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Abstract. Material Reflectance Property Estimation of an object is
challenging and it can be used in realistic rendering to make the ap-
pearance of objects realistic. Current research focuses primarily on the
near-planar objects, with little attention paid to complex-shaped objects.
In this paper, we propose a method called MatTrans to estimate geom-
etry and material reflectance properties with Transformer. Specifically,
a Transformer Encoder module is designed to fuse local and global in-
formation for each material property respectively, and then a cascaded
network with residual learning is introduced to estimate the geometry
and reflectance properties of any 3D object surface from a single image.
Extensive experiments validate that our method brings a clear improve-
ment over previous methods for single-shot capture of spatially varying
BRDFs.

Keywords: Reflectance property estimation · Transformer · Complex-
shaped objects.

1 Introduction

Surface appearance modeling of an object has always been a research hot spot
in computer graphics, and it is widely used in 3D animation, games, virtual
reality and so on. The appearance of a real-world object is the result of interac-
tions between the light and the object. The reflectance of light on object surface
varies with different materials, and it directly affects the appearance of the ob-
ject. For example, under the same lighting conditions, metal is brighter than
wood because the specular reflection effects the material reflectance property of
opaque objects is typically represented by the Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF) [1, 2] which describes how the in-
cident irradiance at different points on the objects surface affects the emissivity
in a given reflected direction. SVBRDF is primarily determined by the object’s
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Fig. 1. We propose a cascaded residual network based on the Transformer for recovering
arbitrary shapes and spatially-varying BRDF from a single mobile phone image. Our
approach produces high-quality material property maps. The rendering pictures with
these properties are also very close to the inputs.

shape and properties such as diffuse reflectance, roughness, and specular re-
flectance. As shown in Figure 1, surface appearance modeling of an object is to
estimate the properties such as diffuse albedo, roughness, surface normal and
specular albedo at the 3D object surface point corresponding to each pixel from
the collected texture images. Based on these material properties and the geomet-
ric information of the object’s surface, the appearance of the object under any
light illumination can be rendered. However, in addition to these geometric and
material properties, illumination and viewpoint also influence the appearance of
an object, and different combinations of these factors may lead to the same ap-
pearance. This makes the material reflectance property estimation challenging,
especially for complex objects.

Most of previous methods rely on well-designed and calibrated light field
acquisition systems to densely collect the texture photos of the object under
different illuminations and viewpoints and estimate the reflectance properties
by inverse rendering of these texture photos. It is commonly a time-consuming
and laborious work to collect the data of an object. In recent years, reflectance
property estimation based on deep learning has gradually gained popularity.
Generally, deep learning methods [3, 7, 10] estimate the reflectance property from
sparse multi-view images, and they reduce the complexity of data acquisition and
reflectance estimation. However, the available material datasets that are requi-
site are very limited, and most of them are about near-planar samples, which is
unfit for the material reflectance property modeling of complex shape objects.
Aside from more descriptive dataset, disambiguating shape and spatially-varying
material necessitates novel network architectures that can reason about appear-
ance at multiple scales, such as understanding both local shading and non-local
shadowing and lighting variations, especially in the case of unknown complex
geometry. Mainstream methods use encoder-decoder architectures based on con-
volutional neural layers due to their good feature extraction abilities. However,
convolutional layers tend to focus more on local information, and they strug-
gle to aggregate distant information and propagate it to fine-scale details. To
solve this limitation, we design a novel coarse-to-fine cascaded network with the
Transformer to estimate shape and SVBRDF parameters.

There are three main contributions in our paper: (1) We generate a material
dataset by rendering a set of 3D models of cultural relics with complex sur-
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face shapes. (2) We improve the encoder-decoder architecture using the Trans-
former module which can extract information over long distances. Therefore,
our method has both local and global modeling capabilities over previous meth-
ods. (3) We add residual blocks to the network to learn residual information in
the refined networks, which can ease the network learning while improving the
estimation effect.

Experiments on different datasets demonstrate that our method brings a clear
improvement over state-of-the-art methods for single-shot capture of spatially
varying BRDFs.

