
Deformable CNN With Position Encoding For
Arbitrary-Scale Super-Resolution

Yuanbin Ding1, Kehan Zhu1, Ping Wei1, Yu Lin2 (B), and Ruxin Wang3 (B)

1 National Pilot School of Software, Engineering Research Center of Cyberspace,
Yunnan University, Kunming, China

{dyb2000,zhukehan03}@foxmail.com, weip@ynu.edu.cn
2 Kunming Institute of Physics, Kunming, China

lwlinyu@163.com
3 Alibaba Group, Beijing, China
rosinwang@gmail.com

Abstract. Implicit neural representation (INR) has been widely used to learn
continuous representation of images, as it enables arbitrary-scale super-resolution
(SR). However, most existing INR-based arbitrary-scale SR methods simply con-
catenate neighboring features and directly stack the position information with the
image features, without fully exploiting the correlations among the input infor-
mation. This processing method may produce artifacts and erroneous texture in
the SR image. To address this problem, we propose a deformable CNN with po-
sition encoding (DCPE). Our method consists of three main components: (1) De-
formable Feature Unfolding (DFU) module, which selectively concatenates the
image features to ensure accurate recovery of texture; (2) Fusion With Learned
Position Encoding (FPE) module, which generates position encoding that can
be better fused with image features, thereby enhancing the correlation between
them; and (3) Deep ResMLP module, which enhances the representation capa-
bility of the local implicit image function to focus more on learning the high-
frequency information of the image, thus reducing the generation of artifacts in
SR image. We conduct extensive experiments and demonstrate that our method
outperforms previous methods in both qualitative and quantitative evaluations.

Keywords: arbitrary-scale super-resolution · implicit neural representation · de-
formable CNN · position encoding.

1 Introduction

Single-image super-resolution is a fundamental computer vision task that aims to re-
cover a low-resolution (LR) image into a corresponding high-resolution (HR) image.
Most SR methods use convolutional neural networks to extract features and append
an upsampling module at the end, which can reconstruct the LR image and generate
a high-quality HR image. However, these traditional SR methods often have limita-
tions: they can only perform SR on a fixed scale. In practical scenarios, the limitations
of single-scale SR methods become apparent as they inadequately cater to the multi-
faceted demands of real-life applications, and training a dedicated model for each scale



2 Y. Ding et al.

is impractical. Hence, the proposal of arbitrary-scale SR methods is necessary, as they
can achieve SR at arbitrary scales with only one model.

Most of the existing arbitrary-scale SR methods achieve their goals by preserving
the backbone network of traditional SR models while substituting the original standard
up-sampling module with one capable of arbitrary-scale up-sampling. This is a sim-
ple and effective way to transform the SISR method into an arbitrary-scale SR method
and improve the SR performance of the original network. In Meta-SR[13], the Meta-
Upscale Module is proposed to replace the traditional up-sampling module and achieve
SR at arbitrary scales. However, Meta-SR exhibits limited generalization ability when
confronted with large-scale SR scenarios beyond its training scope. To overcome the
limitation of Meta-SR, implicit neural representation is introduced by LIIF for arbitrary-
scale super-resolution, which parameterizes the signal as a continuous function and
maps the coordinates to the corresponding signals. Based on this idea, LIIF proposes
a local implicit image function that replaces the traditional up-sampling module. The
local implicit image function employs a multi-layer perceptron (MLP) to map the 2D
coordinates and the local features to the RGB values. Since the coordinates are contin-
uous values, it can naturally achieve arbitrary-scale SR, even for scales not seen during
training.

It is noteworthy that the input to the local implicit image function consists exclu-
sively of the position information of the target pixel and its corresponding feature vec-
tor. Consequently, the processing method of position information and feature vectors
is crucial for restoring high-quality SR images. However, LIIF [6] simply stacks them
together, resulting in a limited correlation between the stacked components, which may
lead to the distortion of image texture. UltraSR [38] and IPE [24] enrich the position
information by combining it with periodic encoding, but the periodic encoding is fixed
and may not be optimal for different scales. As for the processing method of feature
vectors, some previous methods [6, 20] concatenate all the features within a 3×3 neigh-
borhood. However, this approach may aggregate some irrelevant or redundant features
that could negatively impact texture recovery.

