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Abstract. Face expression recognition is an important task whose aim
is to classify a face image to a kind of expression such as happy, sad,
or surprise, etc. This task is challenging due to the ambiguities in ex-
pressions and also in the diverse poses and occlusions of the head. To
handle this challenging task, recent approaches usually rely on attention
mechanism to make the network focus on the most critical regions of
a face, or apply a consistency loss that enforces extracting similar fea-
tures from the same expressions. This paper proposes a new attention
mechanism that combines the advantages of dot-product attention and
feature cross-attention. The proposed new product-cross dual attention
mechanism can better leverage the landmarks to extract more discrimina-
tive features from an input image. Second, although previous approaches
can enforce similarity between features of the same expressions, they do
not consider the arousal degree of an expression. We propose a neutral-
expression-aware expression feature similarity loss based on the tradi-
tional anchor loss, which can further guide the network to learn better
features from an input image. Extensive experiments demonstrate the
advantages of our method over previous approaches.

Keywords: Face expression recognition · attention mechanism · expres-
sion arousal degree · face landmark.

1 Introduction

Facial expressions are one of the most powerful, natural, and universal signals
that humans use to convey emotional states and intentions [8]. Psychologists Ek-
man and Friesen [13] proposed that human emotions can be expressed through
six basic expressions: surprise, sadness, disgust, happiness, fear, and anger (neu-
tral expressions have also been included in recent years). As a fundamental task
in computer vision, facial expression recognition, i.e., recognizing the kind of ex-
pression in a face image, has great applications in many image and video analysis
tasks [6, 7, 23,28,33,34,36,49,54].

Traditional FER methods typically rely on manual feature extraction or shal-
low learning techniques such as Local Binary Pattern (LBP) [41], Non-negative
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Matrix Factorization (NMF) [58], and Sparse Learning [59]. Shan introduced
Local Binary Pattern to describe local texture features in images, David pro-
posed the Scale-Invariant Feature Transform (SIFT) [26] to enhance tolerance to
noise, lighting, and other interferences. In 2008, Bashyal [2] presented a method
for extracting expression features based on Gabor wavelet transform. In recent
years, an increasing number of approaches have shifted towards deep learning
techniques, including convolutional neural networks (CNNs) [20], generative ad-
versarial networks (GANs) [15], transformers [44], for the extraction and classifi-
cation of facial expression features. These methods have achieved state-of-the-art
recognition accuracy, significantly surpassing results obtained by traditional ma-
chine learning methods.

Despite the increasing number of methods aimed at improving the accuracy
of facial expression recognition, they continue to grapple with the inherent chal-
lenges of this task: 1) Intra-class Variability: the same emotion can manifest
with significant variations in facial shape and intensity across different faces.
2) Inter-class Similarity: different individuals may share similar features even
among distinct facial expressions (e.g., in regions like the forehead and cheeks).

To address the aforementioned issues, many different approaches have been
developed. Some studies leverage auxiliary tasks related to facial expression
recognition to enhance accuracy. For example, Chang et al. [4] summarized AU
labeling rules from FACS, then designed facial partitioning schemes to extract
local facial region features using a backbone, and finally used the correlations be-
tween features from different regions to guide the training of the feature learning
framework. Li et al. [25] employed AU recognition as an auxiliary task, facili-
tating mutual improvement between the two tasks by summarizing the distribu-
tion relationship between expressions and AUs. Recently, Xue et al. [50] intro-
duced a Transformer-based approach called TransFER. After extracting feature
maps using a backbone CNN, they designed local CNN blocks to pinpoint dif-
ferent local patches, and subsequently, used a Transformer encoder equipped
with multi-head self-attention modules to compute global relationships among
these local patches. Zheng et al. [57] proposed POSTER, which utilizes a pyra-
mid cross-fusion Transformer to explore the correlation between image features
and landmark features, aiming to address issues related to inter-class similarity,
intra-class variation, and scale sensitivity in facial expression recognition.

Summarizing the advantages of all the above approaches, we find that, to
achieve higher accuracy, the network needs to focus on the most critical facial
regions, and to our best knowledge, the above recent advances [50, 57] achieve
this by using attention mechanism such as that in Transformer [44]. Inspired by
the POSTER approach [57], this paper proposes a combined dot-product and
feature-cross dual attention mechanism. Specifically, we follow POSTER to em-
ploy a landmark detector to extract landmark position features and utilize these
features to calculate an attention map. Our dot-product attention is then imple-
mented as the multiplication between the attention map and the image features
extracted by the backbone, which guides the network to filter irrelevant features
away from the crucial facial areas. After that, we further feed the attended fea-
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tures to a cross-attention module, which uses the landmark feature as the query,
and the image feature as the key and value to update the image features. The
sequentially applied two kinds of attention mechanisms constrain the network to
focus on specific facial regions, reducing the importance of irrelevant areas and
minimizing their impact on facial expression recognition.

