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Abstract. The object detection in the context of drone is a hot topic in
the field of computer vision in recent years. In response to the challenge
of limited image feature information and the presence of numerous small
and densely packed objects in drone-captured images, this paper pro-
poses a novel feature fusion detection model, HTH-YOLOv5, based on
YOLOv5. Firstly, we enhance the detection capability of small objects
by adding a detection channel from high-resolution feature maps and
propose a Hybrid Transformer Head (HTH) that incorporates a hybrid
Transformer module, aiming to improve the network’s focus on small
objects by fusing global and local feature information. Secondly, we in-
troduce a Convolutional Attention Feature Fusion module(CA-FF) based
on CBAM. This module dynamically adjusts attention weights for the al-
location of original feature maps in both channel and spatial dimensions,
aiming to enhance the feature extraction capability for small objects. Fi-
nally, to better capture global and contextual information, we introduce
the Hybrid Transformer module into the backbone and enhance its orig-
inal feature fusion method using the CA-FF module. Experiments on
the Vis-Drone 2021 dataset demonstrate that, compared to the base-
line YOLOv5s model, the improved model shows an increase of 7.2% in
mAP50 and 6.3% in mAP75. The model trained with an input resolution
of 1540× 1540 achieves an mAP50 of 57.1%, marking a 12.4% improve-
ment over YOLOv5. The improved HTH-YOLOv5 achieves increased
accuracy while maintaining a detection speed of 45 FPS, making it more
suitable for small object detection in drone scenarios.

Keywords: Drone · Small object detection · Attention mechanism ·
Feature fusion

1 Introduction

In recent years, with extensive research into artificial intelligence technology,
object detection technology in drone captured scenes has found widespread ap-
plications in various fields such as transportation, defense, wildlife conservation,
and plant protection. In this article, we focus on improving the performance of
small object detection in drone-captured images.
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Fig. 1. The distribution of objects in images captured by drones. The first, second,
and third columns examples respectively illustrate the dense distribution of objects,
significant variations in object sizes, and complex backgrounds captured on drone-
captured images.

Since the integration of Convolutional Neural Networks (CNN) into object
detection in 2014, there has been remarkable progress in this field. Nevertheless,
the majority of preceding deep convolutional neural networks were tailored for
natural scene images. The detection of small objects is an inevitable challenge in
drone scene detection tasks and has consistently posed a difficulty in object de-
tection missions. This is primarily due to the fact that small objects suffer from
(1) insufficient image resolution, (2) limited feature information, and (3) a small
proportion of the overall image, making their detection more challenging com-
pared to conventional objects. Furthermore, the close clustering and considerable
size variations of small objects when viewed from a high altitude, combined with
a wide field of vision and intricate geographical factors, lead to the loss of de-
tailed information and insufficient feature extraction. Consequently, this lowers
the accuracy of detection, placing greater demands on object detection technol-
ogy. Some examples in Figure 1 also intuitively illustrate this issue: the first
column displays densely distributed crowds and vehicles in street scenes; the
second column shows significant variations in object sizes, even within the same
image, with instances of objects appearing larger or smaller depending on their
distance from the viewer; the third column demonstrates the wide aerial per-
spective of the drone, capturing backgrounds that include lakes, roads, houses,
and more.

Addressing the aforementioned issues, this paper introduces an improved
small object detection model, HTH-YOLOv5, based on YOLOv5 for drone sce-
narios. In the head section, we first propose a Hybrid Transformer Head (HTH)
as the detection module to enhance attention on small object regions, achieving
more efficient and accurate prediction capabilities. HTH-YOLOv5 comprises four
detection heads designed for detecting micro, small, medium, and large objects,
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respectively. Subsequently, we incorporate the Convolutional Block Attention
Module (CBAM[27]) into YOLOv5, embedding the CBAM module after each
convolutional feature extraction in the backbone network and within the fea-
ture pyramid network[15]. Leveraging CBAM, we devise CA-FF to enhance the
feature pyramid structure, improving its adaptability to small objects. Further-
more, we propose CAH-Transformer to enhance the feature fusion capability at
the end of the backbone network. Compared to YOLOv5s, our improved HTH-
YOLOv5 demonstrates superior performance in handling images captured by
drones.