In order to address these problems, we propose a deformable CNN with position
encoding, named DCPE. Unlike previous methods [6, 20], we exploit the available in-
formation more effectively, concatenate the extracted LR feature information correctly,
and fuse the processed feature information with the learned position encoding deeply to
enhance the correlation between different types of information. We also use a residual-
structured MLP to enhance the representation capability of the local implicit image
function, thereby improving the quality of the SR image.

Our principal contributions can be summarized as follows:

– We propose a deformable CNN with position encoding (DCPE) for arbitrary-scale
SR, which can concatenate feature vectors that are useful for recovering texture,
while deeply fusing the learned position encoding with the image features to obtain
SR images with correct texture.

– We propose Deep ResMLP, which optimizes the MLP structure by combining lo-
cal and global residual connections. This approach enables the network to learn
the high-frequency information of the image more effectively, thus reducing the
artifacts in the output.
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– We conduct extensive experiments on DIV2K and four other benchmark datasets,
demonstrating that DCPE outperforms previous methods in most cases.

2 Related Work

2.1 Implicit neural representation

Many natural signals (e.g. images, shapes of objects, etc.) are continuous, but comput-
ers can only use discrete storage and representation methods. To overcome the physical
limitations of computers and to connect with the continuous representation of the real
world, implicit neural representation has attracted increasing attention and research [8,
26, 27] due to its excellent ability to represent continuous signals. Implicit neural rep-
resentation is a method that approximates a continuous function with a neural network,
typically using an MLP to map 2D/3D coordinates to the signals at that location. When
an object is modeled as an implicit neural function, the memory required to parame-
terize the signal depends only on the complexity of the underlying signal, not on the
spatial resolution, which greatly enhances the usability of implicit neural representa-
tion. Implicit neural representation was initially applied to 3D scenes, such as 3D shape
modeling [2, 7, 12], 3D scene modeling [15, 32], and 3D structure rendering [27, 28, 23,
3]. Recently, implicit neural representation has also emerged in 2D applications, such
as image SR [6, 38, 20, 24], which can naturally achieve infinite resolution with implicit
neural representation, and is of great significance for arbitrary-scale SR.

2.2 Single image super-resolution (SISR)

SISR is the task of transforming LR image into HR image. SR methods can be clas-
sified into three categories: interpolation-based, reconstruction-based, and learning-
based. Presently, the most effective and influential methods are learning-based meth-
ods. Convolutional neural network (CNN) has been widely used in SR reconstruction
studies due to their excellent detail characterization ability. CNN can implicitly learn
the prior knowledge of the image and use it to generate superior SR outputs. SRCNN
[10] was the first CNN-based SR method, which consisted of three convolutional lay-
ers. It used bicubic interpolation to upscale the LR image to the target resolution size
as input, and then obtained the SR image by applying the SRCNN. Later, ESPCN [31]
introduced an efficient sub-pixel convolution layer at the end of the network, which
learned a set of upsampling filters to map the LR features to the HR output. This ap-
proach avoided using bicubic interpolation to upscale the LR image before feeding the
image into the network, which reduced the computational complexity and improved the
model performance.

After that, most CNN-based SR methods adopted a similar structure: a backbone
network to extract LR image features, followed by an upsampling module to generate
SR images. Various new network designs were also proposed for the backbone network,
such as VDSR [16], EDSR [22], IRCNN [41] using residual learning; RDN [43] using
a combination of dense and residual connections; DRCN [17], DRRN [33] using re-
current networks; SRGAN [19], ESRGAN [36] using generative adversarial networks
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to obtain perceptually pleasing texture; RCAN [42], SAN [9] using different attention
mechanisms; and IPT [5], SwinIR [21], SwinFIR [40] using transformer structures.
While these advancements continue to improve SR performance, most of these meth-
ods remain confined to single-scale SR applications, limiting their practical utility in
diverse real-world scenarios.