Besides the network’s own capability in identifying discriminative features by
attention mechanism, many researchers also explicitly address issues related to
intra-class variation and inter-class similarity by applying loss functions such as
center loss [48], anchor loss [40], and locality-preserving loss [24] etc. These losses
aim to increase inter-class distances or decrease intra-class distances, thereby
mitigating intra-class variation and inter-class similarity problems in facial ex-
pressions. However, these losses treat all expressions equally and overlook the dif-
ferences in intensity that exist among different expressions. For example, within
happy expressions, there can be significant dynamic differences between a smile
and a hearty laugh, whereas neutral expressions typically lack such dynamic
variations. Additionally, if an expression’s intensity is relatively weak, the net-
work may easily misclassify it as a neutral expression. Consequently, neutral
expressions require distinct treatment. The second contribution of this work is
that we enhance the anchor loss to accommodate the characteristics of neu-
tral expressions and propose the so-called neutral-expression-aware anchor loss.
It strengthens the ability to distinguish between neutral expressions and other
expressions by constraining the features of neutral expressions.

In summary, the contributions of this paper are

– We propose a product-cross dual attention mechanism. On one hand, we
incorporate landmarks into the computation by taking their product with
facial expression features to adjust the weights of facial regions. On the other
hand, within the ViT [11] architecture, we calculate cross-attention between
landmark features and image features to reinforce the network’s focus on
crucial areas.

– We propose a neutral-expression-aware anchor loss, which improves the orig-
inal anchor loss with the characteristics of neutral expressions to strengthen
the network’s ability to distinguish between neutral expressions and other
expressions.

– Experimental results on several datasets demonstrate that our approach
yields superior performance compared to other methods.

2 Related Work

2.1 Landmark

The auxiliary tasks of facial expression recognition typically include facial at-
tribute prediction, facial landmark detection, facial recognition, and facial action
unit detection, among others. Many approaches [19, 25, 30, 37, 53] improve fa-
cial expression recognition accuracy by jointly training multiple auxiliary tasks.
Among these auxiliary tasks, facial landmark detection has matured significantly.
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For expression recognition, facial landmark detection provides valuable facial
geometry information, and when combined with spatial image features, it effec-
tively enhances the accuracy of expression recognition. Additionally, facial land-
marks accurately locate key facial regions such as eyes, mouth, eyebrows, which
are crucial for expressing emotions. By pinpointing these locations, the network
can narrow down its focus on these areas when selecting facial features. Jung
and colleagues [18] employed two deep networks: the first one extracts temporal
appearance features from images, while the second one extracts temporal ensem-
ble features from facial landmarks. They used a novel fusion method to combine
these two models, resulting in improved performance in expression recognition.
In the case of POSTER [57], they utilized a pre-trained facial landmark detec-
tion model, MobileFaceNet [5], to extract landmark features. They designed a
pyramid structure and a dual-stream structure, and calculated cross-attention
between the features extracted from the backbone and the landmarks. In this
study, pre-trained landmark detectors were used to extract geometric features
and compute attention maps, guiding the network’s focus towards crucial facial
areas and reducing the weight assigned to irrelevant regions.

2.2 Transformer in FER

The powerful attention mechanism within the Transformer architecture [44] has
led to leading results in various computer vision domains. In the field of facial
expression recognition, it is common to cascade Convolutional Neural Networks
(CNNs) with Transformers, feeding the features extracted by CNNs into Trans-
formers for attention computation. Ma et al. [27] were among the first to in-
troduce Transformers into facial expression recognition. They extracted features
from RGB and LBP images and used an Attention Selective Fusion module
(ASF) to merge global and local features. These merged features were then
transformed into visual tokens and fed into a Multi-layer Transformer for en-
coding. Xue et al. [50] incorporated a multi-attention dropping module within
the Transformer, enabling the model to extract comprehensive local informa-
tion from every part of the face, rather than just the most discriminative parts.
Additionally, they designed a pooling module within the Transformer to pro-
gressively reduce the number of tokens in the blocks, eliminating information
irrelevant to expression recognition. Zheng et al. [57] employed cross-attention
within the Transformer, exchanging Query matrices between the image stream
and landmark stream, facilitating the fusion of features from both streams.