2 Related works

Non-Deep learning-based methods. In recent years, research on reflectance prop-
erty modeling mainly focuses on the reflectance estimation using sparse light field
data captured by convenient lightweight acquisition devices. The literatures [28,
41] adopt a near-field camera and a directional light source to take photos of
near-planar samples, and fit SVBRDF from the collected sparse data with a
prior hypothesis about the system configuration or material. The works [40, 8]
estimate SVBRDF from a video of rotating objects under unknown natural il-
lumination with the sparsity prior in gradient domain of natural illumination.
Nam et al. [27] design a multi-stage iterative inverse rendering framework to
jointly reconstruct SVBRDF, normal and 3D shape of an object surface from
a set of photos taken by a camera with built-in flash. Baek et al. [2] leverage
the physical relationship between the polarized appearance and geometric char-
acteristics of the object to estimate the material appearance and normal from
a set of polarization images. Michael et al. [17] use a high-frequency spatially
modulated light source and a camera that is precisely aligned with the light
source to capture modulated images of the object and recover the geometry and
reflectance from these images through light modulation and demodulation and
stereo vision reconstruction. Borom et al. [33] use a computational illumination
device to capture a set of images of objects under continuous spherical harmonic
illumination to recover the geometric structure and SVBRDF. Wu et al. [39]
jointly optimize the camera pose, reflectance, ambient illumination and normal
from a set of RGB and depth images captured by a RGB-D camera under an
unknown ambient illumination. Most of these methods use priors on illumination
mode or motion to optimize the reflectance properties, and the computational
complexity is very high. Compared to these methods, our deep learning-based
approach is simpler and more efficient.

Deep learning-based methods.With the ever-increasing successful applications
of deep learning on many visual tasks, it has attracted wide attention in research
on object appearance modeling for its simplicity, high efficiency and easy train-
ing. However, existing works [21, 7, 23] are mainly about reflectance estimation
of near-planar objects, and few work is for arbitrary three-dimensional objects.
Kang et al. [18] propose a framework based on the asymmetric deep autoen-
coder to automatically learn the effective illumination modes and reconstruct
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Fig. 2. Our network framework is mainly based on the encoder-decoder structure.
Different colors represent different material properties. Before each decoder structure,
in order to extract global features, we add a Transformer Encoder TE. We use the L2
distance to constrain the generated material properties. Our method adopts a coarse-to-
fine manner, we use a cascaded network RefineNet to learn the residuals, which is also
based on the encoder-decoder structure. Unlike the InitNet, the input of the network
is composed of the input of the InitNet and the material properties generated in the
previous stage. The figure on the left shows the InitNet whose encoder is composed
of six convolutional layers, and each decoder is also composed of six deconvolutional
layers. Besides, we use the skip-connections in each decoder to help the network recover
detailed information when upsampling. The figure on the right shows RefineNet, the
network is also an encoder-decoder structure, in addition to being different from the
initial network in the input, residual blocks are also used in the encoding and decoding
process.

SVBRDF from the images captured in these illumination modes. However, this
method relies on precisely designed acquisition equipment. Li et al. [24] generate
a large scale material dataset of 3D objects, and trained a deep neural network
using this dataset to recover the SVBRDF and geometry of a 3D object of ar-
bitrary shape from a single RGB image. The network physically incorporates
the illumination representation and the differentiate rendering of the scene ap-
pearance, and adopts a cascaded structure to iteratively refine the prediction
results. Based on the dataset in [24], Bi et al. [3] propose a deep multi-view
reflectance estimation network architecture to predict per-view SVBRDF, and
geometry and SVBRDF are obtained by fusing these per-view estimations. The
material dataset they used is generated by rendering a set of three-dimensional
data models and the data modes are manually generated by combining a few
regular primitive shapes like cone, cylinder, and so on. Therefore, the generated
material data always has a certain mismatch with the real cases. Cheng et al. [4]
propose an end-to-end network based on attention mechanism to estimate the
reflectance properties of any 3D object surface from a single image. However,
they do not estimate the geometric properties. On the basis of this work, we
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use the Transformer to improve the global modeling capability and estimate the
geometry and reflectance properties simultaneously.

