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Abstract. Neural Radiance Fields (NeRF) have demonstrated promising results
in synthesizing novel view images from a set of unconstrained captured scenes.
One important extension of NeRF is using it on non-rigid reconstruction. Al-
though previous NeRF-based methods for dynamic scene reconstruction have
presented visually appealing results, they still often show visual artifacts such as
blurry or incorrect geometry of an object. One of the causes is that previous work
performs reconstruction directly on the entire video sequence. The global tem-
poral information over the video sequence introduces noise to the network, often
leading to a non-optimal canonical space representation of the dynamic scene. In
this paper, we present Local Temporal (LT) NeRF, a method to synthesize novel
views of dynamic scenes using local temporal priors. Our novel LT module pro-
vides the local temporal priors using multi-view stereo sampling, and improves
the deformation field reconstruction and hyper-space encoding. Our novel loss
functions further supervise the NeRF for better optimization. We evaluate our
method with dynamic scenes captured from monocular videos, outperforming
the state-of-the-art.
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1 Introduction

Synthesizing novel view images provides the freedom to navigate beyond the capturing
locations. It is particularly challenging in dynamic scenes containing moving and de-
formable objects with complex geometry. Recent learning-based methods, highlighted
by the advent of NeRF and its subsequent works, have achieved significant improve-
ments to synthesize novel views in dynamic scenes.

The NeRF-based methods aim to model a scene’s geometry and appearance as
neural radiance fields using multi-layer perceptrons (MLPs), and use volumetric ren-
dering to generate a novel view of the scene. A number of NeRF variants, including
D-NeRF [33], Nerfies [31], and HyperNeRF [32], focused on addressing non-rigid re-
construction by learning a deformation field to map the observation coordinates of each
input image into a canonical coordinate space. This is then used in a volume rendering
process for novel view synthesis. Although these methods showed promising results,



2 Chen et al.

there are still visual artefacts. This is because these deformation-based NeRF methods
reconstruct the canonical space based on global temporal information (the entire video
sequence). However, a video usually has less meaningful information about a given
dynamic object between temporally distant frames. Moreover, in cases of building a
NeRF for dynamic scenes, this information will introduce noise, making the training
challenging.

In this paper, we propose a way to leverage the dynamic appearance from temporally-
nearby images (local temporal priors) to complement the NeRF-based deformation field
optimizations. We demonstrate the impact of learning with local temporal priors by in-
troducing Local Temporal NeRF (LT-NeRF). Our novel local temporal (LT) module
that uses a multi-view stereo (MVS) sampling to generate the local temporal priors.
The local temporal priors are fed into an MLP which then supervises the deformation
field and hyper-space encoding. LT module learns the relationship between the local
temporal priors, density, and color, which effectively improves the reconstruction of
the deformation field and hyper-space encoding. Our method shows promising results
when synthesizeing dynamic scenes with moving subjects and subtle deformations, out-
performing the stat-of-the-art. Our contributions are summarised as follows:

– We present LT-NeRF, a novel view synthesis approach from monocular videos con-
taining dynamic objects using NeRF enhanced by local temporal priors.

– We propose a novel LT module providing local temporal priors to improve the
deformation field reconstruction and hyper-space encoding.

– We introduce two loss functions that take into account the temporal local informa-
tion to supervise the deformation field and hyper-space encoding optimization.

2 Related Work

View synthesis is a research topic that is closely related to 3D vision, and has been
studied for decades. A naive solution to this task would be building explicit 3D scene
geometry such as a point cloud and mesh, then rendering this geometry from a novel
viewpoint [5, 12, 13, 17]. However, this has a limitation on the fidelity of the generated
novel scene, as the reconstructed point cloud/mesh often suffers from visual artifacts
such as floating geometry. Image-based rendering [4, 14, 15, 38] improves this, but the
rendered scene can still have issues with scene-independent effects such as reflection
on refraction. Alternatively, synthesis can also be achieved via implicit soft geometry
via light field rendering [20, 22], however, this requires densely captured images.