2.3 Losses used in FER

Due to the characteristics of expressions having intra-class variations and inter-
class similarities, various loss functions have been applied in networks to increase
inter-class distances and reduce intra-class distances. Ruan et al. [39] employed
a compactness loss to learn class centers, aiming to ensure that features from
different images of the same expression are close to the respective class centers.
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Fig. 1. Overview of our method. Given a face image, our method first extracts land-
mark features and image appearance features by existing backbone networks. After
that, we propose a product-cross dual attention module to fuse the two kinds of fea-
tures. After the attention module, we obtain a vector of class token, which is finally
input to a fully-connected (FC) classifier head to output the expression type of the in-
put face. To optimize the above model, besides the cross-entropy loss, we also propose
a neutral expression aware anchor loss applied to the class tokens of all of the samples
in a training batch.

Zhang et al. [55] utilized annotator information to calculate triplet loss, introduc-
ing a hierarchical structure to construct more refined triplets based on existing
triplets, which were used for fine-tuning the network. Cai et al. [3] proposed a
island loss function to to extract discriminative features. Li et al. [24] introduced
a locality-preserving loss to minimize the distances between samples and their
surrounding K samples, preserving the local structure of each sample while main-
taining compactness among samples of the same expression. Furthermore, Li et
al. [22] proposed an AdaReg loss, which adaptively adjusts expression weights
based on the number of different expressions within each batch. This approach
addresses class imbalance issues and enhances the discriminative capability of
expression representations.

3 Our Method

Figure 1 shows the overview of our method. Given an input face image I ∈
RH×W×3, we use a landmark backbone to extract the landmark feature map
flm ∈ Rh×w×clm , where h and w are the height and width of the feature map
which has clm channels, respectively. In this paper, h = w = 14, and clm = 128.
At the same time, we use an image backbone to extract the image feature map
fimg ∈ Rh×w×cimg (cimg = 256). The landmark backbone used in this paper is
the MobileFaceNet [5], and the image backbone adopted is IR50 [10].

We extract both landmark features and image features because we would like
to use the landmark features to guide the learning of the image features, i.e.,
using the landmark information to enforce the network to focus on the image
features around the most prominent landmark regions.
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Fig. 2. The visualization of original images (top), images with landmarks (middle) and
images with heatmaps (bottom). The facial landmarks are detected by [5]. As we can
observe, guided by the heatmap generated for landmark features, the network pays
closer attention to crucial facial features such as the eyes, nose, and mouth.

To achieve the above goal, we send both the landmark and image features
into the proposed product-cross dual attention module, by which we achieve the
fusion of the two kinds of information. After the attention module, we obtain
a class token of size ct (e.g., 768). The class token is then fed into a FC (fully-
connected) layer to output the expression class scores of the input image. Each
sample in a training batch undergoes the same feature extraction process to
output a class token. We compute neutral expression aware anchor loss over all
the class tokens of the training batch.

In the following, we elaborate the attention module and the anchor loss (and
other losses used to train our model) in detail.

3.1 Product-Cross Dual Attention Module

The proposed product-cross dual attention mechanism in this paper aims at
leveraging the positional information provided by facial landmarks. The land-
marks can help assign larger weight to important facial regions (such as eyes
and mouth) while smaller weight to the unimportant regions (such as hair and
background). To achieve this, our product-cross dual attention module uses the
landmark features as Query for calculating cross attention. In contrast to tradi-
tional self-attention mechanisms, cross attention focuses more on the relationship
between the input landmark features and facial features, enabling the model to
capture more semantic information about crucial areas. The product-cross dual
attention module combines two kinds of attentions: one is the dot-product atten-
tion, and the other is the cross-feature attention, which are elaborated in detail
as following.

Dot-Product Attention By the dot-product attention, our aim is to en-
hance the image features around the landmarks. To this end, we first com-
pute a heatmap H ∈ Rh×w×1 by applying the max pooling operation to the
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Fig. 3. Illustration of the cross-attention mechanism. We compute both the query, key,
and value embeddings for the landmark and fusion tokens. However, we use the queries
of landmark, and keys and values of fusion tokens to perform the cross-attention.

landmark feature flm along the channel dimension. As shown in Figure 2, the
values of heatmap around the face landmarks are larger than other places.
Than the heatmap is repeated cimg times along the channel dimension to ob-
tain H′ ∈ Rh×w×cimg . Finally, we multiply the heatmap attention map and the
image feature map fimg in an element-wise manner to obtain the result of the
dot-product attention mechanism, i.e.,

ffusion = H′ ⊗ fimg, (1)

where ffusion ∈ Rh×w×cimg , and ⊗ represents the element-wise multiplication.
After the dot-product attention, the image features around the landmarks are
enhanced (such as eye and mouth regions), while the features at other places are
weakened (such as hair regions and background).