2.3 Arbitrary-scale super-resolution

Arbitrary-scale SR is the task of transforming LR image into HR image at arbitrary
scales. Due to the limitations of single-scale SR, arbitrary-scale SR has attracted more
attention recently, and the first method to propose it was Meta-SR [13], which used a
Meta-SR upsampling module instead of the traditional single-scale upsampling mod-
ule. This approach enabled the existing SISR methods to adapt to arbitrary-scale SR
easily. The Meta-SR upsampling module could dynamically predict the weights of the
upsampling filters for any scale factor, and then use them to generate HR images. In-
spired by Meta-SR, RSAN [11] and Arb-SR [35] were proposed, which could perform
asymmetric SR. Later, Chen et al. [6] proposed the LIIF, which replaced the traditional
single-scale upsampling module with a local implicit image function. LIIF took the po-
sition information of the target resolution image and the nearest LR feature vector as
inputs, and predicted the RGB values at that position. LIIF had better generalization
ability for large-scale factors and bridged the gap between 2D discrete and continuous
representations.

After LIIF was proposed, many researchers improved it. For example, Xu et al. [38]
proposed UltraSR, which deeply integrated spatial coordinates and periodic encoding
with the implicit neural representation; Lee et al. [20] proposed a Local Texture Esti-
mator (LTE), which characterized the image texture in 2D Fourier space and enabled
the implicit function to reconstruct the image continuously while capturing details; Liu
et al. [24] proposed Integrated Position Encoding (IPE), which extended traditional po-
sition encoding by aggregating frequency information over pixel regions to enhance the
expressiveness of implicit neural networks.

3 Methods

In this section, we present a comprehensive introduction to the novel method called
DCPE, which is designed for arbitrary-scale SR. Our method begins by estimating the
sampling offsets for each feature reference point using a dedicated offset estimation
network. These offsets determine the precise location of sampling points. Bilinear inter-
polation is subsequently employed to sample features at these specified locations. The
sampled features are then concatenated to enrich the feature information of the corre-
sponding reference point. Next, we combine the position information with scale, and
obtain the position encoding with the same dimension as the concatenated image fea-
tures through an MLP. We deeply fuse position encoding with the concatenated feature
information. Finally, to improve the expressiveness of the local implicit image function,
we increase the depth of the implicit neural network by using global and local residual
connections. The overall structure is shown in Figure 1 (a).



DCPE For Arbitrary-Scale Super-Resolution 5

Deep ResMLP

(    ) 
DFU

Input Feature Map

( V )

Output Feature Vector

(    )

Sampling Offsets

(     )

C
o
n

v
 

k
×

k

G
E

L
U

C
o
n

v
 

1
×

1
Bilinear Interpolation

T
an

h

Offset Estimation

 Feature Map

C

C
o

n
v
 

1
×

1

Position Encoding

( PE' )

CC

(a) DCPE

(c) DFU

Element-wise addition

Coordinate addition

Concatenate

Element-wise dot multiplication

H

1

W

1
，

CC

M
L

P
M

L
P

(b) FPE

LR
SR

l rv'

f

o

s

PP }

B
ack

b
o
n

e

(     )φ
E

B
ack

b
o
n

e

(     )φ
E

x

qx
rx

x

qx
rx

Upsampling

M
V'V

Fig. 1: The overall structure of our proposed deformable CNN with position encoding
(DCPE) is illustrated in sub-figure (a). First, the backbone network extracts the LR
image features and obtains V . Then, the DFU module (sub-figure (c) shows the detailed
structure) selectively samples the features from V to get information-rich features V ′,
and upsample V ′ to obtain M using nearest-neighborhood interpolation. Next, the FPE
module (sub-figure (b)) generates the position encoding and fuses it deeply with M ,
and finally, the SR image is obtained by the Deep ResMLP module.

The feature extraction process of LR images can be defined as follows:

V = Eφ(γLR), (1)

where γLR ∈ RH×W×3 represents the LR image, and Eφ is the backbone network used
by the model. Extracting the features of γLR through the backbone network, we obtain
V ∈ RH×W×C .

We can define our method as follows:

γSR = fθ (∅DFU (V )↑ , ∅FPE (δx, s))

δx ∝ xq − xr,
(2)

where xq is the coordinate of the query point in the HR image domain, and xr is the
coordinate of the nearest reference point to xq in the LR image domain. Both xr and
xq have the value range of [−1, 1], δx signifies the relative distance between xq and xr,
while s represents the scale factor. ↑ stands for the nearest-neighborhood interpolation,
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and γSR ∈ RsH×sW×3 denotes the final SR image. ∅DFU (•) and ∅FPE (•) are both
trainable functions. The former serves to enrich the information contained in vr ∈ V ,
while the latter is responsible for generating the position encoding. fθ denotes a local
implicit image function parameterized by θ, which maps coordinates to corresponding
RGB values. This function is shared by all images.

