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Abstract. To tackle the problem of drone-based cross-view geo-localization,
we address how to match drone-view images and satellite-view images,
which is extremely challenging due to the variability of view angles and
view distances. Inspired by how humans recognize aerial images, we pro-
pose an effective Attention-guided Segment Transformer (AST) struc-
ture: a novel segmentation strategy is introduced to cope with the huge
variations between aerial views, and this segmentation is adaptive and
non-uniform, allowing it to segment regions with corresponding relation-
ships even after significant changes in viewpoint; furthermore, a new
segment token module is designed to generate segment tokens that are
concatenated with the original class token to supplement the local in-
formation. Compared to CNN-based methods, AST fully utilizes the
self-attention mechanism to establish global context correlations; and
the newly introduced segment token module allows AST to effectively
extract local features as well — a capability not present in the vanilla
vision transformer. Remarkably, AST demonstrates good robustness to
viewpoint changes, even when there are overlapping regions, and this
good treat is confirmed by the experimental results on the University-
1652 dataset, which also show competitive performance for both tasks of
drone-view target localization and drone navigation.

Keywords: Geo-localization · Image retrieval · Drone-based cross-view.

1 Introduction

Image-based cross-view geo-localization involves matching images that depict
the same geospatial location but are captured from different views or platforms.
This can be considered an image retrieval task. As the automation industry
develops and satellite imaging technology matures, image-based cross-view geo-
localization has become increasingly important. For example, in situations where
GPS signals are weakened or lost due to interference, unmanned devices require
an alternative independent positioning method, such as matching images of the
surrounding environment with geo-tagged images to determine their locations.

⋆ This work is supported by NSFC under grants U19A2071 and 61860206007, Sichuan
Science and Technology Program under grant 2023YFG0334, as well as the funding
from Sichuan University under grant 2020SCUNG205.
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Image-based geo-localization has been applied to various real-world fields such
as autonomous driving, robot positioning, drone navigation, and precision deliv-
ery. Compared to sensor-based positioning methods, image-based methods have
several advantages, including lower cost, stronger resistance to electromagnetic
interference, and better environmental adaptability.

In recent years, research on image-based cross-view geo-localization has mainly
focused on matching images between ground-level and satellite-level. And ground-
to-aerial datasets such as CVUSA[37] and CVACT[21] have emerged. However,
matching images between drone-view images and satellite-view images has re-
ceived less attention. University-1652[38] is the first drone-based geo-localization
dataset that expands cross-view geo-localization from ground-satellite imagery
to drone-satellite imagery and brings two new tasks: drone-view target localiza-
tion and drone navigation. This expansion facilitates deep learning research on
image-based cross-view geo-localization.

Researchers typically use a Siamese-like network architecture to tackle cross-
view geo-localization tasks[8, 21, 28, 29, 33, 36, 40]. Identifying similarities between
images from different views or platforms is the key to solving this problem. Hu-
mans tend to prioritize landmark buildings or patterns in aerial images and then
analyze surrounding areas before making judgments based on global information.
Inspired by this, we believe that image-based cross-view geo-localization should
fully extract global image information and establish global context correlations.
While CNN-based approaches often focus on small discriminative regions since
the effective receptive field size of deep convolutional neural networks is Gaussian
distributed[24], they ignore global context correlations, which can be detrimen-
tal for cross-view geo-localization. Therefore, we have chosen to use the Vision
Transformer (ViT)[12] as our backbone.

In this paper, we introduce an Attention-guided Segment Transformer (AST)
structure to address two tasks in the University-1652 dataset, i.e., drone-view
target localization and drone navigation. To enhance the network’s robustness
to viewpoint changes, we propose an adaptive segmentation strategy. Utilizing
the self-attention mechanism of the transformer, patches of similar importance
are grouped together to form multiple non-uniform regions of decreasing signifi-
cance. These regions can effectively adapt to variations in targets’ position and
size across different views — a crucial feature for aerial images. This process
mirrors how humans match cross-view images, where attention is first directed
towards key regions before expanding to surrounding regions. To enhance the
extraction of local features, we design a new segment token module that gener-
ates segment tokens carrying additional local information for each region. These
segment tokens are concatenated with the class token to form the final embed-
ding features for matching. The segment tokens also enable spatial alignment
between corresponding regions. Compared to CNN-based methods, AST estab-
lishes global context correlations while also focusing on local information. In
contrast, the vanilla vision transformer mainly focuses on global features.

In summary, the main contributions of this paper are as follows:
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Fig. 1. An overview of our proposed AST framework. While training, the output of the
class token and those segment tokens are fed into classifier modules that do not share
parameters, and all the tokens are trained, respectively. While testing, the class token
and segment tokens before linear projection layers are concatenated as the embedding
feature for cross-view geo-localization tasks.

