only the result
of M b

global(first column); 2)Narrowing M b
local; and 3)The method mentioned in

our method. The visual results are shown in Figure 7. The experimental results
in Table 12 indicate that the first type of mask achieved the best performance
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Fig. 7. Different masks in BBMG. We experimented with three forms of masks:
using only the result of Mb

global (first column), the result of scaling Mb
local (second

column), and the method mentioned in our method (third column).

Table 13. Ablation study of Noise Refinement Strategy.

Parameters Test Set AUC(%)
Filter Distance FF++ CDF DFDC DFDCP FFIW Avg Avg w/o FF++

random cosine 99.51 90.91 72.38 85.24 86.96 87.00 83.87
random L2 99.52 90.85 72.39 85.37 87.12 87.05 83.93
predicts cosine 99.52 91.37 72.98 85.89 87.77 87.51 84.50
predicts L2 99.52 91.40 73.06 85.90 87.00 87.38 84.34

on the FF++ [26], exhibiting the highest accuracy. On the other hand, the third
method (as mentioned in our approach) showed the most pronounced local tam-
pering artifacts in the visual results and demonstrated the highest generalization
performance across different datasets.

Ablation Study of Noise Refinement Strategy. We conducted various
experiments with different Noise Refinement Strategies, as shown in Table 13.
The "Filter" column refers to the method used to filter real face samples. In
this part, we selected 500 samples from the training set as input for k-means
clustering to calculate the cluster centers representing the distribution of real
faces. The "random" strategy involved randomly sampling 500 real samples,
while the "predicts" strategy involved selecting the 500 real samples with the
highest predicted probabilities based on the model’s predictions from the previ-
ous epoch. The "Distance" column indicates the distance metric used to measure
the distance between generated fake samples and real samples. Specifically, we
compared the cosine distance and L2 distance. The experimental results revealed
that the cosine distance metric outperformed the L2 distance metric. Addition-
ally, the strategy of selecting samples based on predicted probabilities showed
improvement when using either the L2 or cosine distance metric.
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5 Conclusion

In this paper, we first systematically analyze a range of existing anomalous deep
forgery detection methods and identify the core factors that have a relatively
large impact on generalisability, such as mask selection as well as boundary
processing. In addition, we point out that previous work generates some pseudo-
noise samples. To address these issues, we propose a new framework that contains
Boundary Blur Mask Generator and Noise Refinement Strategy. Extensive ex-
periments have fully demonstrated the excellent generalization capability of our
approach, achieving state-of-the-art performance in deep forgery detection.
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