Cross-Feature Attention After obtaining the landmark feature and fusion
feature, we proceed to embed them into landmark tokens tlm ∈ R(hw)×ct and
fusion tokens tfusion ∈ R(hw)×ct . Additionally, we introduce a learnable class
token in R1×ct to represent global features (this class token is ultimately fed into
a fully connected layer for expression classification), resulting in full landmark
tokens tlm ∈ R(hw+1)×ct and fusion tokens tfusion ∈ R(hw+1)×ct .

tlm = Cat(Embedding(flm), tlm class),

tfuison = Cat(Embedding(ffuison), tfusion class),
(2)

where tlm class and tfuison class ∈ R1×ct are landmark class token and fusion
class token, respectively. tlm and tfuison are landmark tokens and fusion tokens,
respectively, which are inputted into the subsequent transformer blocks.

We employ a transformer to compute relationships between tokens. The pro-
cess of cross-feature attention is illustrated in Figure 3. To begin with, the land-
mark features and fusion features are mapped into three matrices each: a fusion
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query matrix Qfusion, a fusion key matrix Kfusion, and a fusion value matrix
Vfusion, as well as a landmark query matrix Qlm. The expressions for this map-
ping are as follows:

Qfusion = tfusion ×Wq fusion,

Kfusion = tfusion ×Wk fusion,

Vfusion = tfusion ×Wv fusion,

Qlm = tlm ×Wq lm,

(3)

where Wq fusion, Wk fusion, Wv fusion, Wq lm ∈ Rct×ct are the mapping matri-
ces.

Then, we calculate the cross-attention between the landmark query matrix
Qlm and the fusion key matrix Kfusion, along with the fusion value matrix
Vfusion. This process can be mathematically described as follows:

CrossAttention(Qlm,Kfusion, Vfusion) = Softmax(
QlmKT

fusion√
d

)Vfusion, (4)

where Softmax(·) is softmax activation function and
√
d is the scaling factor

for normalization.
Using the landmark query matrix Qlm instead of the fusion query matrix

Qfusion, is done to make better use of the spatial positional information con-
tained within the landmark feature. This helps guide and focus on the regions
within the fusion feature that are more relevant to the expression being con-
veyed. Subsequently, we calculate the output of a transformer block tfusion out.
The tfusion out is of the same size as tfusion.

t′fusion =CrossAttention(Qlm,Kfusion, Vfusion) + tfusion,

tfusion out =MLP (Norm(t′fusion) + t′fusion,
(5)

where MLP (·) is multi-layer perceptron, Norm(·) is normalization function.
After passing through several transformer blocks, the class token is putted

into the FC to calculate the final classification prediction.

3.2 Neutral Expression Aware Anchor Loss

Due to the inherent challenge of facial expressions characterized by intra-class
variation and inter-class similarity, several loss functions, such as center loss,
triplet loss, anchor loss, and others, have been proposed to minimize the feature
distances among samples of the same class while increasing distances between
samples of different classes. These loss functions treat all expressions uniformly.
However, in practice, neutral expressions differ from other expressions.

In a continuous expression representation space like arousal-valence model
(as shown in Figure 4), neutral expressions exhibit no distinction on arousal
or valence, meaning that the extracted features for neutral expressions should
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pair of neutral samples, as we argue that all the
neutral expressions own the same degree of expres-
siveness without arousal-valence variance.

be very close in the feature space, with minimal variance. In contrast, other
expressions such as happy, sad, etc., exhibit different degrees, i.e., there are very
happy or just a little happy expressions.

The above insight inspires that we need to handle neutral and non-neutral
expressions differently. Therefore, we propose an improvement to the anchor loss,
introducing the Neutral-Expression-Aware Anchor Loss (see Figure 5).