There have been many studies that try to avoid the need for a large amount
of self-supervised data by using a GAN [11] to estimate material properties
now. Zhao et al. [43] present an unsupervised generative adversarial neural net-
work that addresses both SVBRDF capture and synthesis of high-resolution
SVBRDF maps from a single image at the same time. Guo et al. [12] train the
HA-convolution to ”guess” the saturated pixels (specular highlight area) by the
unsaturated area surrounded, making the extracted features more uniform. Guo
et al. [13] present MaterialGAN, a deep generative convolutional network based
on StyleGAN2 [19], trained to synthesize realistic SVBRDF parameter maps.
They show that MaterialGAN could be used as a powerful material prior for
an inverse rendering framework. Most of these works are aimed at near-planar
samples. Compared to these works, our method is more suitable for estimating
surface material properties of complex 3D objects. In recent years, the diffu-
sion model [16] has achieved great success in the community of image synthesis.
Vecchio et al. [35] present ControlMat, a generative method, based on a Latent
Diffusion Model (LDM) [29] to produce SVBRDFs. They map SVBRDFs to a
latent space and train a diffusion model to sample from this latent space. To
generate high-quality images Vecchio et al. [36] also adopted a structure named
MatFuse similar to controlnet [42] by adding conditional information to guide
image generation. However, GAN is unstable and prone to collapse during train-
ing and the inference of diffusion model is computationally slow, which is what
we don’t want. Our method can generate high-quality SVBRDFs maps both
stably and quickly.

An alternative to data-driven relighting is inverse rendering, which involves
optimizing a set of trial model parameters based on the discrepancy between
rendered and reference photographs. Inverse rendering poses a complex non-
linear optimization problem at its core. Recent advancements in differentiable
rendering have facilitated more robust inverse rendering for intricate scenes and
capture conditions. Munkberg et al. [26] employ an alternating optimization
approach, refining an implicit shape representation (i.e., signed distance field)
as well as reflectance and lighting defined on a triangle mesh. Hasselgren et al.
[14] extend the work of Munkberg et al. [26] by incorporating a differentiable
Monte Carlo renderer to handle area light sources and integrating a denoiser
to mitigate gradient computation issues caused by Monte Carlo noise during
non-linear optimization. Similarly, Fujun et al. [25] utilize a differentiable Monte
Carlo renderer to estimate shape and spatially-varying reflectance from a limited
number of colocated view/light photographs. All these methods primarily focus
on direct lighting effects, potentially yielding suboptimal outcomes for objects or
scenes with pronounced interreflections. However, all aforementioned approaches
ultimately represent shapes using triangle meshes, limiting their applicability
to objects with well-defined surfaces; moreover, the accuracy of these methods
inherently depends on the representational capacity of underlying BRDF and
lighting models.
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Fig. 3. The framework of the Transformer Encoder module. We divide the feature
maps into small patches of the same size in the last layer of the encoder, and we
supplement the position information between different tokens by position embedding
and use them as inputs for the Transformer Encoder, where the encoder structure is
shown on the right. After Transformer Encoder, we reshape the outputs to the same
size as the feature maps output by the encoder. Then we input the newly generated
feature maps into different decoder branches to get different material properties.

3 Method

Given a single image of a 3D object captured under a flashlight, we estimate the
shape and spatially varying BRDF from the image. The overall framework of our
method is shown in Figure 2. Simliar with the prior works [24, 4], we also adopt
a cascaded network architecture, which includes an initial estimation network
and several refined estimation networks. We adopt the U-Net [30] as the basic
network architecture of the initial and refined estimation networks. The U-Net
has proven to be suited for a wide range of similar image-to-image translation
tasks. However, previous works have shown that this network does not perform
well enough when dealing with tasks that require fusing long-distance visual
information. Considering the transformer has an excellent global modeling effect,
we add the Transformer [9] module to extract better global features.

3.1 Initial estimation network

Initial estimation network consists of a single encoder and five decoders for differ-
ent shape and SVBRDF parameters: diffuse albedo(A), roughness (R), surface
normal(N), specular(S) and depth(D). Since the object appearance is decided
by the object surface shape and material reflectance properties, the five shape
and SVBRDF parameters are closely correlated. Therefore, the network can be
considered as a multi-task learning network and the five parameter estimation
tasks share a single encoder, which can boost the generalization performance
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of the material reflectance estimation task by shared information representa-
tion learning of the multiple tasks. In order to extract global features, we add a
Transformer module named as TE before each decoding structure.