3.1 Deformable Feature Unfolding (DFU)

We propose the Deformable Feature Unfolding module to enrich the information of V .
Unlike LIIF [6], which uses Feature Unfolding to concatenate all neighboring features
within a 3×3 range around the reference point, DFU selectively concatenates the feature
vectors that can enhance the texture of the super-resolution (SR) image. DFU avoids
treating each feature in the range equally and performing simple feature concatenation
without discrimination, which solves the problem of incorrect texture in SR images
effectively. The detailed structure of DFU is shown in Figure 1 (c).

Specifically, we introduce an offset estimation network that predicts multiple sam-
pling offsets for each reference point, inspired by the Deformable Attention Trans-
former (DAT)[37]. We first apply a 1 × 1 convolution on the input feature map V to
change its dimension and obtain the offset estimation feature map. For each reference
point, we use a k × k convolution layer to extract feature information within the k × k
range around the reference point (the light green part of the offset estimation feature
map, padded with zero vectors outside the boundary), which contributes to generating
the final sampling offsets. Then, we use a GELU activation layer and a 1×1 convolution
to get the sampling offsets ∆L ∈ RP×2, P stands for the number of sampling points,
which can be defined as follows:

∆L = {(∆xp, ∆yp)}p∈{1,2,3,...,P}, (3)

where ∆xp and ∆yp represent the offsets of the p-th sampling point along the x-axis
and y-axis, respectively. To maintain training stability and avoid excessively large off-
sets, we employ the Tanh activation function to constrain sampling offsets within the
range of [−1, 1]. Subsequently, the ∆x and ∆y components of all sampling offsets are
normalized by the width (W ) and height (H) of the input feature maps, respectively.
We also multiply them by an offset range factor o to control the range of the offsets,
and finally obtain a reasonable range of the sampling offsets ∆l ∈ RP×2. It is defined
as follows:

∆l = o · tanh( ∆L

(W,H)
). (4)

Subsequently, we determine each location of sampling points according to the sam-
pling offsets and the location of the reference point, and use bilinear interpolation to
obtain the feature vectors at locations of sampling points. We concatenate P sampled
feature vectors to get new feature vectors. This process is defined as follows:

v′r = Concat({Vlr+∆lrp}p∈{1,2,3,...,P}), (5)

where lr denotes the coordinate of a feature reference point in the LR image domain,
and ∆lrp denotes one of its sampling offsets. Then lr + ∆lrp is one of its sampling
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coordinates, and Vlr+∆lrp is a feature vector obtained by bilinear interpolation at that
position. A new feature vector v′r is obtained after applying Equation 5, and we per-
form this operation for each feature reference point in the LR image domain to obtain
V ′ ∈ RH×W×PC . V ′ enlarges the receptive field, selectively concatenates the infor-
mation around Vlr , discards useless or even harmful information, enhances the con-
tent within each feature vector, and facilitates the restoration of texture. Finally, we
upsample the latent representation V ′ using nearest-neighbor interpolation to obtain
M ∈ RsH×sW×PC .
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Fig. 2: The figure shows the original MLP in LIIF [6] (left) and our proposed Deep
ResMLP (right) structure.

3.2 Fusion With Learned Position Encoding (FPE)

The core idea of implicit neural representation is to map position information to RGB
values, so the representation of position information is crucial. Previous work [6, 30]
simply stacked the position information with the feature vectors, which resulted in low
correlation and unequal information amount between them. This uneven information
distribution makes it challenging for the local implicit image function to exploit the
relationship between them effectively. Meanwhile, to solve the problem that the fixed
encoding method is difficult to optimize, we introduce an approach that seamlessly
integrates learned position encoding with image features inspired by the Transformer
[34].

