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Abstract. Despite the recent success of image style transfer with Gen-
erative Adversarial Networks (GANs), this task remains challenging due
to the requirements of large volumes of style image data. In this work,
we present a deep model called CycleTransformer to optimize the map-
ping between a content image and a single style image by leveraging the
strengths of transformer encoders and generative adversarial networks,
where we advocate for patch-level operations. Our proposed network
contains a Multi-level Patch Transformer encoder (MPT), which enables
effective utilization of the style features of different scales. We combine
the patch-based features with global feature maps to avoid overfitting
to local style patterns, and feed them to a dynamic filtering decoder to
adapt to different styles when generating the final result. Furthermore,
we use a cycle-consistent training scheme to ensure the balance between
content preservation and stylizing effects. Experiments and a user study
confirm that our method substantially outperforms the state-of-the-art
style transfer methods when both the style and content domain only
contain one image each.

1 Introduction

Image Style transfer is a long-standing problem that seeks to convert an image
to the style of a reference image. Despite the success of Generative Adversarial
Networks (GANs) [13] in generating high-quality results, the requirement of an
image database with the same style makes most of them cost prohibitive in real-
world applications. To cope with a wide variety of unseen styles provided by
common users that do not possess large datasets, some recent works [38, 33, 43]
focus on modeling the internal statistics of patches contained in a content image
and an arbitrary style image. They demonstrate the feasibility of exploiting only
the information from the single content and style images by deep neural networks
for the style transfer task.

Limited by the descriptive capability of the deep features learned by convolu-
tional kernels with restricted local perceptual field and fixed structure, existing
methods always generate undesirable stylized results when the reference style
uses different patterns to depict the entire scene. Inspired by the powerful abil-
ities of Transformer-based models [32, 12, 17, 7] on encoding rich relationships
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existing in the input signals for various tasks, we consider that the self-attention
mechanism is suitable to explore the internal relationships within the multi-
scale image patches by capturing the long-distance dependencies among input
elements. Another challenge for the style transfer task is the lack of paired train-
ing data. CycleGAN [49] has demonstrated to be effective in learning the style
mappings between unpaired data by learning from large stylized image datasets.
However, both our source and target domain only have one image each. To op-
timize the style mappings between two single unpaired images, we introduce a
patch-level cycle-consistent learning scheme, which ensures high-quality styliza-
tion results that preserve the original semantic content.

In this work, we present CycleTransformer, a transformer-based neural method
to deal with the style transfer from a single style image to a content image. Cycle-
Transformer leverages patch-level self-attention and cross-level attention infor-
mation for style mapping function optimization. More concretely, after extracting
features using convolutional layers from randomly sampled nested patches of the
input image, we not only learn the self-attention information within patches but
also learn the attention across the patches of different scales in our novel Multi-
level Patch Transformer encoder (MPT). MPT can exploit the possible relation-
ships within and across the sampled patches to describe the style information
carried by the input image. Since there is no prior restriction on the learning
style, our network needs to cope with the large diversity in image styles, such
as different sizes of color pieces and lengths of strokes, we integrate a dynamic
filtering module [14] in our decoder to adaptively learn the filters for different
styles when synthesizing the final results. Furthermore, To avoid getting stuck to
certain local style modes, the learned embeddings by MPTs are combined with
global features before being interpreted by decoding layers. When training our
model, the cycle-consistent learning scheme is employed to optimize two map-
pings: mapping from the original image to the reference style and vice versa. Our
network has the minimal requirement for common users in image stylization ap-
plications, and outperforms state-of-the-art methods on image-translation task
when only one target domain image is available. Our main technical contribu-
tions are as follows:

– We propose a novel style transfer method with only one reference image.
– We propose a Multi-level Patch Transformer encoder to model the pixel-

wise relationships within and across patches of multiple scales for effective
patch-level style feature learning.

– A dynamic filtering module is applied for adapting to a broad range of im-
age styles, that cooperates with our cycle-consistent learning framework to
balance the content preservation and stylizing effects.