1) A novel attention-guided segmentation strategy. The segmentation is adap-
tive, the regions are non-uniform, and no human intervention is required, so
it can flexibly respond to changes in viewpoint.

2) A new segment token module. It enhances local information and achieves
spatial alignment between cross-view images. Besides, it is easy to imple-
ment and has the potential to be fused with other backbones as long as the
attention mechanism is available.

3) An effective Attention-guided Segment Transformer (AST) structure. AST
outperforms the baseline model of University-1652 by a large margin on both
benchmarks and achieves competitive results compared to existing methods.
Astonishingly, experiments show that AST has good robustness to changes
in viewpoint, even when there are overlapping regions.

The remainder of the paper is structured as follows: We briefly introduce several
pertinent work in Section II. Section III details our designed AST. Section IV
presents the experimental results, while Section V offers the conclusion.

2 Related work

2.1 Image-based Cross-view Geo-localization.

In recent years, image-based cross-view geo-localization has attracted a lot of
attention due to its huge application potential. The large changes in viewpoint
and the differences between imaging platforms make cross-view image match-
ing more difficult. Inspired by Siamese Network[6], Lin et al.[20] apply it to
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image-based cross-view geo-localization, and many of the subsequent methods
also adopt Siamese-like architecture. Our proposed AST has a Siamese-like ar-
chitecture, too.

In order to deal with the large changes in viewpoint in cross-view geo-
localization, a lot of methods have been proposed. Zhai et al.[37] use a VGG
network to generate semantic segmentation and then apply an adaptive trans-
formation to map aerial semantic segmentation into the ground-level perspec-
tive. Furthermore, Toker et al.[30] synthesize street views from satellite images,
and Tian et al.[29] use a CGAN to conduct drone-satellite view synthesis. Be-
sides, Hu et al.[17] combine the feature extractor with the NetVLAD, creating
a model called CVM-Net, and introduce an effective weighted soft-margin rank-
ing loss function, which speeds up its training convergence and improves its
performance. Recently, Wang et al.[33] propose a square-ring partition strategy
to take contextual patterns into consideration, which can be fused with exist-
ing methods to further boost performance. Lin et al.[19] combine representation
learning and keypoint detection, which enhances the model’s capability against
large changes in viewpoint. With the rise of ViT, Yang et al.[36] propose a Layer-
to-Layer Transformer (L2LTR) to model global dependencies, which decreases
visual ambiguities. Zhu et al.[40] propose an “attend and zoom-in” strategy by
taking advantage of ViT. And these two methods mainly focus on matching
images between ground-level and satellite-level. Previous research has shown
that researchers are attempting to determine the transformational relationship
between different views. However, fixed transformations lack flexibility and hin-
der the creation of a robust feature space. Our adaptive segmentation strategy
significantly alleviates this issue.

2.2 Vision Transformer

Transformer[31] was first proposed for large-scale pre-training in natural lan-
guage processing (NLP) tasks and demonstrated its excellent performance and
great potential[2, 9]. ViT[12] is the first pure transformer-based architecture ap-
plied to classify the full images and achieves excellent performance with sub-
stantially fewer computational resources to train compared to other CNN-based
methods.

With the proposal of ViT, a series of variants have come up to improve the
performance of transformer in vision tasks. As ViT simply projects an image
patch into a vector (patch token) through linear mapping, the extraction of local
features is ignored. Han et al.[13] design a new architecture termed Transformer-
iN-Transformer (TNT). It further divides patches into smaller patches (sub-
patches) and applies an inner transformer block to excavate finer features and de-
tails. Similarly, Swin[22], Cswin[11], and Twins[7] are also working in this direc-
tion. In addition, improving the calculation of self-attention is another notewor-
thy direction. DeepViT[39] introduces a re-attention mechanism that enhances
information exchange among attention heads. Similarly, there are KVT[32] and
XCiT[1]. Moreover, many researchers try to improve vision transform architec-
ture. Learning from CNN, many new architectures are proposed. For example,
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the pyramid-like architecture is adapted in PVT[34], HVT[25], PiT[15], and so
on. Some other architectures are also applied, e.g., two-stream architecture[5]
and U-net architecture[4, 35]. Researchers have made important contributions
to the improvement of ViT by enhancing locality, improving self-attention, and
designing new architectures. However, we discover that the majority of these im-
provements concentrate on getting a better global class token while disregarding
patch tokens, whereas our suggested segment token module can utilize patch
tokens more effectively.