The main contributions of this paper are as follows:

1) We propose a Hybrid Transformer Head (HTH) and integrate it into YOLOv5
to capture global and local information.

2) We integrate CBAM into YOLOv5, which is a lightweight and efficient mod-
ule that can generate attention graphs sequentially along channel and spatial
directions.

3) We propose a Convolutional Attention Feature Fusion (CA-FF) module,
which can improve the ability of the model to extract features from small
objects.

4) We propose the CAH-Transformer module to help further focus the effective
feature areas.

The structure of the remaining sections of this paper is as follows: In the
second section, we briefly introduce several related works. The third section pro-
vides a detailed description of our designed HTH-YOLOv5. The fourth section
presents the experimental results, and the fifth section concludes the paper.

2 Related Work

2.1 Object Detection

The current mainstream object detection algorithms can be divided into two
types: one-stage detector and two-stage detector. The two-stage algorithm re-
quires initially proposing regions of interest(ROI[9]) through selective search
method or RPN (Region Proposal Network[9]). These regions represent coarse
estimations of where objects might be located, and then a CNN is employed for
classification and fine-grained boundary regression. Representative algorithms
include: R-CNN[9], SPP-Net[11], Fast R-CNN[8], Faster R-CNN[22], feature
pyramid networks (FPN)[15], and Mask R-CNN[10]. The development of two-
stage object detection algorithms has been rapid, and detection accuracy contin-
ues to improve. However, the inherent architectural limitations pose constraints
on detection speed, preventing it from meeting the real-time detection require-
ments in drone scenarios.

The main difference between one-stage object detection algorithms and two-
stage object detection algorithms lies in the fact that the former lacks a candidate
region proposal stage, making the training process relatively simpler. One-stage
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algorithms treat classification and localization as regression problems, generat-
ing detection results directly through a single network. This end-to-end detection
approach achieves high accuracy and a detection speed of up to 45 frames per
second (FPS), meeting the basic requirements for drone scene detection. Rep-
resentative algorithms include YOLO (You Only Look Once)[19], SSD (Single
Shot MultiBox Detector)[26], and RetinaNet[16].

2.2 Small Object Detection

In the context of small object detection research, literature [30] proposed a
cascaded sparse query structure to accelerate small object detection in high-
resolution images, achieving a 1.0 increase in mAP on the COCO dataset, with
an average improvement in high-resolution inference speed by a factor of 3.0. The
literature[35] builds upon YOLOv5 by introducing the Transformer Prediction
Head (TPH) to replace the original prediction head, proposing the TPH-YOLO
model. Additionally, a self-trained classifier is employed to enhance the classi-
fication capability for certain confusing categories. The literature[25] conducts
pruning experiments on the basis of SSD for model compression, while simulta-
neously improving feature fusion methods to obtain more beneficial information
for detecting small objects. The literature[12] developed a novel lightweight small
object segmentation network by integrating various convolutional modules. This
approach, combined with clustering algorithms and object feature adjustment
strategies, achieved a reduction in parameter count and an improvement in de-
tection accuracy.

Based on the characteristics of drone images and the research difficulties at
this stage, literature[34] proposes a Dense Cropping and Local Attention Object
Detector Network (DCLANet) specifically designed for small objects in drone
scenarios. This approach enhances the network’s focus on small objects by in-
corporating dense cropping and local attention mechanisms.The literature[14]
introduced a bidirectional feature pyramid (BiFPN) to enhance the feature ex-
traction ability of small targets in the image, by adding a small target detection
layer based on YOLOv5 and fusing feature information from different scales. In
order to address the issue of semantic loss during the detection of small targets,
literature[7] incorporated the convolutional block attention module (CBAM) into
YOLOv5 and also introduced a small target detection layer. To retain more fea-
ture information of small targets, literature[17] incorporated the efficient channel
attention (ECA) module into the backbone network of YOLOv5l and replaced
the sampling method with transposed convolution. However, the enhanced model
based on YOLOv5l possesses a considerable number of parameters, which poses
challenges for deploying it on edge devices like UAVs. Literature[29] proposes
the magnifying glass method for image preprocessing to increase the feature
information that can be used for learning. Literature[31] proposes a fast and
accurate real-time small target detection system based on a two-stage archi-
tecture, which combines traditional algorithms and deep learning algorithms.
Literature[23] proposes a new method based on graph neural network (GNN)
to refine the detection results generated by the target detector. However, due
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to the low confidence score, some real predictions are easy to be selected as
negative samples. In the literature[3], based on YOLOv7, a large convolutional
kernel architecture is used to design the backbone network of the model in or-
der to expand the effective sensitivity field of the convolutional model, but the
additional computation caused by the large kernel architecture still needs to be
further reduced.