2 Related Work

Neural Style Transfer. Style transfer originated from non-photorealistic ren-
dering [21] and has many applications such as natural image stylization [38,
39], augmented reality [1] and human face make-up [24], etc.Gatys et al.are the
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pioneers who discovered that the features from a VGG-19 model lead to nat-
ural stylized results in the seminal works [8, 10], booming the development of
optimization-based style transfer methods [22, 36, 25]. Instead of iterative opti-
mization, feed-forward neural networks are proposed to accelerate the transfer
process. Early works [18, 41, 23] train an independent network for each style,
while the single network is further extended to multiple or arbitrary style trans-
fer [2, 26, 6, 38, 28, 45] later on. Other approaches [29, 19, 31] are based on analogy
or deformation, but require similar semantic structures between style and con-
tent images. According to the levels of stylization patterns, arbitrary style trans-
fer can be further classified into two lines, artistic stylization and photorealistic
stylization. The first line includes parameterized feature statistics by adaptive
instance normalization (AdaIN) [16] and whitening and coloring transformation
(WCT) [27]. To generate more sophisticated patterns, Sheng et al.[38] introduce
a patch-based style decorator to reserve the detailed styles. The second line
both gains stylization results and preserves photorealistic structural informa-
tion via variants of WCT, e.g. coarse-to-fine recursive filtering [28] and wavelet
corrected transfer network [46]. Alternatively, CycleGAN [49] uses a cycle con-
sistency loss to constrain the GAN-based mappings from a source domain to a
target domain and vice versa. However, CycleGAN needs large datasets to learn
the bi-directional mappings. Park et al.[34] use patch-wise contrastive learning
to do one-side image translation and can operate in a single image manner. Their
method concentrates on the containing of structure information. Recently, the
diffusion model [37] has achieved remarkable results in cross-modal image gener-
ation, and it has also been applied to image style transfer. For example, InST [47]
uses textual inversion to obtain style-related embeddings from style images and
then applies them to the conditional generation of stylized images. While our
CycleTransformer aims to discover detailed style patterns with patch-wise at-
tention in a cycle approach. Our CycleTransformer can generate both artistic
stylization and realistic images in a single-image manner, and allow input images
to have different style types and semantic structures.

Deep Vision Transformer In computer vision, researchers propose attention-
based networks to capture long-range dependencies of pixels in images/videos
which are beneficial to both classification [5] and regression [35, 17, 7], espe-
cially when coping with comparatively complex images. For image style transfer,
some recent works utilize the self-attention mechanism to alleviate inductive bias
caused by CNN kernel’s priority for local interaction. For example, SANET [33]
and AdaAttN [30] propose to learn correlations between the content and style
feature maps by a learnable attention module. However, those feature transfor-
mation methods always fail to maintain content structures since they simply
transfer features across all spatial locations for each channel. Yao et al.[44] add
a transformer encoder into an autoencoder network to capture long-range re-
gion relations of the input image. But the patch-by-patch style swap and fusion
in their method cause blurring. Deng et al.[4] introduce the transformer mod-
ule into style transfer, taking image patches as words just like in NLP tasks,
along with a progressive upsampling decoder to obtain clearer transfer results.
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Fig. 1: The architecture of the generator of CycleTransformer. We use a multi-
level Patch Transformer Encoder (MPT) to extract features from nested patches.
Note that the sub-regions of the patch are randomly selected in the training
stage. Thus it can robustly exploit different scales of contextual information at
inference with randomly cropped patches. A dynamic filtering decoder interprets
the patch-level and global features for result generation. We train two genera-
tors sharing the same structure with two discriminators in a cycle-consistent
adversarial manner.

Our work uses a transformer-based approach to learn patch-wise style-related
attention information for the image translation task.

3 Methodology

Given a content image x and a style image y, our goal is to transfer the style of
y to x while maintaining the original semantic content. To achieve that for the
two unpaired images, our network is designed to learn the bidirectional mappings
between x and y to ensure that the generated image has both appropriate style
features and preserves semantic content. Our network contains two mappings
G and F sharing the same architecture, where G aims to transfer the style of
y to x and F for vice versa. Fig. 1 shows the architecture of the generator of
CycleTransformer. Instead of using one global image with a single cropped patch,
we utilize the sub-regions of that patch to exploit different scales of contextual
information as input. With extracted coarse- and fine-grained style features from
multi-level patch transformer encoders, a dynamic filter-based decoder interprets
the local and global features and produces the final translated image. During the
inference stage, just randomly sampling one group of local nested patches with
global features adequately generates good transfer results because the training
stage exploits comprehensive contextual information.