With the emergence of deep learning, research has focused on using neural networks
to learn a representation that is suitable for novel view synthesis. Early work in this di-
rection aimed to convert the set of images into Multi-Plane Images (MPI) [3, 8, 25, 49].
More recently, NeRF [26] has demonstrated a superior view synthesis quality compared
to other methods, with a series of subsequent researches that improve NeRF for vari-
ous aspects such as anti-aliasing [1, 2], night scenes [24], rendering of large-scale out-
door/indoor scenes [35,39,46], acceleration of training [7,27], real-time rendering [46],
and many others [23, 42, 45].
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Non-rigid reconstruction [6, 16, 30, 40, 41, 50, 51] from monocular video (image se-
quence) is a challenging research problem for view synthesis. A key to solving this
problem is to address the motion of the dynamic object. A solution for this is to find
the correspondence between frames, which would then address the motion of the dy-
namic object. These can either be done via estimating the frame-to-frame optical flow
fields [10], or estimating the long-term trajectories that are associated with each point in
world space of an image sequence [36]. Another solution is to reconstruct a canonical
space representation of the scene, and use an associated warp field to model per-frame
deformation in the scene [28].

More recently, with the increasing popularity of NeRF [26], building neural ra-
diance fields for non-rigid scenes has been of interest. The Neural Scene Flow Field
(NSFF) [21] achieved non-rigid reconstruction via the use of optical flow to guide the
warping of the point between time frames. Gao et al. [9] presents a dual ML model
that handles the synthesis of static and dynamic scenes separately. D-NeRF [33] and
Nerfie [31] propose to use MPL to reconstruct a canonical space representation of the
scene, which can then be later used with the regular NeRF model. HyperNeRF [32] was
extended from Nerfie, but focused on improving reconstruction on topological changes
with an ambient network to encode hyper-space coordinates. There are also other works
focusing on reconstruction for the human body [11, 44], and enable editability on the
object [47] to allow users to manipulate the scene. TiNeuVox [7] has been introduced to
speed up the training process while maintaining the network performance. In this paper,
we focus on improving non-rigid reconstruction using local temporal priors.

3 Overview

Canonical 
Hyper-space

MLP MLP

Local Temporal
Priors

Multiview Stereo
Sampling MLPMLP

Volumetric Rendering

... Density

RGB Color 
from NeRF

RGB Color 
from 

LT Module

Local Temporal Module (LT Module)

Video Sequence

Fig. 1. An overview of our LT-NeRF. The local temporal priors are utilized to provide guidance
on the geometric features for the hyper-space deformation encoder optimization.

Our goal is to reconstruct a dynamic scene from a video sequence {Ii}(i = 1, .., N).
Specifically, we will learn a NeRF-based representation that synthesizes novel views at
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an arbitrary position and time. Our problem can be formulated as:

c, σ = F (x, Ψ, t), (1)

where, x is a 3D location (x, y, z) in the viewing volume to synthesize, Ψ are the camera
parameters of each reference view obtained using Structure-from-Motion [19, 29, 37],
and t is the time. Our aim is to obtain volume density σ at x, and the RGB color c at
x. When synthesizing a novel view, we use the corresponding camera parameter Ψ to
obtain the ray direction of each pixel for volumetric rendering.

We propose LT-NeRF, a novel method that uses Local Temporal Priors (LTP) to
achieve better quality view synthesis for dynamic scenes. The overall architecture of
our LT-NeRF is shown in Figure 1. For each image Ii, we sample 3D points in the
observation volume and build a hyper-space radiance field to associate 3D observation
coordinates to hyper-space coordinates and predict their densities and colors (section 4).
We then leverage an MLP to estimate the color of each spatial-temporal point by com-
bining the color information from temporally nearby frames and the learned geometric
features (subsection 5.1). Together with the original NeRF color prediction, the two
color outputs provide temporally global and local appearance information that are com-
plementary to each other, leading to better geometry reconstruction from the radiance
field. For model training, we propose a local temporal loss to ensure the local temporal
information can be effectively learned (subsection 5.2). Furthermore, we also use the
auxiliary guided depth map from a CNN-based depth estimation method to improve the
density prediction of the radiance field construction.