From the above studies, it can be observed that deep learning holds signif-
icant research value in small object detection and has achieved notable results.
However, further research is warranted to address small object detection in the
context of drone scenarios, adapting solutions for more practical application sce-
narios.

2.3 YOLOv5

The YOLO series, representing a typical example of single-stage object detection
algorithms, includes YOLOv1 through YOLOv8. YOLOv3[21], an improvement
upon YOLOv1[19] and YOLOv2[20], replaced the base classification network
with Darknet-53, leading to a significant improvement in inference speed com-
pared to R-CNN[9] and Fast R-CNN[8].

Combining various improvements, Bochkovskiy et al. proposed YOLOv4[1],
which can be trained on a regular GPU (1080Ti), meeting real-time require-
ments and deployable in production environments. YOLOv5 incorporates the
advantages and addresses the drawbacks of previous versions, further enhanc-
ing both detection accuracy and speed. Meituan’s Visual AI Department intro-
duced YOLOv6[5], a detector without anchor points. Wang et al. introduced
YOLOv7[4], featuring the E-ELAN and MPConv structures, achieving speeds
and accuracy surpassing all known object detectors within the range of 5 FPS
to 160 FPS. Subsequently, Alibaba Group released DAMO-YOLO[28], with the
best model achieving 50.0% AP at 233 FPS on NVIDIA V100. This year, Ul-
tralytics released YOLOv8, an anchor-free model that accelerates the speed of
Non-Maximum Suppression (NMS).

YOLOv5 comprises three parts: the backbone, neck, and head, as illustrated
in Figure 2. The backbone is primarily responsible for extracting features from
input images, the neck handles multi-scale feature fusion on the feature maps,
and transmits these feature details to the head. The head receives features
from the neck and performs regression predictions. YOLOv5 has four versions:
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. These versions share a con-
sistent structure but correspond to different network widths and depths. Among
them, YOLOv5s has the smallest network parameters, the fastest speed, and the
lowest AP accuracy.

To validate the effectiveness of the algorithm in terms of both speed and
accuracy and to meet the requirements for real-time detection on drone and
deployment on mobile devices, YOLOv5s was chosen as the baseline model for
improvement in this paper.
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Fig. 2. The YOLOv5 architecture consists of three components: the backbone, neck,
and head.

3 HTH-YOLOv5

The structure diagram of the improved model HTH-YOLOv5 proposed in this
paper is shown in Figure 3, and the improvement measures of specific modules
are introduced in the following sections to make the model more suitable for
small objects and drone scenarios.

3.1 Hybrid Transformer Head

In the small object detection task of drone scenarios, the complex background is
easy to block the small object, which interferes with the model’s understanding of
effective object and background. In recent years, models based on Self-Attention
structures have gained quite good performance in the field of computer vision.
The Self-Attention structure adopts the weighted average operation based on
the input feature context, and the similarity function is used to dynamically
calculate the attention weight between the relevant pixel pairs, so that the at-
tention module can self-adapt to pay attention to different regions in the global
and capture more effective features. This weight distribution allows the model
to focus more on the effective object rather than the irrelevant background, so
it is suitable for capturing the features of the effective object in the complex
background. The Self-Attention structure calculates the self-attention weight as
follows:

Z = Attention(Q,K, V ) = softmax(
QKT

√
dK

)V (1)

Where, Z denotes the self-attention weight, QKT describes the calculation
of the correlation degree between each image block and other image blocks,

√
dK

describes the scaling factor, the weight coefficient is normalized by softmax, and
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Fig. 3. The architecture of the HTH-YOLOv5. The number of each block is marked
with a number on the left side of the block.

finally the weight coefficient and V are weighted and summed to obtain the
self-attention weight matrix of each image block.