Firstly, let us define the traditional anchor loss. For a batch of samples, the
anchor loss function first identifies an anchor sample for each class of expressions:

anchor c = argmin
i∈Nc

Confidence(fi), (6)

where anchor c represents the index of the anchor sample of the cth expression
class, i ∈ Nc indexes all the samples in the training batch with expression class
c, and Confidence(·) is the formula used for calculating sample confidence which
is computed as the entropy of the predicted expression classification scores by
the FC classification layer. fi is the final feature of the sample output by the
attention module, i.e., the class token. In total, Eq. 6 finds for each class the
most confident sample and returns the index of the sample.

With the anchors for different expression class, the anchor loss function cal-
culates the loss as the distance between other samples of the same class and the
anchor sample, as shown in the following formula:

Lanchor =
1

Nc

C∑
c=0

Nc−1∑
i=0

Dist(fi, fanchor c) (7)

where C is the number of all the expression classes, Nc represents the number
of samples from the c-th expression class in the batch, fi is i-th sample in c-th
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class, fanchor c is the anchor sample in this class. Dist(·) is the formula used
for distance calculation, and in this paper, we employ the mean square error
function.

Now we define our proposed neutral-aware anchor loss. It composes of two
parts. The first part computes the above anchor loss but excludes the neutral
expression class.

Lnon−neutral =
1

Nc

C′∑
c=0

Nc−1∑
i=0

Dist(fi, fanchor c) (8)

where C ′ is the set of all the expression classes except the neutral class. As
for neutral expressions in the training batch, we impose a stricter constraint by
requiring all sample features to be equal. Through this more rigorous constraint,
we aim to make their distribution in the feature space converge towards a single
point. The complete description of the loss of the neutral class is as follows:

Lneutral =
1

(Nn − 1)2

Nn−1∑
i=0

Nn−1∑
j=0,j ̸=i

Dist(fi, fj), (9)

where Nn represents the number of samples from the neutral expression class in
the batch.

Finally, the Neutral-Aware Anchor (NeAA) loss is defined as:

LNeAA = Lnon−neutral + Lneutral. (10)

3.3 Total Loss Function

In the proposed model, the image backbone, the landmark backbone, and the
cross-attention module are jointly trained in an end-to-end fashion. We calculate
the cross-entropy loss Lcls for the final classification results. Overall, the total
loss in the training of the entire network is as follows:

L = Lcls + λLNeAA, (11)

where the hyper-parameter λ = 0.01 is used to balance the loss function.

4 Experiments

4.1 Datasets

RAF-DB: The Real-world Affective Face Database (RAF-DB) [24] is a large-
scale database, which includes 29,672 real-world facial images collected by search-
ing on Flickr. The images are with great variability in age, ethnicity, lighting
conditions, etc. With manually crowd-sourced annotation and reliable estima-
tion, RAF-DB provides 7 basic expression classes (happiness, surprise, sadness,
anger, disgust, fear, and neutral). For facial expression recognition task, there
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are 15,339 facial expression images utilized (12,271 images are used for training
and 3,068 images are used for testing).

FERPlus: The FERPlus dataset [1] is extended from FER2013 [16] used in
the ICML 2013 Challenge. FER2013 is a large-scale dataset collected by APIs
in the Google search, which includes images resized to 48X48 pixels. It contains
28709 training images, 3589 validation images and 3589 test images. It is rela-
beled in 2016 by Microsoft with each image labeled by 10 individuals to consist
8 classes (7 basic expressions and contempt expression), thus has more reliable
annotations.

AffectNet: AffectNet [32] is one of the largest datasets in the wild, contain-
ing over a million images collected from the Internet by querying various search
engines. It provides two facial expression models (categorical model and dimen-
sional model). For the FER task, there are a total of 420K images manually
annotated into eight classes of expressions. Following the setup in [54], we used
280K training images and 3500 validation images (500 images per category) with
7 expression categories.

4.2 Implementation Details

All images are resized to 112×112 pixels before feeding into the model. We
initialize the image backbone with IR50 [10], pretrained on the Ms-Celeb-1M
dataset [17], and use MobileFaceNet [5] as the landmark backbone. During train-
ing, we keep the landmark backbone parameters fixed to ensure the accuracy of
landmark information. For the cross-attention module, we employ a ViT with 2
transformer blocks. The MLP ratio is set to 4, and the drop ratio is 0.5. Our
model is trained for 200 epochs using the Adam optimizer, with a batch size of
144. For the RAF-DB and FERPlus datasets, the learning rate is set to 3.5e-5,
while for the AffectNet dataset, it is set to 1e-6. To augment the training data,
we apply random horizontal flips and random erasing, while for the testing data,
we only perform resize operation. Our model is implemented using PyTorch [35]
and trained on two NVIDIA RTX 3090 GPUs.