The input image is processed through a sequence of 6 convolutional layers
that perform downsampling (the encoder), followed by a sequence of 6 upsam-
pling and convolutional layers (the decoder). The resolution of the input image
is halved after each convolutional layer. Such an hourglass-shaped network can
obtain more accurate feature maps. Assume A0, N0, R0, D0, and S0 denote the
initial estimations of diffuse, normal, roughness, depth, and specular reflectance
properties respectively, and InitNet is the initial estimation network.

A0, N0, R0, D0, S0 = InitNet(I,M) (1)

where I is the input image, and M is the mask of the object in the image, which
is used to extract the object in the image.

3.2 Refined estimation network

Following the initial estimation network, two refined estimation networks are
connected to enhance the learning ability of the network and optimize the esti-
mation, where the structure of each refined estimation network is the same to
the initial estimation network. It is composed of two convolutional layers and
three residual blocks. The inputs of each cascaded stage include the input image,
the shape SVBRDF from the previous stage as well as the rendering error associ-
ated with these previous predictions in relation to the input image. This enables
each cascaded stage to iteratively improve the predictions by taking into account
the rendering error observed in the previous stage. Like the initial estimation
network, a Transformer module is also added before each decoding structure to
learn the global features. In order to ease the network learning and improve the
estimation effect, a residual block [15] is added to each cascaded network. We
name the optimization network as RefineNet. Take the diffuse properties as an
example, Let A0 represent the diffuse albedo of the Initnet, RefineNetn rep-
resent the nth optimization module and An represent the diffuse albedo of the
nth optimization module.

An, Nn, Rn, Dn, Sn =RefineNetn(In−1,M,An−1, Nn−1,

Rn−1, Dn−1, Sn−1, Errn−1)
(2)

where In−1 represents the rendered image in the previous network and Errn−1

represents the L2 loss between the previous-stage rendering result and the ground
truth.

3.3 Transformer Encoder

Distant regions of a material sample often offer complementary information to
each other for SVBRDF recovery. This observation is at the heart of many past
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methods for material capture. Convolution alone cannot capture information
over long distances. As we all know, the Transformer [34] has a good extrac-
tion function for long-distance information due to the unique advantages of self-
attention. We use the Transformer to estimate the shape and surface reflectance
properties from a single image. The Transformer structure is shown in Figure 3.

We use the multi-head attention mechanism during the Transformer En-
coder and finally the module will output feature maps which have both local
information and long-distance supplementary information, which is beneficial
for reconstructing SVBRDFs. Extensive experiment results illustrate it.

3.4 Dataset

Generally, methods based on deep learning require a large training dataset. How-
ever, most works are based on near-planar datasets, and the only available ma-
terial dataset of three-dimensional objects is the one in the literature [24], where
they used complex 3D data models generated by a random combination of several
artificial 3D shapes like spheres, cubes and so on, and the generated material
data are the reflectance and geometry property maps rendered from multiple
projection viewpoints. Since the surfaces of these 3D models are simple smooth
surfaces, this dataset is not well-suitable for the reflectance estimation of some
real 3D objects with complex surfaces (like some complex cultural antiques). We
downloaded 82 cultural relic models with relatively complex shapes or materials
from Sketchfab. To keep original material distribution and realistic appearance of
these antique models, we directly utilized the original texture maps of the mod-
els instead of reassigning an alternative material, where some missing reflectance
properties are completed manually. We linearly transformed diffuse, roughness,
and specular to generate new material parameters for data augmentation. As for
the rendering pictures, we use the physically motivated microfacet BRDF model
in [37, 6, 5, 20, 32]. Let cdiff , n, Roughness, and F0 represent the diffuse albedo,
normal, roughness and specular albedo respectively, and v, l represent the view
and light direction respectively. Then, the BRDF model is expressed as:

f(l, v) =
cdiff
π

+
D(h)F (v, h)G(l, v, h)

4(n · l)(n · v)
(3)

Where D(h) F (v, h) and G(l, v, h) are the normal distribution, fresnel, and ge-
ometric terms respectively. These terms are defined as follows:

D(h) =
α2

π [(n · h)2 (α2 − 1) + 1]
2 (4)

α = Roughness2 (5)

k =
(Roughness+ 1)2

8
(6)

F (v, h) = F0 + (1− F0)2
−[5.55473(v·h)+6.8316](v·h) (7)
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Fig. 4. Samples from the dataset. (a)-(e) Diffuse albedo, roughness, specular albedo,
depth and surface normals. (f) rendered images by a dominant point light source col-
located with the camera and the reflectance properties.