In addition, Q, K and V are three matrices with dimensions dQ, dK and
dV respectively (generally set dQ = dK = dV ), which can be calculated by
multiplying the input sequence X by three random initialization matrices WQ,
WK and WV respectively:

Q = XWQ,K = XWK , V = XWV (2)

Inspired by high efficiency hybrid transformers[24], this paper proposes a Hy-
brid Transformer Head (HTH) based on Self-Attention for detection. The Hy-
brid Transformer module is divided into two sub-layers. The first layer captures
the global context with multi-head attention block, introduces the convolutional
layer to extract the local context, and then aggregates the global and local con-
text to obtain a stronger feature representation. The second layer is a feedforward
neural network, which is mainly composed of a multi-layer perceptron (MLP).
LayerNorm is applied before each sublayer and DropPath is applied after each
sublayer. The comparison of the structure of the standard Transformer module
and the Hybrid Transformer module is shown in Figure 4.

The main module of the hybrid Transformer module is the global-local at-
tention structure, which is a hybrid structure that uses linear multi-head self-
attention to capture the global context and convolutional layers to extract the
local context. Finally, an addition operation is applied to the global context and
local context to extract the global-local context. The details are shown in Figure
5.
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Fig. 4. (a) Standard Transformer module and (b) Hybrid Transformer module

Fig. 5. Global-local attention structure of the Hybrid Transformer module
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Where, H and W represent the resolution of the feature map, D and h
represent the number of channels and the number of heads, respectively.

N = H ×W (3)

d = D/h (4)

In the global-local attention structure, the global structure uses a linear
multi-head self-attention mechanism to improve efficiency and enhance the abil-
ity of sequence modeling, and the local enhancement module uses two parallel
convolution layers and then performs batch normalization operations to extract
the local context. Further deep convolution, batch normalization operations, and
1×1 convolution are performed on the generated global-local context to enhance
generalization.

3.2 Convolutional Attention Feature Fusion Module

In order to extract and fuse the features of small projects effectively, a Con-
volutional Attention Feature Fusion (CA-FF) module based on CBAM[27] is
designed from the perspective of feature fusion.

CBAM is a simple and effective attention module that is trained end-to-
end and can be integrated into most CNN architectures. CBAM consists of two
main modules: the Channel Attention Module (CAM) and the Spatial Attention
Module (SAM). CAM pays more attention to semantic features. For feature map
Y , whose input size is H ×W × C, CAM will use average pooling to aggregate
spatial information and maximum pooling to obtain more detailed object feature
information. By combining these two pooling methods, CAM can reduce the
computation of feature maps and improve the expression of the network. The
two one-dimensional vectors obtained after pooling are calculated at the fully
connected layer, and 1×1 convolution kernel is used when the weights are shared
between the eigenvectors. The process of generating channel attention Zc is:

Zc = sigmoid(MLP (AvgPool(Y )) +MLP (MaxPool(Y ))) (5)

SAM pays more attention to the location of features in the feature map, that
is, the region with many effective features. By means of average pooling and max-
imum pooling, SAM compresses the feature map Yc in channel dimension, and
then obtains two two-dimensional feature maps. Then these two two-dimensional
feature maps are concat together to get a feature map with two channels. Fi-
nally, a hidden layer containing a single convolution kernel is used to convolve
the feature graph, and the process of generating the spatial attention weight Zs

through sigmoid operation is as follows:

Zs = sigmoid(conv(AvgPool(Y ),MaxPool(Y ))) (6)

When given a feature map, CBAM can independently infer attention maps
along both channel and spatial dimensions. Subsequently, it refines features
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adaptively by multiplying the attention map with the input feature map. Ac-
cording to experiments in the paper [27], integrating CBAM into various models
on different classification and detection datasets significantly improves the per-
formance, demonstrating the effectiveness of this module.