3 Proposed Method

3.1 Problem Formulation

In the University-1652[38] dataset, each satellite-view image has 54 correspond-
ing drone-view images, and there are two tasks that we need to do:
Drone-view target localization (Drone → Satellite). Given one query
drone-view image, the task aims to find the most similar geo-tagged satellite-
view image so that the target building can be located. This is a many-to-one
match task in the University-1652 dataset.
Drone navigation (Satellite → Drone). Given one query satellite-view im-
age, the drone aims to find the most relevant place (drone-view images) according
to its flight history so that it can be navigated back to the target place. Also,
a set of satellite images can be given to guide the drone step by step. This is a
one-to-many match task in the University-1652 dataset.

In brief, we aim to output the ranking of the gallery images that are most
similar to the query image. Therefore, we regard the two tasks as cross-view
image retrieval problems. In the training set, we have a set of drone-view images
{Id}, a set of satellite-view images {Is}, and class labels {y} corresponding to all
the images. Images are classified by geo-tags or target buildings. We aim to train
a neural network to identify a mapping function F (.) that could project drone-
view images and satellite-view images to a shared feature space. In this space, the
feature vectors with the same label are close together, while those with different
labels are separated. When given a query image, we can extract its feature vector,
which can subsequently be used to search for the closest gallery images’ feature
vectors in the shared feature space. We use D(F (xd), F (xs)), xd ∈ {Id}, xs ∈
{Is} to measure the distance between feature vectors and apply the superscript
y to represent images’ corresponding labels. The optimal situation in the shared
feature space can be expressed as follows:

∀xy
d ∈ {Id},∀xy′

s ∈ {Is}, y ̸= y′,

D(F (xy
d), F (xy

s)) < D(F (xy
d), F (xy′

s ))
(1)

where the positions of subscripts d and s can be switched. Usually, it doesn’t
matter whether the feature vectors with the same label are close if they are from
the same view, as it doesn’t affect the matching result directly.
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3.2 Vision Transformer for Cross-view Geo-localization

We briefly introduce the transformer structure adapted in AST, including patch
embedding, class token, position embedding, and transform encoder.
Patch Embedding: Different from CNN, we need to convert an image into
some tokens as the input of transformer encoder. Given the input images x ∈
RH×W×C , where H,W,C are respectively the height, width, and channel num-
bers of x. Firstly, the input images are divided into N patches with the same
size P × P (usually P = 16), therefore N = HW/P 2. Then all the patches are

reshaped into a 2D matrix xp ∈ RN×P 2C . By adopting a trainable linear pro-
jection layer, we will get N tokens xt ∈ RN×D, where D is a hyperparameter
representing the feature dimension of transformer encoder.
Class Token: Referring to ViT[12] and BERT[9], our vision transformer also
has an extra learnable class token with the same dimension D in front of the N
tokens, which is used to integrate the features of each patch as the global feature,
and we get xt ∈ R(N+1)×D. After passing through the last transformer encoder,
the output class token will become an important reference for subsequent cross-
view geo-localization tasks, as will the segment token, which we propose and will
introduce later.
Position Embedding: As images are divided into patches, the relative posi-
tion relationships between patches are ignored. Referring to ViT[12], to make up
for the information loss, learnable position embedding is adopted in our vision
transformer. It is a learnable matrix xpos ∈ R(N+1)×D. Now we get the input of
transformer encoder xin = xt + xpos. The explicit position embedding of each
patch enables the model to better learn the geometric correspondence between
different views. Besides, it makes us able to improve the model’s performance
by flexibly aligning patches.
Transformer Encoder: As shown in Figure 1, each transformer encoder
has multiple cascaded transformer block layers. Each block consists of layer
norm (LN), multi-head self-attention (MSA), and multi-layer perceptron (MLP),
where MSA plays a key role. It converts the input matrix into three matrices
Q,K, V through a learnable linear projection layer. They represent the query,
key, and value of all the tokens, respectively. Then we can obtain the attention
map of the input image by the following computation:

z = LN(xin) (2)

Q = zW q,K = zW k, V = zW v (3)

A = softmax

(
QKT

√
D

)
V (4)

where W q,W k,W v are linear projection matrices, KT means the transpose of K
and D is feature dimension. An h-head attention module performs linear projec-
tion with h different heads and conducts subsequent self-attention computations
in parallel. For each token, the h outputs are concatenated and projected back to
a vector with dimension D. The generated global attention map can distinguish
the importance of different patches. However, it is important to note that in
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Fig. 2. Pipeline for generating segment tokens. The h-head attention module gener-
ates h different attention maps that represent different points of the input images.
The lighter the pixel is, the more important the patch is. Then, with the guide of seg-
mentation information, we can figure out the corresponding segment tokens for each
group.

the vanilla vision transformer, only the output class token is considered at the
end, while the rest of the tokens are ignored. We believe that these discarded
patch tokens contain valuable information that can be leveraged to enhance the
model’s understanding of images. Our ablation studies (1) and (2) confirm this
idea.