G1(v) =
n · v

(n · v)(1− k) + k
(8)

G(l, v, h) = G1(l)G1(v) (9)

In the end, we generated 37720 samples from 20 different viewpoints. Each
sample is composed of a rendered appearance image, three reflectance property
maps of diffuse albedo, roughness specular albedo and two geometric property
maps of depth and normal. The resolution of each map is 256×256. Samples are
shown in Figure 4.

3.5 Training

Loss Function We have the same loss function for both InitNet and each
RefineNet stage. For diffuse albedo, normal, roughness, specular and rending
results, we use L2 loss to constrain the network so that the predicted material
properties are closer to the ground truth. Since the range of depths is larger than
that of other BRDF parameters, we use an inverse transformation to project the
depth map into a fixed range. Let d̃i be the initial output of depth prediction
network of pixel i; the real depth di is given by

di =
1

σ ·
(
d̃i + 1

)
+ ϵ

(10)

where σ=0.4, ϵ=0.2. We also calculate L2 loss for depth. Considering the depth
information learned by the initial network is already good so in the Refine net-
work, we no longer convert depth, and directly learn the residual information of
depth so the final loss can be written as :

L = λaLa + λnLn + λrLr + λdLd + λs Ls + λrender Lrender (11)

where λa=λn=λrender=1 and λr=λd=0.5 represent the different weights corre-
sponding to the losses.
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Training Strategies Considering that designing an end-to-end network may
cause the number of parameters at one time to be too large, which could result
in overflow of memory. So we train the network in three phases according to
the cascaded network. We set the batchsize as 5 during training. We use Adam
optimizer, with a learning rate of 10−4 for the encoder and 4 × 10−4 for the
decoders. The learning rate is halved every two epochs during training. As for
the epoch at each stage, we set it as 15, 8, 6 respectively. We trained the network
for approximately two days using an NVIDIA 2080 GPU.

4 Experiments

We validate the effectiveness of our method with evaluations of synthetic and
real data, firstly, we conduct ablation experiments to analyzes the each module.
Then, we compare the results with state-of-the-art works and use the average
L2 loss of estimation on test data to evaluate the performance. We use Dataset1
and Dataset2 to represent our dataset and Li’s dataset. For Dataset1, we choose
66 models with a total of 30360 samples as the training data and the rest are
testing data. The metric shows that our method is superiority of state-of-the-art
works.

4.1 Ablation Experiment

In this section, we use our dataset to train and test our network to validate the
effect of our method.

Coarse-to-Fine Network We first verify the effect of the cascaded net-
work module. We calculate the initial network estimation results and the refined
network estimation results respectively. The average estimation errors of the
test dataset are shown in Table 1 with InitNet and RefineNet. It can be seen
that the reflectance property estimation accuracy of the cascaded network is
improved compared to the initial network. Especially, the rendering result is
boosted signifivantly by the RefineNet. This validates the effectiveness of the
cascaded network module. The material reflection property estimation results of
the RefineNet are shown in Figure 5.

InitNet RefineNet

diffuse(10−2) 6.6801 6.8951
roughness(10−1) 1.76660 1.76697
depth(10−2) 3.9389 3.7384
normal(10−2) 9.1590 8.3738
specular(10−1) 1.1115 1.0773
render(10−3) 8.116 1.335

Table 1. Quantitative comparisons L2 errors of InitNet and RefineNet.
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Fig. 5. Effect of our cascaded design, we annotated the mse loss under corresponding
photo, which proves that cascaded networks are effective.

Residual Learning. To test the effectiveness of the residual learning in the
cascaded network, we train two variants of our basic network with or without
residual learning. The final test results are shown in Table 2. As we can see, most
evaluated results for the network with residual learning are better than results
without residual learning, which demonstrate the ability of residual learning.