4.3 Ablation Study

We conducted ablation study on the RAF-DB dataset to investigate the impact
of the model’s architecture, various proposed modules, and loss functions.

Effectiveness of Dot-Product Attention and Cross-feature Atten-
tion. To evaluate the impact of the modules proposed in this paper, we con-
ducted an ablation study on the RAF-DB dataset to investigate the effects of
Dot-Product Attention and Cross-feature Attention on the final classification re-
sults. As shown in Table 1, it is evident that the addition of these modules leads
to an overall improvement in accuracy on the validation set. After incorporating
the Dot-Product Attention module into the model, the accuracy increased from
91.67% (row 6) to 92.31% (row 8), marking a 0.64% improvement. Similarly,
with the inclusion of the Cross-feature Attention module, the accuracy on the
test set also increased by 0.36% (from row 7 to row 8). With the use of both
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Table 1. Evaluation (%) of Dot-Product Attention, Cross-Feature Attention and
NeAA Loss on RAF-DB.

Dot attn Cross attn NeAA Loss RAF-DB

1 91.30
2 ✓ 91.42
3 ✓ 91.49
4 ✓ 91.65
5 ✓ ✓ 91.79
6 ✓ ✓ 91.67
7 ✓ ✓ 91.95

8 ✓ ✓ ✓ 92.31

Fig. 6. The visualization of original images (left column), features without (middle
column) and with Product-Cross Dual Attention Module (right column). The results
show that the model emphasizes regions that significantly represent facial expressions.

Attention modules, the accuracy increased from 91.65% (row 4) to 92.31% (row
8). We employed Grad-CAM to visualize the features after the application of the
Product-Cross Dual Attention Module. Figure 6 shows that the model empha-
sizes regions that significantly represent facial expressions, such as the mouth in
surprised expressions (row 2 and row 3 on the left half) and happy expressions
(row 4), and the eyes in surprised expressions (row 1 and row 5 on the right
half). Furthermore, due to the implicit inclusion of head pose information in
landmark features, the model can better extend to facial expression recognition
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Table 2. Evaluation (%) of pre-trained ViT model on RAF-DB.

Pre-trained ViT #Param #FLOPs RAF-DB

✓ 67.3M 17.9G 91.88
34.2M 9.3G 92.31

in real-world scenarios with various head poses. As illustrated in the last row of
Figure 6, even under substantial head pose variations, the model remains capable
of accurately identifying the positions of important areas in facial images.

We also experimentally explore whether the pre-trained large ViT model can
help improve the accuracy of expression recognition. The Cross-feature Attention
network is initialized with the parameters of ViT pre-trained on ImageNet [9].
As shown in Table 2, the pre-trained ViT model did not yield improvement in
accuracy. The possible reason is that existing expression recognition datasets
are small, and deeper networks increase the risk of overfitting. Therefore, a
simplified ViT model with only 2 blocks is deemed sufficient. This not only
ensures recognition accuracy but also reduces the consumption of computing
resources and time.

Table 3. Recall and F1-score for neu-
tral expressions with and without the
use of NeAA Loss on RAF-DB.

NeAA Loss Recall F1-score

0.8971 0.9050
✓ 0.9397 0.9116

Table 4. Evaluation (%) of different
methods that generate the dot-product
attention that is multiplied with the
image feature fimg, on RAF-DB.

Method RAF-DB

1 Conv 91.46
2 Sum+Repeat 91.72
3 Abs+Sum+Repeat 91.59

4 Max+Repeat 92.31

Effectiveness of Neutral Expres-
sion Aware Loss. To validate the im-
pact of the proposed Neutral Expression
Aware Loss (NeAA Loss), we compared
the accuracy of models trained with and
without NeAA Loss on the RAF-DB test
set. As shown in Table 1, the first row and
the fourth row indicate that NeAA Loss
is beneficial for improving model accu-
racy. The confusion matrix in Figure 7 (a)
also reveals that only a few instances of
other expressions are misclassified as neu-
tral expressions. The Recall and F1-score
for neutral expressions with and without
the use of NeAA Loss is shown in Ta-
ble 3. It is evident that the model’s ability
to recognize neutral expressions improves
when the NeAA Loss is applied. Addition-
ally, it enhances the discriminative ability
between neutral expressions and other ex-
pressions with low arousal level. As shown
in Figure 8, many neutral expressions and
other expressions with low arousal are incorrectly predicted (red labels) when
there is no NeAA loss, while with the application of NeAA Loss, these predictions
are corrected (black labels).
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Fig. 7. Confusion matrices of our model on RAF-DB (subfigure (a)), AffectNet(7cls)
(subfigure (b)) and FERPlus datasets (subfigure (c)). Our method exhibits clear and
strong performance in terms of class-wise accuracy (diagonals of each confusion matrix)
across all three datasets.
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Fig. 8. Misidentified expressions in low arousal levels (top) and neutral expressions
(bottom). The wrong predictions without NeAA are highlighted in red. With the ap-
plication of the NeAA Loss, these predictions are corrected (black labels).