4 Dynamic Scene Representation

We use hyper-space neural radiance field (HyperNeRF) [32] as our base dynamic scene
representation. HyperNeRF extends NeRF [26] by additionally learning a deformation
module to map a 3D point in the observation space to a canonical space representation
to obtain its density and color for volumetric rendering. The mapping is learned through
a deformation field and an ambient field, which can be represented by: Fd : (x, ωt) →
(x′, w). Here, ωt is the latent deformation code for the frame at time t and ω is the
ambient coordinate. The hyper-space coordinates are fed to the MLPs for predicting
color and density. For the final image reconstruction, the view direction d of each pixel
is used to cast rays for volumetric rendering, which can be obtained using the camera
parameter Ψ . A per-frame appearance code ϕt is also used to ensure the color changes
observed between different frames are learned by the radiance field. Thus, the basic
radiance field for the frame at time t is formulated as:

(c′, σ) = FΘh
(x, Ψt, ωt, ϕt) (2)

By optimizing the parameters Θh = {θdef , θd, θc} of the basic HyperNeRF, the
model is capable of generating novel views of dynamic videos and handles movements
of objects in the dynamic scene. Here, {θdef , θd, θc} represents the parameters of the
MLPs for predicting the deformed/ambient coordinates, density estimation, and color
estimation respectively.
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Fig. 2. Illustration of the Multiview Stereo (MVS) sampling process in our LT module.

Input VIdeo Squence Volumetrically Rendered LTP
Frame 1 Frame 2 Frame NFrame 3 Frame 4

Fig. 3. An example of volumetric rendering with raw LTP reconstructed with the estimated depth.
Given there are N frames from a video sequence (blue box), we isolate our deformation learning
among n temporally local frame. The green box shows a volumetric rendering result with LTP,
where n = 2, n = 4, n = 20, n = 50, n = N respectively. For this example scene N = 100.
The torch and person are dynamic objects in the scene.
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5 Local Temporal NeRF

We hypothesize that the temporally nearby frames provide more reliable information
for dynamic scene reconstruction including subtle deformation of non-rigid objects.
We use n temporally closest neighboring frames for our view synthesis. The size of n
was set experimentally to 4, because we found that smaller n often improved results for
dynamic movement such as the torch scene in Figure 3.

We propose LT-NeRF, a novel method that utilizes local temporal information for
better learning of dynamic scenes. We developed a novel LT module to leverage the
stronger pixel-wise correlations in local temporal windows and provide local temporal
priors to improve hyper-space encoding and deformation field optimization.

5.1 Local Temporal Module

Multiview Stereo (MVS) Sampling: The camera parameter ϕt for frame t is obtained
in our preprocessing step. Given a 3D point x on a light ray, we sample Local Temporal
Prior (LTP) ĉ(x) from its temporally nearest n images {Ii}(i = 1, 2, ..., N) using
MVS:

ĉ(x) =
1

n

n∑
(p̂,i)∈Ω

Ii(p̂)

Ω = {(p̂,m)|p̂ = P(ϕt,P
−1(ϕi,x))}

(3)

where P and P−1 represent the projection and re-projection between 3D space and
2D image space. Ω is the set of pixel coordinates p̂ for the corresponding pixels in the
neighboring views. The illustration of our MVS sampling process is shown in Figure 2.
Our LT-NeRF uses this LTP ĉ(x) to learn the canonical space representation of the
scene with local temporal information.

LT-MLP: Our local temporal module has an MLP network with three fully-connected
layers, and a ReLU activation function followed by the second layer as shown in Fig-
ure 1. Our LT module can be formulated as:

c′lt = Fθlt(hF (Ψt, ϕt, ĉ(x))) (4)

where h is the feature output from the NeRF, and ĉ(x) is our LTP, and F is a single
MLP layer for extract feature. As shown in Figure 1, Our LT module serves as an addi-
tional RGB prediction layer and outputs c′lt.