3.1 Multi-level Patch Transformer Encoder

The distinguishable visual characteristics of different styles may exist within
different spatial scales. For example, images with some painting styles may have
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Fig. 2: The structure of Multi-level Patch Transformer (MPT) encoder. We use
four patch-wise transformer encoders to learn the relationships within individual
patches, and one cross-level transformer encoder to learn the relationships across
different scales. The black arrows indicate the feature interactions based on the
attention mechanism.

small pen strokes to express their content, while other styles could use much
larger color blocks. To enhance the ability to capture visual patterns of different
scales, we design a Multi-level Patch Transformer Encoder (MPT). The structure
of MPT is shown in Fig. 2. The inputs of MPT areK nested patches of designated
sizes, where we set K as 4 in all our experiments. The k-th patch pk is firstly
fed into convolutional layers to obtain its feature maps zpk , then the element-
wise relationships within the patch feature maps are learned by a transformer
encoder T , denoted by tpk = T (zpk). After learning the relationships inside
each patch, we concatenate the transformed features and learn the attention
information across all the patches through another transformer encoder. More
specifically, the K cropped patches are resized to 256 × 256 × 3 and fed to
the downsampling sub-modules, each of which consists of one 3× 3 convolution
(padding=1), a normalization layer and a rectified linear unit (ReLU). We first
convolve and downsample the feature maps twice and double the number of
feature channels at each downsampling step. The size of the final feature map is
32×32×64 (H/8, W/8, C). Directly feeding such a feature map to a transformer
encoder would result in a huge memory cost. Instead, we unfold the feature map
into a length-C sequence of H ×W -dimensional tokens to explore the channel-
wise relationships in each patch encoder. The learned patch-level features tpk

(k=1,2,3,4) are then concatenated in the channel dimension to generate a feature
map of size (H ×W/64,KC). Then we form the tokens representing features
from different scales for the final transformer encoder to learn cross-level element
relationships.

The structure of the transformer encoder [42] used in our network is shown
in Fig. 2, which consists of M = 2 blocks containing a multi-head self-attention
module and a feed-forward MLP layer. The positional encoding mechanism of
Transformer strengthens its ability to exploit the relationships between the el-
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ements by considering their relative positions. But the side effect of positional
encoding is that if we only feed cropped patches to transformer encoders, the
learned patch mapping would be too strong and directly convert the content
image to the style image. To alleviate that problem, we incorporate the global
features extracted from the entire image in all the decoding layers, since they pro-
vide the relationship between a cropped patch and the whole image so that the
irrelevant relationships within patches can be weakened. Note that the global
features are not utilized in MPT, as MPT is designed for investigating only
patch-level features. If the global features are also included in MPT, MPT will
tend to focus on the relationships between the patches and the fixed global struc-
tural features, leading to to a blurred result due to the lack of attention to style
details.

3.2 Dynamic Filter-based Decoder

We introduce a dynamic filtering-based decoder to dynamically decide how the
global features should be decoded when generating the final image. Previous
works relying on convolutional layers with fixed kernels to decode features failed
to infer different image styles adaptively [11, 9], as their filters cannot handle
the large diversity of style-related features. Adapting to different kinds of styles
is an essential requirement for the arbitrary style transfer task since we cannot
assume any style prior before learning from the input images. Dynamic filter-
ing module (DCM) [14, 48] simultaneously learns how to dynamically generate
filtering kernels of different sizes for different input features. Then the deconvo-
lution kernels applied on the feature maps can be customized based on the style
of the input data. As shown in Fig. 1, we normally use 1, 3, and 5 as the sizes
of the dynamically generated kernels to capture features of different scales. The
three sub-modules to learn the dynamic filters are arranged in parallel. We feed
the shallow global feature map to DCMs and concatenate the output with their
input for the further decoding process.

3.3 Loss Functions

Our method has two mapping functions to learn, G : x→ y and F : y → x. The
discriminators and generators for G and F are trained under adversarial losses.
The learning objective for G is:

LGAN (G,Dy, x, y) = Ey[logDy(y)]

+Ex,{x(pk)}[log(1−Dy(G(x, {x(pk)}))],
(1)

where x(pk) ∼ Pdata [x(p)], representing the sampled patches from the data
distribution Pdata [x(p)] of the patches with the same style of x. Similarly, for
the mapping F : y → x, we define the adversarial loss as LGAN (F,Dx, x, y).

The adversarial losses are sufficient for generating plausible images in the
target domain, but they cannot ensure the preservation of the original seman-
tic content. Therefore, the two GANs need to be further updated using cycle
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: Results of the state-of-the-art algorithms and CycleTransformer on photo
stylization. The first and second columns are content and style images. The
remaining columns are stylized results by (c) AdaIN [16], (d) AAMS [44], (e)
SANET [33], (f) StyleFormer [43], (g) photoWCT [28], (h) Avatar-Net [38], (i)
DST [19] and (j) Ours.