Transformer Encoder. Then, we analyze the effect of the Transformer
Encoder module. We take the network with residual and specular reflection
properties as the baseline, which does not include a module with global fea-
ture extraction. As a comparison, we add Transformer Encoder on the baseline
and retrain the network. The final quantitative results are shown in Table 3. The
results show that after adding the Transformer module, the L2 loss of related
attribute estimation is significantly reduced, which proves that the improvement
of our work is very effective. In order to prove the unique advantages of the
Transformer Encoder module, we use the non-local [38] module with the same
global feature extraction, and the final result is shown in Table 3. As we can
see, using the non-local module also improves the results of material properties,
which also implicitly proves the necessity of adding global information, while
the improvement is limited compared with the Transformer. Table 4 shows our
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with residual without residual

diffuse(10−2) 6.8951 7.2965
roughness(10−1) 1.76697 1.765836
depth(10−2) 3.7384 3.6874
normal(10−2) 8.3738 8.7979
specular(10−1) 1.07731 1.10250
render(10−3) 1.335 4.346

Table 2. Quantitative comparisons L2 errors of with or without residual learning
during the RefineNet.

baseline with Transformer with non-local

diffuse(10−2) 8.7629 6.8951 8.4230
roughness(10−1) 1.77358 1.76697 1.78906
depth(10−2) 4.8313 3.7384 4.5657
normal(10−2) 8.6889 8.3738 8.6593
specular(10−1) 1.25774 1.07731 1.23236
render(10−3) 1.354 1.335 1.364

Table 3. Quantitative comparisons L2 errors illustrating the influence of the Trans-
former Encoder. To demonstrate the unique advantages of the Transformer Encoder,
we compare the result with adding a non-local module that also have global feature
extraction.

full version of ablation experiments. The network model we used, in the end,
achieves the best results on all indicators, which illustrates that our design is
reasonable.

4.2 Generalization to real data

In order to prove that our method can have a relatively accurate estimate of
the material of complex objects, We demonstrate our method on several real
objects. The material reflection property estimation results of several real images
are shown in Figure 7. As we can see, the images we rendered are very close to
the inputs, which indicates that the material property parameters have strong
reliability. In order to verify the effectiveness of the proposed method we test
the data under different lighting directions. The results are in shown figure 8,
as we can see, the proposed method also have good results under novel lighting
directions. To make our experimental results more convincing, we retrain our
method on Dataset2 and the final results for real data are shown in Figure
9. The final results show that our method achieves very good results on both
datasets.
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diffuse(10−2) normal(10−2) roughness(10−1) depth(10−2) specular(10−1) render(10−3)

baseline 9.3375 9.0161 1.78722 4.5985 - 2.908
+spec 8.8422 9.2881 1.77868 4.8189 1.21809 3.374
+spec res 8.7629 8.6889 1.77358 4.8313 1.25774 1.354
+spec res non-local 8.4230 8.6593 1.78906 4.5657 1.23236 1.364
+spec res Transformer 6.8951 8.3738 1.76697 3.7384 1.07731 1.335

Table 4. Our full version of ablation experiments. We use Li’s network as the baseline,
and we add specular reflection properties, a residual learning in cascaded networks, a
non-local module or Transformer Encoder.

diffuse(10−2) normal(10−2) roughness(10−1) depth(10−2) specular(10−1) render(10−3)

Li’s model& Dataset1 9.3375 9.0161 1.78722 4.5985 - 2.908
Sang’s model& Dataset1 8.2564 8.7905 1.79537 4.2596 - 2.083
Zheng’s model& Dataset1 9.1106 9.1854 1.81733 3.9065 - 2.573
Cheng’s model &Dataset1 9.9011 - 1.97100 - 1.24516 -
Our’s model & Dataset1 6.8951 8.3738 1.76697 3.7384 1.07731 1.335
Li’s model & Dataset2 4.868 3.822 1.943 1.505 - 1.637
Our’s model & Dataset2 4.5042 3.33811 1.77122 1.3456 - 0.379

Table 5. To demonstrate the effectiveness of our method, we test it on two datasets,
where Dataset1 represents the complex artifact dataset and Dataset2 represents Li
generated synthetic dataset. We select Li’s as the comparison methods on both datasets,
respectively. We use L2 loss as the evaluation metric.