Figure 1 (b) illustrates our method. The position information we use is δx, which
represents the relative distance between xq and xr. This is similar to previous work [6,
38, 30], but we employ distinct encoding and combination methods for the δx. We input
δx into a three-layer MLP to obtain a position encoding PE ∈ RsH×sW×PC with the
same dimension as M . Then we add PE to M . This method balances the information
amount of the position and the image features, and enhances their association.

However, the position information can only inform the network about the orienta-
tion and distance of the target pixel with respect to the LR feature reference points,
failing to convey how much space the pixel should occupy within the entire SR im-
age. This deficiency may affect the overall structure of the SR image. Therefore, we
introduce a scale factor, and stack it with δx before feeding them into MLP to obtain
PE′ ∈ RsH×sW×PC . Finally, we add PE′ to M and feed it into fθ (·).
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Table 1: Quantitative results on the DIV2K validation set (PSNR (dB)). The table com-
pares the performance of several arbitrary-scale SR methods. EDSR-baseline [22] uses
models trained at specific scales, and other methods use the same model at all scales
(×2 - ×30). † indicates that the method is implemented by [20]. Bold indicates the best
performance.

Method
In-scale Out-of-scale

×2 ×3 ×4 ×6 ×12 18 ×24 ×30
Bicubic [22] 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR-baseline [22] 34.55 30.90 28.94 - - - - -
EDSR-baseline-Meta-SR [13] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF [6] 34.66 30.96 29.00 26.75 23.71 22.17 21.18 20.48
EDSR-baseline-LTE [20] 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
EDSR-baseline-DCPE (ours) 34.78 31.07 29.11 26.87 23.84 22.33 21.34 20.66
RDN-Meta-SR [13] 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47
RDN-LIIF [6] 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59
RDN-LTE [20] 35.04 31.32 29.33 27.04 23.95 22.40 21.36 20.64
RDN-DCPE (ours) 35.06 31.33 29.34 27.07 24.00 22.47 21.45 20.76
SwinIR-Meta-SR† [13] 35.15 31.40 29.33 26.94 23.80 22.26 21.26 20.54
SwinIR-LIIF† [6] 35.17 31.46 29.46 27.15 24.02 22.43 21.40 20.67
SwinIR-LTE [20] 35.24 31.50 29.51 27.20 24.09 22.50 21.47 20.73
SwinIR-DCPE (ours) 35.23 31.49 29.50 27.20 24.11 22.55 21.54 20.82

Table 2: Quantitative results on benchmark datasets (PSNR (dB)). The table compares
the performance of several arbitrary-scale SR methods. each method uses the same
model at all scales (×2−×10). All arbitrary-scale SR methods use EDSR-baseline as
backbone. Bold indicates the best performance.

Dataset Method
In-scale Out-of-scale

×2 ×3 ×4 ×6 ×8 ×10

Set5

EDSR-baseline-Meta-SR [13] 37.99 34.38 32.05 28.69 26.72 25.42
EDSR-baseline-LIIF [6] 37.99 34.40 32.18 28.95 26.98 25.61
EDSR-baseline-LTE [20] 38.04 34.43 32.24 28.97 27.04 25.69
EDSR-baseline-DCPE (ours) 38.03 34.48 32.27 29.03 27.05 25.72

Set14

EDSR-baseline-Meta-SR [13] 33.61 30.27 28.51 26.31 24.79 23.69
EDSR-baseline-LIIF [6] 33.57 30.33 28.63 26.45 24.92 23.83
EDSR-baseline-LTE [20] 33.72 30.37 28.65 26.50 24.99 23.88
EDSR-baseline-DCPE (ours) 33.71 30.37 28.68 26.53 24.98 23.90

B100

EDSR-baseline-Meta-SR [13] 32.17 29.09 27.54 25.74 24.69 23.95
EDSR-baseline-LIIF [6] 32.16 29.11 27.59 25.84 24.80 24.06
EDSR-baseline-LTE [20] 32.21 29.14 27.62 25.87 24.82 24.08
EDSR-baseline-DCPE (ours) 32.22 29.15 27.64 25.88 24.83 24.08

Urban100

EDSR-baseline-Meta-SR [13] 32.05 28.10 25.94 23.58 22.28 21.40
EDSR-baseline-LIIF [6] 32.09 28.17 26.12 23.75 22.44 21.54
EDSR-baseline-LTE [20] 32.29 28.32 26.24 23.85 22.53 21.64
EDSR-baseline-DCPE (ours) 32.33 28.36 26.28 23.88 22.56 21.65
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3.3 Deep ResMLP