NeRF with LT Module: Our LT module can effectively improve the hyper-space radi-
ance field construction with our local temporal prior ĉ(x):

(c′, c′lt, σ) = FΘh
(x, Ψt, ωt, ϕt, ĉ(x)) (5)

Here, Ψt, ωt, ϕt are the same as defined in section 4. Θh = {θdef , θd, θc, θlt} are
the parameters of the sub-networks to be optimized: θlt for the LT module, θdef for the
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deformation/ambient coordinates prediction MLPs, and θd for the density estimation
MLP. The rendered image from the NeRF-estimated color space will be used as the
final LT-NeRF output.

5.2 Loss Functions

Given time t and camera Ψt, we use the volumetric rendering method used in NeRF [26]
to render three output colors (C ′

t, Ĉt, C̄t). More specifically, we render our output using:

C =

∫ xn

xf

T (x)σ(x)c(x)dx (6)

where T (x) = exp(−
∫ x

xn
σ(s)ds), here s is the sample distance. σ is the density,

c ∈ {c′, c′lt, ĉ} is the color on a light ray. C ∈ {C ′
t, Ĉt, C̄t} is one of our outputs.

xn and xf refers to the closest and furthest depths respectively. Although the three
output colors are rendered similarly, they provide different information for the network
to optimize.

The NeRF color C ′
t is a neural rendering process that renders a color value without

prior information. The LT module outputs colors Ĉt which are obtained by taking LTPs
into account, where the scene’s color is already established. Since our LTP is obtained
via MVS sampling, the inherited MVS color information will be used in our LT module
output. One characteristic of the MVS color map is that the closer the depth is to an
optimal solution, the clearer the MVS color map will be. Therefore, our LT module
output can be used to assess the quality of the reconstructed geometry in relation to an
MVS color map. Similarly, C̄ uses the raw LTP to assess the quality of the reconstructed
geometry for the MVS operation.

We use an L2 norm as our rendering loss to uses our network to generate pixel
colors using the radiance field for a novel viewpoint:

Lr = ||Ct(p)− C ′
t(p)||2 (7)

For our LT module, we also use L2 norm as our loss function to allow the LT module
to regress the pixel color of the target view:

Llt = ||Ct(p)− Ĉt(p)||2 (8)

The Llt loss is used to guide the depth estimation using the LT module output, with
the idea that the correct depth value would yield an MVS color map more similar to the
ground truth. However, since our LT module behaves similarly to an in-painting layer
that matches the output to the ground truth by in-painting the LTP, some important
information such as the clarity of the LTP might be overridden by the network. Thus, to
ensure this information is still involved in the optimization stage, we also propose a raw
LTP loss that directly uses the initial color of a 3D point estimated using multi-view
stereo in the volumetric rendering:

Lraw = ||Ct(p)− C̄t(p)||2 (9)
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where Ĉ is the integration of all the products of each sample point’s raw LTP r and
its estimated density σ along the ray for pixel p.

To further improve the performance of our method, we employ the auxiliary depth
guidance method proposed by Li et al. [21], where a standardized depth map provides
an intuition of each object’s relative position and can be used to guide the initial learning
of the density estimation. In our experiment, we use the single depth estimation network
MiDas [34] to estimate a depth guidance map. Denoting the standardized depth value
for a point’s depth d as n(d), we apply an L2 depth guidance loss as:

Ld = ||n(d)− n(d′)||2 (10)

where n(d′) is the standardized depth estimated from our network, obtained by
performing volumetric rendering on the length of the light ray [26], and n(d) is the
standardized depth guidance estimated using MiDas [34].

With all of these losses combined together, our overall loss function is:

L = Lr + αLlt + (1− α)Lraw + βLd (11)

The contribution of the LT module reconstruction loss and the raw LTP loss is
weighted using the hyperparameter α. We use α = 0.99 in all our experiments as we
did not want the network to place too much emphasis on Lraw since this will contain
noise around the boundary of objects due to occlusion. The parameter β is set to decay
exponentially, and thus just affects the early stage of the entire training process.

5.3 Implementation

We implement our network with python’s PyTorch library. For the deformation module,
we follow a similar setup as the original HyperNeRF [32], where we use 8 dimensions
for both the apparent and deformation latent code, and 2 ambient dimensions. We use
the Adam optimizer [18] to optimize our network, set the learning rate to 10−3, and
exponentially decay the learning rate alongside our training steps. We set α = 0.99
and β = 0.4. Similar to the learning rate, β will also exponentially decay along with
the training, since we only use it to resolve the spatial positioning of objects at the
beginning of our training.