3.3 Attention-guided Segment Tokens

In this subsection, we will introduce the pipeline for generating segment tokens,
which includes our segmentation strategy and the segment token module.

The global attention map highlights the importance of different patches in a
manner similar to how humans recognize aerial images. On this basis, we propose
an attention-guided segment token that simulates the human process of matching
cross-view images. Segment tokens are calculated in the last transformer block
layer, as shown in Figure 2. In the last MSA, we can get h attention maps of
different heads {Ai|i ∈ {1, 2, ..., h},Ai ∈ R(N+1)×(N+1)}. Then we obtain the
integrated attention map by doing an average operation. The computation is
formulated as follows:

Ai =
QiK

T
i√

D
i ∈ {1, 2, ..., h} (5)

A =

h∑
i=1

Ai (6)

Based on the attention map, we can segment output tokens into groups, ex-
cluding the class token. These tokens are segmented into three groups according
to their corresponding values in the attention map: most important, less impor-
tant, and least important. It is important to note that we only consider the row
corresponding to the class token in matrix A and reshape the row to its original
grid size as the attention map. Then we use the following formula to calculate
the proportion of tokens in each group:

softmax([1, 2, ..., Ngroup]) (7)
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where Ngroup is the number of groups and [1, 2, ..., Ngroup] is a vector that in-
creases from 1 to Ngroup. The smaller the number in the vector is, the smaller the
percentage is, and the more important the group is. We then perform softmax
operations on the attention values of each group separately to obtain token
weights within each group. During grouping, we do not interfere with the orig-
inal computation of the last MSA. Instead, we obtain additional grouping and
weight information based on the global attention map. After the last transformer
block layer, we compute a weighted mean of tokens within each group as segment
tokens using the following formula:

xsegi =

Ni∑
j=1

wijxij i ∈ {1, 2, ..., Ngroup} (8)

where xsegi is the segment token of group i, Ni is the number of tokens in group
i, wij is the weight of the j-th patch token xij in group i. Compared to the
vanilla vision transformer, we take into consideration [xcls, xseg1 , xseg2 , ...].

3.4 Loss Function and Training Strategy

In the vanilla vision transformer, the output class token is then fed into an
MLP or a classifier module to generate the final embedding feature. We feed
[xcls, xseg1 , xseg2 , ...] into classifier modules that do not share parameters to gen-
erate multiple embedding features for different parts. The classifier module con-
sists of a fully connected layer (FC), a batch normalization layer (BN), a dropout
layer (Dropout), and a linear projection layer. During training, the classifier
module is used to predict the class of each part. We can simply minimize the
sum of the cross-entropy losses over all parts to optimize the network. To further
optimize the distribution of embedding features of different parts in the shared
feature space, we train the embedding features with weighted soft-margin triplet
loss[17, 40], respectively. The weighted soft-margin triplet loss function can be
formulated as follows:

T (dpos, dneg) = log
(
1 + eα(dpos−dneg)

)
(9)

where dpos and dneg denote the squared l2 distance of embedding features of the
positive and negative pairs in a mini-batch, and α is a coefficient.

For each class, we sample one satellite-view image and Nsample drone-view
images to formNsample image pairs (images are from different views) in an epoch.
While calculating triplet loss, we have B drone-view images and B satellite-view
images after augmentation. B is the mini-batch size. We suppose one of these
images is the query image, and each query image has B image pairs. Image pairs
with the same label are positive pairs; otherwise, they are negative pairs. We
can calculate the triplet loss of one part for the query image using the following
formula:

Ltri =
1

nposnneg

npos∑
i=1

nneg∑
j=1

T (dipos, d
j
neg) (10)
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Fig. 3. Different colors stand for different labels. Image pairs with the same label
are positive pairs (P); otherwise, they are negative pairs (N). Each query image has
npos positive pairs and nneg negative pairs in a mini-batch. dpos and dneg denote
the squared l2 distance of embedding features of the positive and negative pairs. We
calculate T (dpos, dneg) for each possible combination and do an average to get the final
triplet loss of this query image.

where npos and nneg are numbers of positive and negative pairs for this query
image, as shown in Figure 3. Finally, we minimize the sum of the cross-entropy
losses and the triplet losses over all parts to optimize the network. While testing,
we obtain the embedding features of different parts before the linear projection
layer, and they are concatenated as the final embedding feature of an input
image for matching.