We found that an MLP formed by simple concatenation of fully connected layers and
activation functions has limited expressive power and struggles to effectively map coor-
dinates to RGB values, as illustrated in the left side of Figure 2. Therefore, we introduce
the Deep ResMLP network, which adds residual connections to increase the network
depth and allows the network to focus more on learning high-frequency information.
Deep ResMLP contains multiple residual blocks, each with two fully connected layers,
two activation layers and a short residual connection, as shown by the gray boxes on
the right side of Figure 2. In addition, within the entire Deep ResMLP network, a long
residual connection spans all residual blocks, with fully connected layers positioned
before and after it. The overall structure is shown on the right side of Figure 2. The
experimental results show that our Deep ResMLP can effectively enhance the expres-
sive power of the local implicit image function, achieve superior SR performance, and
reduce the generation of artifacts in SR images.

4 Experiments

4.1 Datasets and Metrics

The DIV2K dataset [1] contains 1000 images with 2K resolution, divided into 800 for
training, 100 for testing, and 100 for validation. We trained all models on the training
set of the DIV2K dataset. To evaluate the model performance, we used the validation
set of DIV2K, as well as four benchmark datasets: Set5 [4], Set14 [39], B100 [25], and
Urban100 [14]. We used peak signal-to-noise ratio (PSNR) as our evaluation metric.
Following previous methods [13, 6, 35, 38, 20, 24], we calculated PSNR values for the
three RGB channels of the DIV2K validation set, and for the Y channel of the YCbCr
format of the benchmark datasets.

4.2 Implementation detail

Most of our implementation settings are the same as LTE [20]. The training scale fac-
tors s are uniformly distributed in U(1, 4), which we call In-scale, and the scale factors
larger than ×4 are called Out-of-scale. To obtain the training image pairs, we randomly
crop the HR image in DIV2K to a size of 48s×48s and then use the bilinear interpo-
lation of PyTorch [29] to downscale the cropped image to 48×48. We use the obtained
48×48 LR image as the input to the model. In the training stage, to ensure that the shape
of ground-truths in a batch is the same as that of LR images, and to reduce the memory
consumption and accelerate the training speed, we randomly sample 48×48=2304 pix-
els in the cropped HR image, and record coordinates of each sampled pixel in HR image
domain. During training, we only upsample the feature information on the sampled co-
ordinates, and then perform backpropagation. We choose Adam [18] as the optimizer
with betas of 0.9 and 0.999, respectively, and L1 loss [22] to train our models. All mod-
els are trained on an NVIDIA RTX 4090 24GB GPU for 1000 epochs, and the batch size
of the models is set to 8. We use the CNN-based models with the upsampling module
removed as the backbone. For the model with SwinIR [21] as the backbone, the initial
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Fig. 3: Qualitative comparison of different arbitrary-scale SR methods. In the large im-
age on the left side, red boxes indicate the selected area for comparison, and the source
dataset of the images and the corresponding scale factor used for the comparison are
labeled below the large image. The smaller images on the right side display detailed
SR images generated by each method, with the respective backbone and method name
indicated below each small image.
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learning rate is set to 2e-4 and decayed by a factor of 0.5 at epochs of [500, 800, 900,
950], respectively. For the models with EDSR-baseline [22] or RDN [43] as the back-
bone, the initial learning rate is set to 1e-4 and decays to half of the previous learning
rate for every 200 epochs of training.

4.3 Evaluation

Quantitative results. Table 1 compares the performance of several arbitrary-scale SR
methods (Meta-SR [13], LIIF [6], LTE [20], and our DCPE) on the DIV2K validation
set, using EDSR-baseline [22], RDN [43], and SwinIR [21] as the backbone respec-
tively. The table shows that our model outperforms the other models at all scales with
EDSR-baseline [22] and RDN [43] as backbones. With SwinIR [21] as the backbone,
our model is slightly lower than LTE [20] by 0.01 dB in the in-scale distribution, but
achieves the best performance in the out-of-scale distribution with a maximum differ-
ence of 0.09 dB (×30). DCPE also has a more significant improvement in SR perfor-
mance at large scales regardless of the backbone used, especially at ×30 with EDSR-
baseline as the backbone, where DCPE achieves a maximum improvement of 0.13 dB
over LTE. Table 2 compares the performance of each method on benchmark datasets.
Our method achieves superior performance in most cases compared to other methods.