6 Results

We compare LT-NeRF with the state-of-the-art NeRF-based view synthesis method
from dynamic scenes, including NSFF [21], Nerfie [31], and HyperNeRF [32]. We
compare our LT-NeRF with them both quantitatively and qualitatively.

To compare our work with prior studies, we employ the same dataset as used by
HyperNeRF [32]. We created two datasets, identified as A and B, using distinct methods
for selecting training and testing data. In dataset A, we take one frame out of every 10
frames of each input video sequence as the test data and use the remaining frames for
training. In contrast, for dataset B, we follow the same setup as in prior works [31, 32]
by assigning the left view to the training data and the right view to the test data in
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Start End

Interpolated frames from a novel view

Fig. 4. Novel views synthesized by linearly interpolating the two frames of the chicken (left and
right), showing smooth motion.

an alternating fashion. It is worth noting that dataset A has a video sequence with a
frame rate of 15 fps, while dataset B has a 5 fps video sequence. This difference in
fps implies that the dynamic object in dataset A will undergo fewer changes between
different time frames. Therefore, dataset A will allow us to examine situations where
the object’s motion is relatively slow, whereas dataset B will showcase situations with
relatively faster object motion.

For quantitative evaluation, we adopted metrics LPIPS [48], MS-SSIM [43], and
PSNR, just as what have been used in other related works [26, 32]. In the comparisons,
we use images with 268× 480 resolution. For network training, we set the batch size to
2048 and the number of sampling rays to 128. Moreover, all methods were trained with
250,000 iterations.

6.1 Quantitative Evaluation

Our quantitative analysis results are presented in Table 1, Table 2, and Table 3, which
clearly show that our method outperforms others for most test scenes. Specifically, our
method achieved an average PSNR of 31.33 in dataset A, representing a significant
improvement from the 27.53 achieved by HyperNeRF. Moreover, our method’s PSNR
is also higher than NSFF and Nerfie. In terms of MS-SSIM and LPIPS, our approach
consistently outperforms other methods, indicating that LT-NeRF can generate superior
results when synthesizing novel views.

Regarding dataset B, our method showed better results compared to the previous
method, although its performance dropped compared to dataset A. The drop in per-
formance suggests that our method is more effective on objects’ motion within a rea-
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Fig. 5. Time-pose interpolation results of test scenes, where T is the time index and P is the
camera pose index in the frame sequence. Reference 1 and 2 are ground truth frames (when T =
P ) for time T and pose P.

sonable range. We did observe an exception on the VRIG-chicken scene, which we
will discuss in section 7. However, overall, our method still demonstrated better perfor-
mance qualitatively. Notably, as illustrated in our supplementary, LT-NeRF outperforms
other methods in reducing object shifting artifacts, thereby improving the accuracy and
stability of object representation in the scene. These findings support that our method
is effective in improving the image quality of synthesized novel views by using local
temporal priors to guide network optimization.

6.2 Qualitative Evaluation

A comparison between our method and the other three previous methods is shown
in Figure 5. We can see that our method can recover more details and maintain the
object’s shape with fewer blurring artifacts. NSFF has shown issues with blurring and
ghosting, which may be caused by inconsistent geometry reconstruction across dif-
ferent time frames. HyperNeRF has shown improved quality results than NSFF and
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Nerfie. However, it often has broken shapes on dynamic objects, as shown in scenes 1
and 4. HyperNeRF also has stretched objects and blurry surfaces, which can be found
in scenes 2 and 3. Compared to these methods, our results show a more consistent ob-
ject shape and sharper image fidelity. Based on the results at various times and camera
poses for each test scene, we can see that our method outperforms the other methods in
time-position interpolation.