4 Experiment

4.1 Datasets and Evaluation Metrics

We train our model and conduct experiments on the University-1652[38] dataset.
It is a large-scale multi-view, multi-source dataset used for two drone-based geo-
localization tasks. It selects 1,652 architectures from 72 universities around the
world as target locations. For each target location, there are multiple synthetic
drone-view images, which are generated from different angles, different heights,
and different distances by Google Earth. According to University-1652[38], the
model trained on this dataset also has good generalization ability and still works
on the real-world drone-view images. Following the University-1652, we use Re-
call@K (R@K) and Average Precision (AP) to evaluate the performance of our
proposed method. More details are shown in Table 1.
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Split Views Images Classes Universities

Train
Drone 37,854

701 33
Satellite 701

Query
Drone 37,855

701
39

Satellite 701

Gallery
Drone 51,355

951
Satellite 951

Table 1. The detailed statistics of University-1652 training and test sets.

4.2 Implementation Details

We implement our method using Pytorch[26]. Both the drone-view images and
the satellite-view images are resized to 256 × 256. For each class, we sample
Nsample = 8 image pairs in one epoch. We adopt a small-size Vision Transformer
(ViT-S)[12] as our backbone. We set Ngroup = 3, which means there is 1 class
token and 3 segment tokens, and the final concatenated feature dimension is
2048. The transformer backbones of two branches share the same parameters.
We adopt a stochastic gradient descent (SGD) optimizer. Our model is trained
for 20 epochs in total with a mini-batch size 8. While training and testing, we use
cosine similarity to measure two feature vectors, which is equivalent to measuring
distance. All the experiments were performed on the Nvidia RTX 3090 GPU.

4.3 Comparison with Existing Methods

Methods
Drone→Satellite Satellite→Drone

R@1 AP R@1 AP

Contrastive Loss[38] 52.39 57.44 63.91 52.24
Weighted Soft Margin Triplet Loss[38] 53.21 58.03 65.62 54.47
Instance Loss + GeM Pooling[27] 65.32 69.61 79.03 65.35
LCM (ResNet-50)[10] 66.65 70.82 79.89 65.38
LPN[33] 75.93 79.14 86.45 74.79
LPN + CA-HRS[23] 76.67 79.77 86.88 74.84
Instance Loss + USAM + LPN[19] 77.60 80.55 86.59 75.96
LDRVSD[19] 78.66 81.55 89.30 79.17
PCL[29] 79.47 83.63 87.69 78.51
FSRA[8] 84.51 86.71 88.45 83.37
PAAN[3] 84.51 86.78 91.01 82.28
AST + Contrast Loss 85.45 87.52 90.44 84.81
AST + Weighted Soft-margin Triplet Loss 86.29 88.20 89.59 85.06

Table 2. Comparison with existing methods in terms of R@1 and AP on University-
1652. The first two methods serve as baseline models and are distinguished by their
use of different loss functions.
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We evaluate our proposed AST on the University-1652 dataset and compare
its performance with existing methods, as shown in Table 2. The first two meth-
ods serve as baseline models and are distinguished by their use of different loss
functions. LPN (CNN-based) adopts a similar training strategy, and it segments
the image into fixed square-ring blocks. FSRA optimizes LPN by using ViT to re-
place the backbone and segments the image into several regions of the same area.
PAAN also optimizes LPN by combining the SE-block[16] and ResNet-50[14] to
replace the backbone, but still segments images into square-ring blocks. And we
make full use of the self-attention mechanism, making the segmentation more
flexible and reasonable, and assigning different weights to each patch, thus hav-
ing better robustness to the change of viewpoint. PCL uses CGAN to perform
perspective transformation to reduce the differences between cross-view images,
but the information loss caused by occlusion is still difficult to make up for.
Therefore, we not only pay attention to the overall information of the image,
but also pay more attention to the key regions, and combine the surrounding
regions to generate a discriminative feature vector. These improvements all lead
to better performance of AST. When it comes to PAAN, we believe it might
be more applicable at certain shooting angles and distances and thus achieve a
higher R@1 value but a lower AP value. AST has better robustness to changes in
viewpoint, so it achieves a higher AP value. Moreover, our segment token module
is easy to implement and has the potential to be fused with other backbones as
long as the attention mechanism is available.

4.4 Ablation Study

1) Effect of the Segment Token Module: We conduct experiments on the
effect of our segment token module. We remove the segment token module and
train the class token like the vanilla vision transformer does. As shown in Table 3,
we list the values of R@5, and R@1% for further reference. In the drone→satellite
task, the R@1 value improves by 15.15% and the AP value improves by 13.17%.
In the satellite→drone task, the R@1 value improves by 5.00% and the AP value
improves by 13.96%. Compared to the vanilla vision transformer, our model
considers both global and local information. Local information helps extract
global information, which in turn guides the extraction of local information.
This positive feedback process effectively promotes the model’s understanding
of aerial images. In addition, the R@1 value is relatively little boosted in the
satellite→drone task. When adopting the vanilla vision transformer, we find that
the R@1 value in the satellite→drone task is significantly higher than the other
three metric values (R@1 and AP). This is because the satellite→drone task is a
one-to-many match, where each satellite-view query image has 54 corresponding
drone-view images. This means it has a higher hit probability for R@1.