The core idea of the CA-FF module proposed in this paper is to add attention
mechanism on the basis of the feature fusion structure, and carry out feature
refinement from the two dimensions of channel and space, so as to improve the
feature extraction ability of the model. The structure diagram of CA-FF module
is shown in Figure 6, and the contents in the dotted box are the original feature
fusion structure. The feature fusion process of CA-FF module for feature maps
of different scales can be expressed as:

Z = CBAM(X ⊕ Y )⊗X + (1− CBAM(X ⊕ Y ))⊗ Y (7)

Fig. 6. Structure of the CA-FF module. X and Y are the feature maps before process-
ing. Z is the feature map after processing.

Where, Z denotes the feature map after feature fusion processing; X denotes
the low-level high-resolution feature map in the feature pyramid; Y denotes
the feature map that is obtained by up-sampling the high-level, high-semantic
feature map; CBAM(X ⊕ Y ) represents the attention weight matrix obtained
from the CBAM module after performing an element-wise sum of X and Y .
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In this paper, CA-FF module is used to replace Concat module in YOLOv5
feature pyramid network, and the replaced structure diagram is shown in Figure
7.

Fig. 7. FPN structure after replacing CA-FF. The addition of CA-FF module can
better integrate the small object features in the feature map after upper and lower
sampling.

The down-sampling operation of the backbone network will reduce the reso-
lution of the feature map and lose a large number of small object features, while
the upsampling can not bring more feature information. The modified feature
fusion module is designed to more effectively integrate features of small objects
within the feature map following both upsampling and downsampling processes,
thereby minimizing the loss of small object features during the fusion process.

3.3 CAH-Transformer Module

This paper introduces further improvements to the Hybrid Transformer module
by replacing the Hybrid Transformer’s residual connection feature fusion module
with a CA-FF module. Figure 8 illustrates the structure of the proposed CAH-
Transformer module. By inserting the CAH-Transformer module at the end of
the YOLOv5 backbone network, it further enhances the network’s feature fusion
capabilities across both channel and spatial dimensions.

4 Experiment

4.1 Data Sets and Evaluation Metrics

The model proposed in this paper is implemented in Pytorch 1.8.1, and the epoch
is trained 300 times on NVIDIA RTX 3080Ti GPU with an initial learning rate
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Fig. 8. Structure of the CAH-Transformer module. Compared with the Hybrid Trans-
former module, two feature fusion modules are replaced with CA-FF.

of 0.01. The experiment was conducted on the VisDrone2021 dataset and COCO
dataset.

VisDrone2021 dataset was collected by the AISKYEYE team at the Machine
Learning and Data Mining Laboratory of Tianjin University, and the baseline
dataset included 288 video clips consisting of 261,908 frames and 10,209 still
images. The dataset was collected using different drones in different scenarios,
weather and lighting conditions, and included 10 types of images including pedes-
trian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus and motor.
Figure 9 (a) shows the number of labels for each category. The horizontal and
vertical coordinates in Figure 9 (a) represent the number of label instances and
label categories, respectively. The horizontal and vertical coordinates in Figure
9 (b) respectively represent the width and height of the label box. The lower left
corner of the figure has a high aggregation degree, indicating that the data set
contains a high content of small objects, which can fully represent the general
situation of object size in the drone capture scene.

MS COCO(Microsoft common objects in context) is one of the most author-
itative and high-profile competitions in the field of machine vision. The dataset,
which is mostly taken from complex everyday scenes, contains more than 330,000
images covering 80 different target categories, including people, animals, vehicles,
food, furniture and more. COCO datasets are widely used in computer vision
research and algorithm evaluation, providing an important benchmark for tasks
such as object detection, segmentation, and key point detection.