consistency losses to encourage the synthesis of translations of the input image
x. In the forward cycle, cycle consistency loss aims at translating the image x̃
generated by G back to itself through F , which means using L1 norm to mea-
sure the differences between F (G(x, {x(pk)})) and x. In the backward cycle, it
calculates the differences between G(F (y, {y(qk)}) and y, where {y(qk)} denotes
the sampled patches from the data distribution Pdata[y(q)] with the style of y.
The loss can be expressed as below:

Lcyc(G,F, x, y) = Ex,{x(pk)}[‖F (G(x, {x(pk)}))− x‖1]
+Ey,{y(qk)}[‖G(F (y, {y(qk)}))− y‖1]

(2)

To maintain the content of the content image, we add a reconstruction
loss [49] to restrict the backward generation effect by L1 loss. Since G is aimed at
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enabling converting any content to the reference style of y, it should transform
y back to itself, and so does the mapping F . The losses are defined as follows:

Lidt(G,F, x, y) = Ex,{x(pk)}[‖F (x)− x‖1]
+Ey,{y(pk)}[‖G(y)− y‖1]

(3)

In summary, the full objective function is:

L = LGAN (G,Dy, x, y) + LGAN (F,Dx, y, x)

+λidtLidt(G,F, x, y) + λcycLcyc(G,F, x, y),
(4)

where the weights λidt and λcyc are set to 100.

4 Experiments and Evaluations

4.1 Implementation Details

Our method only needs one content image and one style image to learn the
bi-directional mappings, which facilitates our data collection. Most results pre-
sented in this paper are generated using images randomly selected from the
CycleGAN dataset and downloaded from the internet. In our experiments, the
four patch sizes are normally set as 4, 8, 16, and 32 respectively. All the cropped
patches are first resized to 256*256 before being fed into the convolutional layers.

4.2 Qualitative Evaluation

We compare our method with state-of-the-art image stylization methods, in-
cluding AdaIN [16], AAMS [44], SANET [33], StyleFormer [43], photoWCT [28],
Avatar-net [38], DST [19], SpliceViT [40], StyTr2 [4], QuantArt [15] and InST [47].
Our models are trained using only the two given images. We ran author-released
implementations with their default settings for all the other methods. The first
four rows in Fig. 3 are photo stylization results, where the content images are
real photos and the style images do not contain similar semantic objects. The
results of AdaIN [16] and Avatar-Net [38] cannot generate consistent patterns
for similar regions, such as the sky regions in the fourth row and the building
regions in the second row. PhotoWCT [28] fails to introduce the strokes or the
color blocks to express the given styles in all the shown examples. AAMS [44]
can integrate multiple stroke patterns and properly adopt the patterns in differ-
ent regions of the output image. However, their image quality is not satisfactory
due to the blurriness all over the picture. Since there is no obvious semantic
correspondence between the two images, DST [19] transfers style like a color
filter with a high retention of original appearances. In contrast, our method
preserves the original content while producing appropriate style details. Cycle
style transfer results are shown in the last four rows in Fig. 3 with artistic and
photorealistic stylization. Since our network is powerful in learning positional
relationships, and thus the style information extracted from style images can be
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(a) Content (b) Style (c) Avatar-Net (d) AAMS (e) StyleFormer (f) Ours

Fig. 4: More comparisons on sketch styles. (a) and (b) are content and style
images. We show the results of (c) Avatar-Net [38], (d) AAMS [44], (e) Style-
Former [43] and (f) Ours. It can be seen in the zoom-in windows that our method
reveals the original stroke style in the best way.

Fig. 5: More comparison results. Compared to StyTr2 [4], AdaAttN [30],
WCT2 [45], STROTSS [20], SpliceViT [40], QuantArt [15] and InST [47], our
method performs better in style transfer and content preservation.

properly distributed according to the content. The other methods either fail to
learn the visual characteristics of the styles (AdaIN, photoWCT, and DST), or
change the structure of the content (AAMS and Avatar-Net), leading to worse
results than ours.

On the photo stylization for the challenging sketch styles (see Fig. 4), other
methods are struggling to produce clean sketches and preserve the content struc-
ture properly at the same time. They leave original colors in the background ex-
cept for photoWCT, which however produces blurred sketch lines. Our method
is in a very advantageous position for this kind of style. In our results, only the
grey-scale strokes from the style images are utilized to express the content, and
the structural features are all well maintained. We also show more comparison
results with StyTr2 [4], AdaAttN [30], WCT2 [45], STROTSS [20], SpliceViT [40],
QuantArt [15] and InST [47] in Fig. 5, and our method performs better in style
transfer and content preservation.
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Style

Content

Style

Content

Fig. 6: Our photo-to-photo transfer results. We applied different styles to the
same content image, and vice versa.