2) Effect of the Number of Segment Tokens: We conduct experiments
to figure out how many groups we should segment so that our model has the
best performance. As shown in Figure 4, the horizontal colored dotted lines stand
for the vanilla method’s R@1 and AP values in both tasks. When Ngroup = 3,
all the metrics have the highest values. We believe that at this point there is
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Ablation R@1 R@5 R@1% AP

Drone→Satellite

Vanilla 71.14 88.55 99.95 75.03
Ours 86.29 94.72 99.99 88.20

Satellite→Drone

Vanilla 84.59 90.44 91.16 71.10
Ours 89.59 92.58 93.30 85.06

Table 3. Ablation study on the segment token module.

better discrimination between groups and better similarity within groups, with
less variance in the attention values of the patches within groups. In addition,
we visualize the attention maps generated in AST, as shown in Figure 6. When
Ngroup = 4 or Ngroup = 6, most of the attention is wrongly attracted by the sur-
rounding buildings, resulting in a significant drop in performance. On the other
hand, we concatenate the output segment tokens in order of importance (i.e.,
attention values), which achieves spatial alignment between cross-view images
to some extent.
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Satellite→Drone
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Fig. 4. Ablation study on the effect of number of segment tokens. The horizontal
colored dotted lines stand for the vanilla method’s R@1 and AP values in both tasks.

3) Effect of Grouping Strategy: Specifically, we conduct experiments on
the effect of the number of tokens in each group. We consider three grouping
strategies: the decreasing strategy, the averaging strategy, and the increasing
strategy. They indicate the trend in the number of patches in the group as the
attention value decreases. As shown in Table 4, we evaluate the different grouping
strategies in detail. In the drone→satellite task, the increasing strategy achieves
the best performance. In the satellite→drone task, the averaging strategy having
the highest R@1 value, 0.16% higher than the increasing strategy, while the
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increasing strategy has the highest AP value, 0.74% higher than the averaging
strategy. Regions with high recognition in aerial images generally have a small
area percentage, and attention values are mainly concentrated in a few patches.
Therefore, when patches are sorted by attention value, their values drop rapidly
and then level off. The increasing strategy can make the attention values of
patches in the same group relatively close to each other, resulting in better
similarity within groups. It is worth noting that the increasing strategy with
fixed proportions is applicable in most cases, but not all.

Ablation R@1 R@5 R@1% AP

Drone→Satellite

Decreasing 83.51 93.70 99.95 85.80
Averaging 85.19 94.32 99.98 87.27
Increasing 86.29 94.72 99.99 88.20

Satellite→Drone

Decreasing 88.30 92.01 92.30 83.20
Averaging 89.73 93.44 93.58 84.32
Increasing 89.59 92.58 93.30 85.06

Table 4. Ablation study on grouping strategy.

4) Effect of Fusion Strategy: We consider two strategies for fusing patch
tokens to generate segment tokens. In addition to fusing patch tokens according
to the weights generated by the attention map, we further try to average the
patch tokens directly. As shown in Table 5, the weighted mean strategy is our
default fusion strategy. In the drone→satellite task, the weighted mean strategy
performs better than the mean strategy. In the satellite→drone task, the mean
strategy has a 0.28% higher R@1 value, while the weighted mean strategy has
a 0.86% higher AP value. We believe that the weighted mean strategy has bet-
ter robustness to changes in viewpoint and thus achieves higher AP values in
both tasks. The mean strategy, on the other hand, might be more applicable at
certain shooting angles and distances and thus achieve a higher R@1 value in
the satellite→drone task. And the data show that this advantage of the mean
strategy is also weak.