Chicken Banana Chocolate Hand
(100 frames) (100 frames) (100 frames) (226 frames)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF [21] 24.41 0.8915 0.1329 27.78 0.9195 0.0992 27.58 0.9651 0.0624 29.87 0.9766 0.074
Nerfie [31] 27.55 0.9485 0.1037 30.15 0.9609 0.0821 26.27 0.9528 0.0618 27.55 0.9594 0.0713
HyperNeRF [32] 26.89 0.9390 0.0867 29.07 0.9594 0.0668 28.09 0.9768 0.0413 27.07 0.9586 0.0658
LT-NeRF (Ours) 29.67 0.9701 0.0554 32.56 0.9802 0.0382 29.05 0.9815 0.0240 32.35 0.9888 0.0568
LT-NeRF (A) 25.55 0.9272 0.0983 31.35 0.9697 0.0492 28.09 0.9758 0.0351 30.65 0.9697 0.0615
LT-NeRF (B) 29.65 0.9695 0.0609 31.98 0.9767 0.0369 29.09 0.9815 0.0283 32.16 0.9888 0.0593

Table 1. The reconstruction quality for different methods on dataset A (4 scenes). We use text
color green, blue, red to mark the best, the second best, and the third best results, respectively.

VRIG-Chicken VRIG-3D Printer VRIG-Broom
(164 frames) (207 frames) (197 frames)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [21] 19.9 0.777 0.325 20.7 0.780 0.357 19.9 0.653 0.692
NV [21] 17.6 0.615 0.336 16.2 0.665 0.330 17.7 0.623 0.360
NSFF [21] 26.9 0.944 0.106 27.7 0.947 0.125 26.1 0.871 0.284
Nerfie [31] 26.7 0.943 0.078 20.6 0.830 0.108 19.2 0.567 0.325
HyperNeRF [32] 26.9 0.948 0.079 20.0 0.821 0.111 19.3 0.591 0.269
LT-NeRF (Ours) 26.0 0.904 0.102 23.1 0.885 0.097 21.9 0.742 0.217

Table 2. The reconstruction quality for different methods on dataset B (3 scenes). The color
green, blue, red indicate best, second best, and third best, respectively.

6.3 Ablation Study

Our LT-NeRF addresses the dynamic scene reconstruction issues by using the LT mod-
ule with specific loss functions to regularize the network optimization. To understand
the contributions of each component, we conduct an ablation study to demonstrate how
LT-NeRF performs when removing the LT module from the pipeline (see Figure 1,
denoted as LT-NeRF (A)) as well as removing depth-related loss items Ld from the
loss function (see Equation 11, denoted as LT-NeRF (B)). For LT-NeRF (A), we use
loss L = Lr + βLd to regularize the network training. For LT-NeRF (B), we train the
network use loss L = Lr + αLlt + (1− α)Lraw.

As shown in Table 1, the results of LT-NeRF (A) without the LT module in the
pipeline shows the worst results across all metrics in all test scenes when compared with
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DataSet A DataSet B
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [21] - - - 20.2 0.737 0.458
NV [21] - - - 17.2 0.634 0.342
NSFF [21] 27.41 0.9400 0.0891 26.9 0.921 0.172
Nerfie [31] 27.88 0.9554 0.0797 22.2 0.780 0.170
HyperNeRF [32] 27.53 0.9537 0.0662 22.01 0.77 0.153
LT-NeRF (Ours) 30.91 0.9802 0.0436 23.8 0.846 0.132
LT-NeRF (A) 28.91 0.9606 0.0610 - - -
LT-NeRF (B) 30.72 0.9806 0.0512 - - -

Table 3. The average reconstruction quality for different methods on dataset A and B. We use text
color green, blue, red to mark the best, the second best, and the third best results, respectively.

both LT-NeRF and LT-NeRF (B), which has the LT module included. Adding the LT
module increased the average PSNR from 28.91 to 30.91 and MS-SSIM from 0.9606 to
0.9802. For LILPS, adding the LT module reduced the error from 0.0610 to 0.0436. The
consistent improvement of all metrics shows that our proposed LT module is effective in
improving image quality. Qualitative results also show LT-NeRF (A) without LT module
gives the worst result in most cases. For instance, scene 3 in Figure 5, we observed that
LT-NeRF (A) showed blurrier results on the chicken toy. In scene 4, we observe that LT-
NeRF (A) fails to reconstruct the correct shape of the banana cutter. Compared to this,
LT-NeRF and LT-NeRF(B) are both able to demonstrate better results. This shows that
our proposed LT module can improve the quality of novel view synthesis and generate
more visually appealing results.