To validate the performance of the proposed improved algorithm, this study
employs mAP50, mAP75, mAP50:95, Params, GFLOPs and Frames Per Second
(FPS) as evaluation metrics for model performance. mAP50 and mAP75 repre-
sent the average detection accuracy of all object categories at IoU thresholds
of 0.5 and 0.75, respectively. mAP50 reflects the algorithm’s comprehensive de-
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Fig. 9. VisDrone2021 data set (a) distribution of the number of labels in different
categories (b) distribution of label sizes

tection capability for different object categories, while mAP75 demonstrates the
algorithm’s ability in bounding box regression. mAP50:95 calculates the average
accuracy for all IoU thresholds from 0.5 to 0.95 with a step size of 0.05. FPS
stands for Frames Per Second, representing the number of frames that the algo-
rithm can detect per second. It reflects the detection speed or real-time capability
of the algorithm. Since the images captured in drone scenarios often have high
resolutions, and the detection speed decreases with higher resolutions, the FPS
measurements in this paper are conducted at a high resolution of 1504× 1504.

4.2 Comparison with Existing Methods

To validate the superiority of the improved object detection algorithm proposed
in this paper compared to other algorithms, we conducted comparative experi-
ments with various advanced object detection algorithms, and the specific results
are presented in Table 1. First, we compare with some classical object detection
algorithms, then with YOLOv3, YOLOv4 and YOLOv5 models, and finally with
the latest small object detection models to verify the progressiveness of our pro-
posed method. Conclusions drawn from the data in Table 1 indicate that our
proposed algorithm exhibits excellent performance in object detection accuracy,
with mAP50 surpassing YOLOv4 by 14.1%, reaching 57.1%, and surpassing
YOLOv5 by 12.4%. Moreover, our accuracy surpasses that of the most recent
papers [18] and [6]. Furthermore, in terms of detection speed, our algorithm
achieves an FPS1504 of 45, which is twice that of Faster-RCNN, 45.2% higher
than YOLOv3, and 28.6% higher than both YOLOv4 and YOLOv5, only slightly
lower than the performance reported in paper [6]. This suggests that the algo-
rithm proposed in this paper not only demonstrates a significant improvement
in detection accuracy but also has a good performance in real-time, making it
more suitable for object detection tasks in drone capture scenarios.
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Table 1. Comparison experiments of different object detection algorithms.

Methods mAP50(%) mAP75(%) mAP50:95(%) FPS1504

RetinaNet 28.7 11.6 11.8 −
RetfineDet[33] 28.8 14.1 14.9 −
Cascade-RCNN[2] 31.9 15.6 16.1 −
FPN 32.2 14.9 16.5 −
Light-RCNN[32] 32.8 15.1 16.5 −
Faster-RCNN 33.2 15.2 17.0 15
CornerNet[13] 34.1 15.9 17.4 33
YOLOv3 41.7 22.9 24.5 31
YOLOv4 43.0 25.2 24.9 35
YOLOv5 44.7 26.8 26.4 35
paper[18] 52.2 − 32.4 −
paper[6] 54.5 33.1 32.0 46
HTH-YOLOv5 57.1 35.3 34.7 45

4.3 Ablation experiment

In order to verify the effectiveness of HTH, CA-FF and CAH-Transformer mod-
ules proposed in this paper, ablation experiments are conducted to evaluate the
influence of different modules on the performance of object detection algorithms
under the same experimental conditions. The results of ablation experiments are
shown in Table 2.

Table 2. The ablation experiments of HTH, CA-FF and CAH-Transformer modules
proposed in this paper are carried out, and the original Transformer, CBAM and
CBAM(X ⊕ Y ) are also included.

Model Methods
mAP50(%) mAP75(%) mAP50:95(%) Params(M) GFLOPsHTH CA-FF CAH-Transformer CBAM Transformer CBAM(X ⊕ Y )

A 33.0 14.8 16.5 7.0371 15.9
B ✓ 36.6 17.4 18.4 8.4112 19.0
C ✓ 34.5 16.2 17.7 7.4098 17.0
D ✓ 36.1 17.1 18.2 8.4464 19.1
E ✓ 35.6 16.8 17.9 8.3998 19.2
F ✓ 33.7 15.8 17.3 7.2230 16.4
G ✓ ✓ 38.3 18.6 19.5 8.7831 19.8
H ✓ ✓ 37.7 18.2 19.4 8.8184 20.0
I ✓ ✓ 39.8 19.6 20.7 9.8205 21.4
J ✓ ✓ ✓ 41.7 20.3 21.4 10.1925 22.2
K ✓ ✓ ✓ ✓ 42.3 20.7 21.7 10.7502 23.3