Effectiveness of Different Dot-Product Attention Map Generation
Methods. There are various methods for generating the dot-product attention
map (see Figure 1) that is multiplied with the image feature map. We conducted
an ablation study on these methods using the RAF-DB dataset to assess their
impact on the final results. As shown in Table 4, we generated the attention map
from landmark features using Conv (a convolutional layer that directly maps the
landmark feature flm in space R14×14×128 to the dot-product attention map in
space R14×14×256), Sum+Repeat (sum the flm along the channel dimension to
obtain a feature map in space R14×14×1 and then repeat it 256 times along the
channel dimension to obtain the attention map), Abs+Sum+Repeat (compute
abs(flm) at first, then sum it along the channel dimension, and finally repeat
256 times), and Max+Repeat (compute max pooling of flm along the channel
dimension and then repeat) methods. Among these, the Max+Repeat method
achieved the best result (92.31%). The convolution method performed worse
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Table 5. Performance comparison (%) with SOTA methods on RAF-DB, Affect-
Net(7cls) and FERPlus datasets.

Method Year RAF-DB AffectNet(7cls) FERPlus

SCN [46] CVPR 2020 87.03 - 89.39
PSR [45] CVPR 2020 88.98 63.77 -
RAN [47] TIP 2020 86.90 - 89.16
DACL [14] WACV 2021 87.78 65.20 -
KTN [22] TIP 2021 88.07 63.97 90.49
DMUE [42] CVPR 2021 89.42 63.11 -
FDRL [39] CVPR 2021 89.47 - -
ARM [43] arXiv 2021 90.42 65.20 -
TransFER [50] ICCV 2021 90.91 66.23 90.83
APViT [51] CVPR 2022 91.98 66.91 90.86
Meta-Face2Exp [52] CVPR 2022 88.54 64.23 -
EAC [56] ECCV 2022 89.99 65.32 89.64
RANet [29] FG 2023 89.57 65.09 -
SwinFace [38] TCSVT 2023 90.97 - -
Latent-OFER [21] ICCV 2023 89.6 63.9 -
POSTER [57] ICCV 2023 92.05 67.31 91.62

Ours - 92.31 67.14 92.97

Table 6. Per-class performance comparison (%) with POSTER on RAF-DB and Af-
fectNet(7cls) datasets.

Dataset Method Neutral Happy Sad Surprise Fear Disgust Anger mean Acc

RAF-DB POSTER 92.35 96.96 91.21 90.27 67.57 75.00 88.89 86.04
RAF-DB Ours 93.97 96.96 91.00 89.67 70.27 75.62 87.65 86.45

AffectNet(7cls) POSTER 67.20 89.00 67.00 64.00 64.80 56.00 62.60 67.23
AffectNet(7cls) Ours 58.20 88.60 68.40 62.40 66.00 60.80 65.60 67.14

than all the other operators, possibly due to significant alterations in the original
landmark information caused by convolution operations, leading to a change in
the network’s focus area.

4.4 Comparison with the State-of-the-Art Methods

We compared the proposed method in this paper with some state-of-the-art
(SOTA) methods on the RAF-DB, FERPlus, and AffectNet datasets, and the
results are presented in Table 5.

Results on RAF-DB. The results of the comparison with the SOTA meth-
ods on the RAF-DB dataset are shown in Table 5, in the 3-th column. Our
proposed method outperforms all the compared methods in terms of accuracy
(accuracy across all samples), achieving an accuracy of 92.31%, which is 0.26%
higher than the second-best method, POSTER. We conducted an analysis in Ta-
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ble 6 comparing the accuracies of our method and POSTER on each class in the
RAF-DB dataset. It is evident that our method achieved a higher accuracy on
the neutral, fear, disgust expression compared to POSTER, but had a relatively
lower accuracy on the Anger expression.