Qualitative results. Figure 3 shows the qualitative analysis of the benchmark dataset
and the DIV2K dataset. The figure demonstrates that our method generates SR images
with more accurate texture and fewer artifacts than other arbitrary-scale SR methods,
both in the in-scale and out-of-scale distributions. The figure also compares various
methods using EDSR-baseline, RDN or SwinIR as the backbone, and reveals that our
method significantly outperforms other methods on various datasets, regardless of the
backbone. This excellent performance can be attributed to our proposed DCPE, which
effectively mitigates distortion of texture and maximizes the recovery of texture from
the ground-truths.

Table 3: Quantitative ablation study on module validity validation of DCPE. We eval-
uated the results on the DIV2K validation set (PSNR (dB)), and used EDSR-baseline
[22] as the backbone for all DCPE models. DCPE(-D) denotes the model without the
DFU module, DCPE(-F) denotes the model without the FPE module, and DCPE(-R)
denotes the model without the Deep ResMLP module.

In-scale Out-of-scale
Method ×2 ×3 ×4 ×6 ×12 ×18

DCPE 34.78 31.07 29.11 26.87 23.84 22.33
DCPE(-D) 34.74 31.03 29.06 26.82 23.78 22.25
DCPE(-F) 34.75 31.05 29.09 26.85 23.83 22.32
DCPE(-R) 34.72 31.02 29.06 26.83 23.81 22.30
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4.4 Ablation Study
In this section, we conduct a series of experiments to demonstrate the effectiveness of
the various modules of DCPE and to select the optimal parameters for the model, using
EDSR-baseline [22] as the backbone for all models.

Method ×2 ×3 ×4 ×6 ×12 ×18
Layer=1 -0.0003 -0.0094 -0.0076 0.0006 0.0026 0.0005
Layer=2 0.0087 -0.0005 -0.0019 -0.0018 0.0024 0.0034
Layer=3 0.0345 0.0232 0.0219 0.0211 0.0108 0.0101
Layer=4 0.0169 0.0061 0.0063 0.0042 0.0007 0.002

×2 ×3 ×4 ×6 ×12 ×18
Block=1 0.0318 0.0192 0.0174 0.0108 -0.0092 -0.012
Block=2 0.0156 0.0123 0.0132 0.0207 0.0263 0.0237
Block=4 0.0675 0.0517 0.0475 0.0553 0.0483 0.038
Block=5 0.0473 0.03 0.026 0.0243 0.0283 0.0272
Block=6 0.0075 -0.0106 -0.0056 0.0029 0.0095 0.0109

Method x24
2 34.7508
4 34.782
6 34.7636

Method x30
9 34.7396
16 34.7625
25 34.7502

Fig. 4: This figure shows the effect of the number of sampling points (left) and the offset
range factor (right) in the DFU module on DIV2K (×2).

Method ×2 ×3 ×4 ×6 ×12 ×18
Layer=1 -0.0003 -0.0094 -0.0076 0.0006 0.0026 0.0005
Layer=2 0.0087 -0.0005 -0.0019 -0.0018 0.0024 0.0034
Layer=3 0.0345 0.0232 0.0219 0.0211 0.0108 0.0101
Layer=4 0.0169 0.0061 0.0063 0.0042 0.0007 0.002

×2 ×3 ×4 ×6 ×12 ×18
Block=1 0.0318 0.0192 0.0174 0.0108 -0.0092 -0.012
Block=2 0.0156 0.0123 0.0132 0.0207 0.0263 0.0237
Block=4 0.0675 0.0517 0.0475 0.0553 0.0483 0.038
Block=5 0.0473 0.03 0.026 0.0243 0.0283 0.0272
Block=6 0.0075 -0.0106 -0.0056 0.0029 0.0095 0.0109

Method x24
2 34.7704
3 34.7604
4 34.782

Method x30
9 34.7396
16 34.7625
25 34.7502 Fig. 5: This figure shows the change in model performance when the number of layers of

MLP in the FPE module is 1, 2, 3, and 4, respectively. The increment/decrement refers
to the difference between the results from these ablation studies and the DCPE(-F) in
Table 3.