5) Effect of Sample Size: In the University-1652 training dataset, each
target has 54 drone-view images but only 1 satellite-view image because drones
have a variety of viewpoints while satellites usually have a vertical view. This is
realistic but not good for the training of neural networks. Therefore, we sample
Nsample image pairs for each class, each image pair containing one drone-view
image and one satellite-view image. There are two advantages: 1) We have the
same number of drone-view images and satellite-view images after image aug-
mentation, which can alleviate the problem of data imbalance to some extent. 2)
The paired format is more beneficial to the metric learning of cross-view images.
As shown in Figure 5, when Nsample = 8, the model achieves the best perfor-
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Ablation R@1 R@5 R@1% AP

Drone→Satellite

Mean 84.91 94.13 99.98 86.99
Weighted Mean 86.29 94.72 99.99 88.20

Satellite→Drone

Mean 89.87 92.58 93.01 84.20
Weighted Mean 89.59 92.58 93.30 85.06

Table 5. Ablation study on fusion strategy.

mance. We believe that data overfitting may occur when Nsample is too large.
On the other hand, image augmentation cannot fundamentally solve the problem
that the number of satellite-view images is much less than that of drone-view
images. As for metric learning, an appropriate value of Nsample can increase
the probability of images of the same class appearing in a mini-batch, which is
beneficial for the model to mine the commonality among different perspectives
of images. But it is bad for the model to learn inter-class differences when the
probability is too high.
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Satellite→Drone
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Satellite→Drone

Fig. 5. Ablation study on the effect of sample size.

6) Effect of Triplet Loss: We obtain the embedding features before the
linear projection layer, and these features can be used directly for image match-
ing without optimization using triplet loss. We conduct several experiments to
verify the effect of the additional triplet loss. As shown in Table 6, we try to re-
move the triplet loss and also try to adopt other loss functions. In both tasks, the
values of each metric improve to different degrees after adopting the additional
loss function. These loss functions are widely used in metric learning tasks. And
they can be used to adjust the distance between the feature vectors of samples
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in the shared feature space, narrowing the distance between samples of the same
class and expanding the distance between samples of different classes. This is
beneficial for image matching.

Ablation R@1 R@5 R@1% AP

Drone→Satellite

CE 84.90 94.28 99.98 87.04
CE + Contrast 85.45 94.54 99.98 87.52
CE + MT 85.64 94.90 99.97 87.73
CE + WST 86.29 94.72 99.99 88.20

Satellite→Drone

CE 89.02 92.44 92.87 84.40
CE + Contrast 90.44 92.72 92.87 84.81
CE + MT 89.16 93.30 94.01 84.96
CE + WST 89.59 92.58 93.30 85.06

Table 6. Ablation study on loss function. CE means Cross-Entropy loss, Contrast
means Contrast loss, MT means Max-margin Triplet loss, WST means Weighted Soft-
margin Triplet loss.

7) Effect of Changes in Viewpoint: In the drone-view images, the regions
with high recognition vary with the viewpoints. We divide the query drone-view
images into 3 groups based on the distance to explore the effect of the drone
distance to the target. In addition, we divide the images into 18 groups ac-
cording to the shooting angle to verify the effect of view angle. As shown in
Table 7, we obtain the best performance when the distance is middle, followed
by the short distance, and finally the long distance, and they have close perfor-
mances. As shown in Table 8, all the view angles also have close performance.
Our grouping strategy and fusion strategy can guarantee discriminative patches’
role in segment tokens when the area of highly discriminative regions changes.
Experimental results indicate that our model has good robustness to changes in
viewpoint.

Drone→Satellite

Distance R@1 R@5 R@1% AP

ALL 86.29 94.72 99.99 88.20
Short 86.16 94.27 99.48 88.01

Middle 87.30 95.14 99.66 89.07
Long 85.40 94.76 99.59 87.51

Table 7. Ablation study on the effect of the drone distance to the target.
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Drone→Satellite

Angle R@1 AP Angle R@1 AP

0° 87.69 89.36 180° 85.21 87.27
20° 87.26 89.04 200° 84.40 86.61
40° 87.35 89.11 220° 84.83 86.93
60° 87.26 89.19 240° 85.02 86.99
80° 87.97 89.64 260° 85.92 87.74
100° 87.02 88.88 280° 86.45 88.17
120° 86.21 88.24 300° 86.16 88.13
140° 86.07 88.05 320° 86.12 88.05
160° 85.54 87.60 340° 86.69 88.56

Table 8. Ablation study on the effect of view angle.

8) Effect of Sharing Weights: As we introduced before, our transformers
of two branches share the same weights because both satellite-view and drone-
view images are captured from an aerial view and have some similar patterns.
Also, we test the model, which does not share weights during the training, as
shown in Table 9. The R@1 value and the AP value drop rapidly when the
weights are not shared. We believe that there are two main reasons: 1) The
lack of satellite-view images. The single branch is liable to overfit since there is
only one satellite-view image per location. 2) A decrease in the number of input
images. When weights are not shared, the number of input images per branch
is reduced by half. However, training a transformer requires sufficient data to
achieve satisfactory performance. By sharing weights, more drone-view images
can be input into the transformer to adjust the model. This helps address the
above two issues and achieve better performance.