4.3 Comparison Experiment

In related works, the one in Li et al. [24] is the work to restore the material
reflectance properties of objects with arbitrary geometry from a single image.
They adopt a cascaded network structure and estimate the material and geo-
metric properties at the same time in each cascaded module. A rendering layer
is also included in each cascaded module to render the estimation results, and
the rendering error along with the current estimation results are taken as the
input into the next cascaded module. This method trains each cascaded net-
work module separately and then assembles them together in a cascaded way.
At the same time, we also compare Sang’s [31] and Zheng’s [22] methods on
our dataset. There is also another work in Cheng et al. [4] for complex objects.
However, they only estimated the reflection properties of the object but not the

diffuse normal roughness specular render

Zhao[43] 0.062 0.065 0.153 0.079 0.080
Guo[13] 0.065 0.070 0.159 0.094 0.081
Kalantari[44] 0.067 0.058 0.124 0.089 0.061
Our 0.058 0.054 0.115 0.069 0.058

Table 6. The RMSE error on Deschaintr’s near-planar dataset.
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Fig. 6. Comparison on near-planar dataset. All the re-rendered results were produced
under identical lighting conditions and viewing direction.

geometric properties. In the comparisons, we also validate the generated dataset
is necessary for reflectance estimation of arbitrary complex shape objects. We
train and test both network models with Dataset1 and Dataset2 respectively.
Since the sample in Dataset2 does not include specular albedo, we remove the
specular estimation in our network structure when training with Dataset2 and
take the specular albedo as a constant when rendering. The estimation errors
are shown in Table 5. We can see that the errors of all material properties of our
method are minimal. Some results for real captured images are shown in Figure
10. Since we have no geometric models of these images, we can not compare with
the Cheng’s method. From the figure, we can see that the rendering results of
our method are closer to the input images.

In order to prove the effectiveness of our method, we also trained the network
using Deschaintre’s [7] near-planar dataset and compared it with Zhao’s [43],
Guo’s [13], Kalantari’s [44] methods. We use root mean squared error (RMSE)
to evaluate the quality of the reflectance parameters. The final results are shown
in the Table 6. As we can see, our method also achieves the best results on near-
planar datasets, which verifies the robustness of our method. Visual comparisons
are shown in figure 6. It is evident that our results exhibit the closest resemblance
to the input pictures, effectively reconstructing the SVBRDF maps.
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Fig. 7. Results on real objects. As we can see, we achieve high-quality recovery of shape
and spatially-varying BRDF.
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Fig. 8. Results rendered from novel lighting directions. We show the input image,
the estimated shape and BRDF parameters and the rendered output under different
lighting directions.

5 Conclusion

Surface appearance modeling of an object has always been a research hot spot
in computer graphics. Recently, deep learning-based methods have gradually
become the mainstream. However, current research focuses primarily on the
near-planar objects, with little attention paid to complex-shaped objects. In
this paper, we propose a method called MatTrans to estimate geometry and ma-
terial reflectance properties with Transformer. Specifically, a Transformer En-
coder module is designed to fuse local and global information for each property
respectively, and then a cascaded network with residual learning is introduced to
estimate the geometry and reflectance properties of any 3D object surface from a
single image. Extensive experiments validate that our method which includes an
initial estimation network and several refined estimation networks brings a clear
improvement over state-of-the-art methods for single-shot capture of spatially
varying BRDFs.
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13. Guo, Y., Smith, C., Hašan, M., Sunkavalli, K., Zhao, S.: Materialgan: reflectance
capture using a generative svbrdf model. arXiv preprint arXiv:2010.00114 (2020)

14. Hasselgren, J., Hofmann, N., Munkberg, J.: Shape, light, and material decomposi-
tion from images using monte carlo rendering and denoising. Advances in Neural
Information Processing Systems 35, 22856–22869 (2022)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

17. Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous
acquisition of 3d geometry and surface reflectance. ACM Transactions on Graphics
(TOG) 29(4), 1–12 (2010)