Results on AffectNet. Since the test set of the AffectNet dataset is not
publicly available, we conducted our comparison on the validation set following
SOTA methods. Due to the extreme class imbalance in the AffectNet data, we
applied oversampling techniques similar to RAN, POSTER, and APViT. We
compared the accuracy of different methods on the 7-class emotion recognition
task in the AffectNet dataset. From the 4-th column of Table 5, it can be seen
that our method achieved an accuracy of 67.14%. While not the highest, it se-
cured the second position. Our result is 0.17% lower than POSTER’s results,
probably because we do not process the feature in a multi-resolution manner,
while POSTER performs that by employing a pyramid network structure. How-
ever, in terms of running time per image, POSTER takes 3ms (see Table 7),
while our model only takes 1.3ms. Our model achieves more efficient expres-
sion recognition with a small loss of accuracy. We conducted a detailed analysis
comparing our method and POSTER’s accuracy on each emotion class in Ta-
ble 6. Our method achieved the best results on the sad, fear, disgust and anger
emotions, outperforming POSTER a lot. However, the recognition accuracy on
the neutral emotion was relatively lower. It is also worth noting that the confu-
sion matrix for AffectNet (see Figure 7 (b)) indicates an improved ability of our
model to differentiate between neutral and other emotions.

Results on FERPlus. The results of the comparison with the SOTA meth-
ods on the FERPlus dataset are displayed in Table 5, in the 5-th column. Our
method achieved an accuracy of 92.97%, surpassing the second-best method,
POSTER, by 1.35%. The confusion matrix for FERPlus is illustrated in Fig-
ure 7 (c), which reveals that we have less error in neutral expression and other
expressions.

4.5 Comparison on Number of Parameters and Running
Performance

In Table 7, we compare our method with the SOTA approaches on the number
of parameters and the FLOPs. As can be seen, our method not only outperforms
other methods in terms of recognition accuracy, but also uses less network pa-
rameters and runs faster than the SOTA approaches. Compared to models with
similar structures such as APViT and POSTER, our model incorporates Mobile-
FaceNet, a lightweight and efficient landmark detector, into the network. More-
over, we reduce the Cross-Attention Module to only 2 blocks, aiming to simplify
the model while maintaining effectiveness. This design choice facilitates better
scalability in real-time or resource-constrained environments. Table 8 reveals the
number of parameters and FLOPs for each module in our model, showing that
the added Landmark Backbone has minimal impact on model complexity and
the number of parameters. We conducted test on a single GPU, and the average
running time taken for each method per image is shown in Table 7. Our model
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Table 7. Comparison on Parameter Number and FLOPs. The image backbone (IR50)
and facial landmark detector (MobileFaceNet) are taken into account when computing
Params and FLOPs.

Methods #Param #FLOPs RAF-DB AffectNet Running time

DMUE [42] 78.4M 13.4G 89.42 63.11 -
TransFER [50] 65.2M 15.3G 90.91 66.23 -
APViT [51] - 12.7G 91.98 66.91 3.9ms
POSTER [57] 71.8M 15.7G 92.05 67.31 3.0ms

Ours 34.2M 9.3G 92.31 67.14 1.3ms

Table 8. Parameter Number and FLOPs of each module in our method.

Module #Param #FLOPs

Image Backbone 17.6M 5.5G
Landmark Backbone 1.0M 0.2G
Cross Attention Module 15.6M 3.6G

demonstrates shorter inference time compared to APViT and POSTER, being
only 1/3 of APViT and 2/5 of POSTER. This indicates that we can use more
concise network architecture to fulfill the FER task if more effective data pro-
cessing modules are designed and adopted such as the proposed product-cross
dual attention method and the neutral-expression-aware anchor loss function.

5 Conclusion

This paper proposes a simple yet effective face expression recognition method.
The two main contributions of this paper are that we propose a product-cross
dual attention mechanism and a neutral-expression-aware anchor loss. With the
dual attention module, we combine the features extracted by the landmark back-
bone and image backbone. The features around the position of landmarks are
successfully enhanced, while reducing the influence of features at other places.
This indicates that making the network focus on important regions is useful and
can indeed improve recognition accuracy. The neutral-aware loss takes the spe-
cial characteristic of neutral expressions into consideration, i.e., all the neutral
features should be similar to each other. With this constraint, we further im-
prove the recognition accuracy by constraining the learning space of the network
meaningfully. We have conducted comparison and ablation experiments which
validate the effectiveness of our method. In particular, our method outperforms
the latest method POSTER while running faster.
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