In the ablation experiment, Ultralytics 5.0 version of YOLOv5s was selected
as the benchmark model. The input image resolution was 640×640. After train-
ing for 300 epochs, the results were shown in model A. Model B uses the HTH
module in the detection head, which introduces some computation, but the
mAP50, mAP75 and mAP50:95 are respectively 3.6%, 2.6% and 1.9% higher than
the baseline of YOLOv5s, indicating that the HTH proposed in this paper can
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be used as the detection head to better improve the detection effect. The CA-FF
module proposed in this paper is added to the neck network in model C. Com-
pared with model A, mAP50, mAP75 and mAP50:95 are 1.5%, 1.4% and 1.2%
higher than the baseline of YOLOv5s, respectively, reflecting the superiority of
CA-FF module in feature fusion. After introducing the CAH-Transformer mod-
ule into the model D backbone, the detection accuracy significantly improved,
showing a 3.1% increase compared to YOLOv5s, which demonstrates the effec-
tiveness of the CAH-Transformer. However, the parameter count increased by
1.4093 million and GFLOPs increased by 3.2. The analysis indicates that the
CAH-Transformer itself requires a large amount of computing resources to calcu-
late the correlation weights among each pixel in every feature map. Additionally,
the detection speed exhibits a clear negative correlation with the number of pa-
rameters and the computational complexity. Therefore, considering the practical
application scenario, this paper focuses on reducing computational costs, im-
proving training efficiency, and enhancing the accuracy and speed of the model
detection. To achieve these goals, the proposed approach only integrates the
module at the end of the backbone network. To demonstrate the superiority of
our proposed CAH-Transformer, we designed the model E. Model E differs from
model D only in that the attention module at the end of the trunk uses the
original Transformer. It can be seen from the data that the mAP50 of model
D is 36.1%, 0.5% higher than the 35.6% of model E, which can prove that our
proposed CAH-Transformer is more helpful to model detection effect in context
acquisition ability. Compared to model C, the feature fusion module in model
F is simply replaced by CBAM(X ⊕ Y ), resulting in a significant decrease in
accuracy. This further demonstrates the excellent feature fusion capability of the
CA-FF module proposed in this paper. We combine the proposed modules with
each other to test the effectiveness of the modules proposed in this paper. Model
G uses HTH and CA-FF. Compared to models B and C, which solely utilize in-
dividual modules, model G exhibits significant improvements in mAP50, mAP75

and mAP50:95. This enhancement more effectively demonstrates the efficacy of
embedding HTH and CA-FF modules within the overall network. Model H is
embedded with CA-FF and CAH-Transformer in the network, and the effect
is further improved compared with models C and D, indicating that the fusion
of these two modules is better than the single use. Model I uses both HTH
module and CAH-Transformer and obtains 39.8% mAP50, which proves the ex-
cellent effect of the combination of the two modules. Then, we tested the model
with simultaneous use of the three modules, and the results, as demonstrated
by model J, surpassed those of all previously mentioned models. This suggests
that integrating the three modules proposed in this paper yields superior detec-
tion performance. Finally, we added some CBAM modules to the backbone and
neck networks. As a lightweight and effective attention module, after embedding
CBAM, the effect of the model was further improved. In the final model K,
the mAP50, mAP75 and mAP50:95 of the network size s were 42.3%, 20.7% and
21.7%, respectively. Improvements over YOLOv5s baseline were 9.3%, 5.9% and
5.2%, respectively.
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4.4 Experimental analysis of COCO dataset

In order to further verify the performance of the model proposed in this paper, we
conducted experiments on the COCO dataset, and compared the experimental
results with those of YOLOv5s, SSD, YOLOv4-Tiny, YOLOX-Tiny, YOLOv6-
N, and YOLOv7-Tiny. Detailed results are shown in Table 3. Although our
algorithm introduces a certain amount of parameters and computation, it still
enables it to meet most lightweight target detection tasks and mobile deployment
requirements. The experimental results show that at mAP50:95, our algorithm
is obviously superior to other target detection algorithms, which indicates that
our method has certain advantages in performance.