18. Kang, K., Chen, Z., Wang, J., Zhou, K., Wu, H.: Efficient reflectance capture using
an autoencoder. ACM Trans. Graph. 37(4), 127–1 (2018)

19. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 8110–8119 (2020)

20. Lagarde, S.: Spherical gaussian approximation for blinn-phong, phong and fresnel.
Random Thoughts about Graphics in Games blog, June 3 (2012)

21. Li, X., Dong, Y., Peers, P., Tong, X.: Modeling surface appearance from a single
photograph using self-augmented convolutional neural networks. ACM Transac-
tions on Graphics (ToG) 36(4), 1–11 (2017)

22. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse ren-
dering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from
a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2475–2484 (2020)



20 Wu et al.

23. Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: Svbrdf acquisition
with a single mobile phone image. In: Proceedings of the European conference on
computer vision (ECCV). pp. 72–87 (2018)

24. Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to re-
construct shape and spatially-varying reflectance from a single image. ACM Trans-
actions on Graphics (TOG) 37(6), 1–11 (2018)

25. Luan, F., Zhao, S., Bala, K., Dong, Z.: Unified shape and svbrdf recovery using
differentiable monte carlo rendering. In: Computer Graphics Forum. vol. 40, pp.
101–113. Wiley Online Library (2021)

26. Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A., Müller, T.,
Fidler, S.: Extracting triangular 3d models, materials, and lighting from images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8280–8290 (2022)

27. Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical svbrdf acquisition of 3d ob-
jects with unstructured flash photography. ACM Transactions on Graphics (TOG)
37(6), 1–12 (2018)

28. Riviere, J., Peers, P., Ghosh, A.: Mobile surface reflectometry. In: ACM SIG-
GRAPH 2014 Posters, pp. 1–1 (2014)

29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

30. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

31. Sang, S., Chandraker, M.: Single-shot neural relighting and svbrdf estimation. In:
European Conference on Computer Vision. pp. 85–101. Springer (2020)

32. Schlick, C.: An inexpensive brdf model for physically-based rendering. In: Com-
puter graphics forum. vol. 13, pp. 233–246. Wiley Online Library (1994)

33. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., De-
bevec, P.: Acquiring reflectance and shape from continuous spherical harmonic
illumination. ACM Transactions on graphics (TOG) 32(4), 1–12 (2013)

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

35. Vecchio, G., Martin, R., Roullier, A., Kaiser, A., Rouffet, R., Deschaintre, V.,
Boubekeur, T.: Controlmat: A controlled generative approach to material capture.
arXiv preprint arXiv:2309.01700 (2023)

36. Vecchio, G., Sortino, R., Palazzo, S., Spampinato, C.: Matfuse: Controllable ma-
terial generation with diffusion models. arXiv preprint arXiv:2308.11408 (2023)

37. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refrac-
tion through rough surfaces. In: Proceedings of the 18th Eurographics conference
on Rendering Techniques. pp. 195–206 (2007)

38. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
7794–7803 (2018)

39. Wu, H., Wang, Z., Zhou, K.: Simultaneous localization and appearance estimation
with a consumer rgb-d camera. IEEE transactions on visualization and computer
graphics 22(8), 2012–2023 (2015)

40. Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying
surface reflectance under unknown illumination. ACM Transactions on Graphics
(TOG) 35(6), 1–12 (2016)



Title Suppressed Due to Excessive Length 21

41. Xu, Z., Nielsen, J.B., Yu, J., Jensen, H.W., Ramamoorthi, R.: Minimal brdf sam-
pling for two-shot near-field reflectance acquisition. ACM Transactions on Graphics
(TOG) 35(6), 1–12 (2016)

42. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 3836–3847 (2023)

43. Zhao, Y., Wang, B., Xu, Y., Zeng, Z., Wang, L., Holzschuch, N.: Joint svbrdf recov-
ery and synthesis from a single image using an unsupervised generative adversarial
network. In: EGSR (DL). pp. 53–66 (2020)

44. Zhou, X., Kalantari, N.K.: Adversarial single-image svbrdf estimation with hybrid
training. In: Computer Graphics Forum. vol. 40, pp. 315–325. Wiley Online Library
(2021)