Removing depth-guidance regularization also affects the results but just to a very
small degree in most cases. The performance on PSNR, MS-SSIM, and LILPS metrics
are either slightly decreased or kept very close. The contribution of depth guidance may
be limited by the fact that the depth used for guidance is produced by the CNN-based
depth estimation method and thus doesn’t have sufficient accuracy for supporting the
view synthesis task. Nonetheless, employing depth guidance could improve the robust-
ness of our method in general (see Figure 5). From the depth maps shown in Figure 6
we can see that the depth output from LT-NeRF trained without depth guidance ( Fig-
ure 6 (A)) would sometimes give slightly inconsistent depth on the same region of an
object (e.g., the top of the torch). The underlying reason could be that, although the
LTP helps to enhance depth optimization by giving prior RGB information for the esti-
mated point, it also introduces some noise to the network. Since not all pixels captured
from various camera poses will be able to intersect perfectly due to intensity differences
and position motion distortion in the image. The inconsistent depth in Figure 6 gives
an indication of why artifacts appeared in the results of different time frames Figure 5
generated by LT-NeRF(B) in scene 2. Employing depth guidance addresses this issue.

6.4 Additional comparisons

It is noteworthy to mention that the volumetrically rendered output Ĉt from the LT
module can also generate high-fidelity novel views. However, the generated novel views
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Renference

(B)

(A)

Depth Guidance 
Map

Fig. 6. Preview of the estimated depth for the chocolate scene. The top is depth optimized without
depth guidance (LT-NeRF(B)), and the bottom is with depth guidance (LT-NeRF (ours)).

will only have appealing results closer to the trained location (i.e., index T = index P ).
When the camera position moves far away from the time and camera pose index used
for training, visual artifacts will appear as shown in Figure 7. On the other hand, the
synthesized novel view based on the NeRF color space is much more stable. Therefore,
we choose to use the volumetrically rendered output from NeRF color space as our final
output.

7 Limitations and Discussion

Our LT-NeRF approach may face challenges in certain extreme cases, such as videos
with fast-moving objects, scenes with challenging camera angles, and scenarios where
differentiating between the dynamic object and the background is difficult. Further-
more, while our approach outperforms HyperNeRF in cases where we achieve better-
reconstructed geometry (i.e., better canonical space presentation), our results may ex-
hibit some blurriness in cases where the geometry quality is suboptimal (as observed
in Figure 8). We hypothesize that this blurriness may be due to the ambiguity of tex-
ture information in the MVS module. One feasible solution is to use subspace selection
techniques [50] to identify and include only the most similar frames within a local dis-
tance, which may lead to improved texture reconstruction quality. Another limitation
of our method is that training time will be significantly longer depending on the length
and frame rate of the video sequence.
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Fig. 7. An example comparing the output of our network’s LT-module and NeRF components,
where a) is at the training position, b) is moving slightly away, and c) is further away.

N/A

Novel View (GT) LT-NeRF (Ours) HyperNeRF

Fig. 8. Illustration of an existing issue of our method. When the reconstructed geometry is sub-
optimal, our method tends to produce a blurrier result.
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8 Conclusion

In this paper, we present LT-NeRF, a new approach using local temporal priors for
synthesizing novel view images of dynamic scenes from monocular videos. Our novel
LT module provides the local temporal priors using multi-view stereo sampling, and
improves the deformation field reconstruction and hyper-space encoding of dynamic
scenes. We further introduce two novel loss functions to account for our local tem-
poral prior that improves the NeRF optimization. We tested our method with various
dynamic scenes and compared the synthesized results against the state-of-the-art. The
result shows that our approach with local temporal prior outperforms the prior works
relying on global temporal information.

Our method still has room to improve to address the challenging cases discussed
in our limitations section. Since we implemented our approach as a separate LT mod-
ule, we believe it could easily be integrated into other NeRF architectures to test and
improve the robustness against scenes with dynamic objects.
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