Table 3. Experimental analysis of COCO dataset.

Methods Params(M) GFLOPs mAP50:95(%)
YOLOv5s(2020) 7.2 16.5 37.2
SSD 36.1 − 25.1
YOLOv4-Tiny(2022) 6.1 − 21.7
YOLOX-Tiny(2021) 6.5 5.1 32.8
YOLOv6-N(2022) 4.3 11.7 35.9
YOLOv7-Tiny(2022) 6.2 13.7 37.4
HTH-YOLOv5 10.8 23.3 37.5

4.5 Algorithm Effectiveness Analysis

In order to directly reflect the detection effect of the improved algorithm in the
actual scene, this paper uses four representative pictures in the VisDrone2021
test set for testing, and makes visual comparison with the test results of YOLOv5.
As shown in Figure 10, the first row is the test result of HTH-YOLOv5 in this
paper, and the second row is the test result of YOLOv5. These four pictures cor-
respond to different detection difficulties. The first column shows the scene with
large changes in light. There are a large number of pedestrians in both bright
and dim areas, accompanied by partial occlusion. In this figure, (a1) shows that
the algorithm in this paper is less affected by light and can accurately identify
pedestrians and some bicycles in distant dim areas, while (a2) has many defects
in the detection of pedestrians in the upper part and many missed detection of
pedestrians in the right side. The second column shows the overhead shooting
perspective. There are some vehicles and many pedestrians on the way, and the
pixels occupied by pedestrians are very small. It can be seen from (b1) that for
pedestrians, the algorithm in this paper can almost recognize them, which shows
that the algorithm in this paper has outstanding detection ability for small ob-
jects. Compared with (b1), (b2) has lost many detection boxes for pedestrians.
The third column is a high-altitude image of the street scene, with a large num-
ber of vehicles of different models distributed on the street and a large number
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of trees to shield it. Compared with (c2), (c1) has better anti-occlusion ability
and can accurately identify pedestrians riding in the middle and rear, indicating
that the algorithm in this paper can better handle occlusion and small object
scenes. The fourth column is a blurry and distorted image, possibly caused by
the shaking of the drone. For this graph, (d1) can still perform well on fuzzy
objects in the graph, indicating that the algorithm in this paper has certain
robustness and can better cope with actual scenes. In general, although the al-
gorithm introduced a certain amount of computation, FPS can be maintained
at 45 to meet the real-time needs. In addition, it can be seen from the detec-
tion effect diagram that the proposed algorithm has a good performance in the
drone capture scenario, and the increased calculation amount is also worthwhile.
Therefore, the algorithm in this paper is more suitable for the application and
deployment of drones in practical scenarios.

Fig. 10. Comparison of detection results of HTH-YOLOv5 and YOLOv5 on Vis-
Drone2021.

5 Conclusion

This paper presents an enhanced approach based on YOLOv5 to boost the ac-
curacy of detecting small objects within drone-captured scenarios. We propose
the HTH detection head in YOLOv5 based on a Hybrid Transformer to enhance
focus on small objects. Subsequently, we introduce the CBAM module and pro-
pose the Convolutional Attention Feature Fusion module (CA-FF) based on it to
further improve feature fusion efficiency. Finally, we use CA-FF to enhance the
structure of the Hybrid Transformer in the backbone, enabling better capture of
global and contextual information. The effectiveness and real-time performance
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of these improvements are validated on the VisDrone2021 dataset. Experimen-
tal results demonstrate that HTH-YOLOv5, along with its modules, achieves
a higher mAP for object detection in drone scenarios compared to the original
YOLOv5s. The algorithm in this paper introduces a certain amount of compu-
tation, which can continue to carry out the research on the lightweight of the
improved YOLOv5 network.
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