Ablation R@1 R@5 R@1% AP

Drone→Satellite

W/o Sharing 23.27 47.70 98.03 29.20
Sharing 86.29 94.72 99.99 88.20

Satellite→Drone

W/o Sharing 26.53 35.38 36.80 23.08
Sharing 89.59 92.58 93.30 85.06

Table 9. Ablation study on sharing weights.

4.5 Visualization

In Figure 6, we present visualization of attention maps. Comparing the attention
maps generated by the two models introduced in our first ablation experiment,
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Fig. 6. Visualization of attention maps. We show attention maps generated by vanilla
vision transformer and our AST using different numbers of segment tokens. Highlights
represent the distribution of attention in the model.

we observe that while the vanilla model primarily focuses on the target build-
ing, it also exhibits unexpected interference spots around it. This can negatively
impact cross-view image matching. In contrast, our model (Ngroup = 3) cor-
rectly focuses on the top of the target building before expanding its attention
to surrounding buildings, roads, and finally indistinguishable trees. This allows
for accurate matching between drone and satellite-view images. These results
demonstrate that our proposed segmentation token module effectively enhances
the vision transformer’s ability to correctly interpret aerial images and improves
drone-based cross-view image matching performance.

In Figure 7 and Figure 8, we present cross-view matching results in both
drone-view target localization and drone navigation tasks. In the drone-view tar-
get localization task, we randomly select 3 drone-view images from and retrieve
the top 5 satellite-view matches. For each query image, only the first-ranked
satellite-view image corresponds to it. Notably, our model successfully distin-
guishes between satellite-view images with different centers despite overlapping
areas, which situation appears in the first and third rows. In the drone naviga-
tion task, we follow a similar process and retrieve the top 5 drone-view matches.
All retrieved drone-view images indicate the same location as their correspond-
ing input satellite-view images. In summary, our method achieves completely
accurate results in both tasks shown in the figures.

We further conduct some experiments to test the generalization ability of
our method to real-world case. As shown in Figure 9, we present two retrieval
results: Real Drone → Synthetic Drone and Real Drone → Satellite. The former
evaluates how well the synthetic data mimics the real drone camera images. We
display the top-5 most similar images in the test set retrieved by our model. The
results suggest that the synthetic drone-view images have similar visual features
to the real drone-view query. The latter tests the generalization performance of
our model on the real drone-view data. The result demonstrates that our model
can also handle the real drone-view images for drone-view target localization.
These results demonstrate that our model has good generalization ability to
real-world case.
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Drone-view Satellite-view (R@5)

True-matched Images False-matched Images

Fig. 7. Visualization of drone-view target localization. Inputting the drone-view images
as the query images, we show the top 5 satellite-view images in the ranking of the
matching results in the drone→satellite task.

Satellite-view Drone-view (R@5)

Fig. 8. Visualization of drone navigation. Inputting the satellite-view images as the
query images, we show the top 5 drone-view images in the ranking of the matching
results in the satellite→drone task.

5 Conclusion

In this paper, we have addressed how to match drone-view images with satellite-
view images to tackle the problem of drone-based cross-view geo-localization.
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Real Drone-view Query Synthetic Drone-view Images (R@5) Satellite-view Images (R@5)

Fig. 9. Qualitative image search results using real drone-view query. In the left column,
we show the real drone-view images used for the query. In the middle column, we show
the top-5 most similar images in the test set retrieved by our model. In the right
column, we show the retrieval results for drone-view target localization.

To overcome the challenges posed by the variability of aerial views, an effective
Attention-guided Segment Transformer (AST) structure has been proposed: we
have introduced a novel segmentation strategy that is adaptive and non-uniform,
allowing it to effectively handle the huge variations between aerial views by seg-
menting regions with corresponding relationships even after significant changes
in viewpoint; furthermore, we have designed a new segment token module to
generates segment tokens that are concatenated with the original class token
to supplement local information. In contrast to CNN-based methods that are
inclined to extract more fine-grained features but underestimate neighboring
patches, AST takes full advantage of the self-attention mechanism to establish
global context correlations; and the newly introduced segment token module en-
ables AST to effectively extract local features as well, a capability not present in
the vanilla vision transformer. Notably, our method has demonstrated good ro-
bustness to variations in viewpoint, even when there are overlapping regions. Our
proposed AST has achieved competitive performance in both drone-view target
localization and drone navigation tasks in the University-1652 benchmark.

Nonetheless, there remains potential for further improvement. One limitation
of our approach is that we segment patch tokens in a fixed proportion, which may
not be suitable in all situations. In future work, we plan to explore adaptive pro-
portions or even an adaptive number of groups to improve model performance.
Besides, it might be a good idea to improve our segmentation strategy by using
advanced segmentation models, such as SAM[18].
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