Module validity validation. We conducted a series of experiments to assess the
effectiveness of different modules within DCPE. We removed various modules indi-
vidually and retrained new models with the remaining components kept unchanged.
Table 3 shows the results. Regarding implementation details, for DCPE(-D), we ap-
plied nearest-neighbor interpolation to upsample V to M ′ ∈ RsH×sW×PC , then fused
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Method ×2 ×3 ×4 ×6 ×12 ×18
Layer=1 -0.0003 -0.0094 -0.0076 0.0006 0.0026 0.0005
Layer=2 0.0087 -0.0005 -0.0019 -0.0018 0.0024 0.0034
Layer=3 0.0345 0.0232 0.0219 0.0211 0.0108 0.0101
Layer=4 0.0169 0.0061 0.0063 0.0042 0.0007 0.002

×2 ×3 ×4 ×6 ×12 ×18
Block=1 0.0318 0.0192 0.0174 0.0108 -0.0092 -0.012
Block=2 0.0156 0.0123 0.0132 0.0207 0.0263 0.0237
Block=4 0.0675 0.0517 0.0475 0.0553 0.0483 0.038
Block=5 0.0473 0.03 0.026 0.0243 0.0283 0.0272
Block=6 0.0075 -0.0106 -0.0056 0.0029 0.0095 0.0109

Method x24
2 34.7704
3 34.7604
4 34.782

Method x30
9 34.7396
16 34.7625
25 34.7502 Fig. 6: This figure shows the change in model performance when the number of resid-

ual blocks in the Deep ResMLP module is 1, 2, 4, 5, and 6, respectively. The incre-
ment/decrement refers to the difference between the results from these ablation studies
and the EDSR-baseline-LIIF in Table 1.

M ′ with PE′ and fed it to fθ; for DCPE(-F), we stacked the position information (δx)
and scale factor together on M and fed it to fθ; for DCPE(-R), we removed the Deep
ResMLP module and used the same decoder settings as LIIF [6], that is, the network in
Figure 2 (left) as fθ. The experimental findings reveal that each module has a positive
impact on SR performance. Notably, the DFU module exhibits the most significant en-
hancement effect in the out-of-scale distribution, and the Deep ResMLP module notably
improves SR performance in the in-scale distribution.

Parameter Selection. We conducted a series of individual ablation studies to de-
termine the optimal parameters for the DFU module, the FPE module, and the Deep
ResMLP module. For the DFU module, we investigated the impact of varying the num-
ber of sampling points P and the offset range factor o on model performance, as il-
lustrated in Figure 4. The results indicate that the model performs significantly better
when employing sixteen sampling points, and the optimal offset range factor is four. To
produce the final sampling offsets that cover the k×k region around the reference point,
we set k = o + 1. Hence, we use a convolutional layer with a kernel size of 5 × 5 to
extract the offset estimation feature map, i.e., k = 5. For the FPE module, we varied the
number of layers in MLP and measured the model performance. Figure 5 shows the re-
sults. The figure indicates that the model with three layers of MLP performs better than
the others in all scales. For the Deep ResMLP module, we concentrated on assessing the
impact of the number of residual blocks on model performance. We only kept the Deep
ResMLP module and removed the other two modules for this experiment, so we com-
pared our results with EDSR-baseline-LIIF [6] in Table 1. Figure 6 shows the results.
The results revealed that employing four residual blocks consistently yielded superior
performance across all scales. We used the optimal parameters from these experiments
to get the final results in previous experiments.
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5 Conclusion

In this paper, we have proposed a deformable CNN with position encoding for arbitrary-
scale super-resolution. Our network correctly concatenates image feature information
using the DFU module, and obtains the position encoding with the same dimension as
the image features through the FPE module, which promotes the fusion of position in-
formation with image features. We also use deep residual connections to improve the
expressive power of the local implicit image function. We conducted extensive exper-
iments on the DIV2K and benchmark datasets. The experimental results demonstrate
that our method achieves superior SR performance compared to other arbitrary-scale
SR methods in both quantitative and qualitative assessments.
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