We demonstrate the ability of our methods in image translation between real-
life photos. As shown in Fig. 6, our method can generate high-quality translated
photos when the two images do not share semantically similar contents. By
combining the global features with the features from dynamic filters as mentioned
in Sec. 4.1, the details of the content images are well preserved. Fig. 6 shows the
translated results when we use the images of four seasons as style image. By
inspecting the four results of each example, we can see the content is consistent
across the four seasons with properly altered appearances.

4.3 Ablation Study

We study the impact of different ingredients in our method and evaluate the
structure of MPT. More experiments on the choice of hyper-parameters are
shown in the supplementary materials.
CycleTransformer Architecture. Fig. 7 illustrates the generated results with-
out MPT and/or Dynamic Filter Decoder. We take the CycleGAN trained by
two single images (c) as our baseline. As CycleGAN is originally designed for
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7: Ablation study of the architecture of CycleTransformer. Given the con-
tent image (a) and the style image (b), we demonstrate the results where (c)
the original CycleGAN is trained in a one-shot manner, (d) a random patch is
added to extract convolutional features, (e) multiple patches are used to extract
convolutional features, (f) multiple patches with dynamic filtering and our full
model (g) with both MPT and dynamic filtering.

transferring a style learned from a large number of unpaired images, their one-
shot results suffer from noises and blurriness. On the contrary, CycleTransformer
achieves a much higher visual quality. To validate the benefits gained from the
attention-based patch features extracted by MPT, we remove the MPT module
and just feed one patch or nested patches to CNN layers to extract features and
then combine them with global features to decode. We show the corresponding
results in (d) and (e), where the generated blurred images both look like pro-
cessed by a local color filter, which demonstrates the importance of the patch-
wise self-attention and cross-level attention information learned by MPT when
describing the intrinsic style-related features. We also validate the effectiveness
of the Dynamic Filter Decoder, which adaptively interprets the shallow features
to generate the final results. As shown in (f), the results generated by the model
without dynamic filters have much weaker stylization effects. Compared with
the results produced by the full model, they are less desirable due to the lack of
artistic characteristics. The above study shows the irreplaceable roles of MPT
and Dynamic Filter Decoder in CycleTransformer.
Multi-level Patch Transformer Encoder. We evaluate other alternative
ways of using Transformer encoders and show the corresponding results in Fig. 8.
If we simply use a Transformer encoder to process the global features, the net-
work fails to learn delicate details and just generates weakly stylized results
instead, as in Fig. 8(a). The reason is that it only learns the attention informa-
tion globally and ignores the local pixel-wise relationships. We also evaluate the
performance of only processing individual patches and directly feeding the con-
catenated multi-level patches to the cross-level Transformer encoder. As shown
in the results of Fig. 8(b), if we learn only the self-attention information within
patches, the network tends to apply a certain pattern universally, failing to adapt
to the content. In the cross-level Transformer, the relationships between patches
of different levels can be automatically revealed, which improves the stylization
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effect as in Fig. 8(c). However, results from the full MPT are still superior to its
results, because the relationships within the patches themselves are also essential
for producing reasonable style details. Furthermore, MPT avoids the problem of
duplicated patterns in some regions. As shown in the last column, using our
MPT module, we can obtain rich style details with a reasonable distribution.
Therefore, we can conclude that our MPT encoder module is able to effectively
extract the relationships among pixels and patches of different scales for the
arbitrary style transfer task.
Nested multilevel patches. Fig. 1 in the supplementary shows that nested
multi-level patches produce better results than a single patch and the image
quality improves with the number of nested patches. Compared with the ViT-
based patch splitting schemes such as StyTr2 (Fig. 5), our results show better
brush textures. To further investigate the effects of “nested patches”, we add an
experiment where we replace the nested patches with the Gaussian pyramid of a
randomly selected patch. Fig. 10 shows the results using patch pyramids, where
the details are blurred with obvious artifacts which demonstrate the advantages
of nested multi-level patches.

4.4 User Study

To evaluate the visual quality and the faithfulness of stylized images, we con-
ducted a user study. We prepared 18 pairs of images, including 4 pairs in a cycle
manner. We generated 22 groups of style transfer results using our method and
seven state-of-the-art methods [16, 38, 44, 28, 19, 33, 43]. In total, 46 participants
(including 29 males, 17 females, aged from 18 to 33) were recruited in this study
and we got 46 (participants) × 22 (questions) = 1012 subjective evaluation re-
sults for each method.

The statistics of the user study results were plotted in Fig. 9. We performed
one-way ANOVA tests on six methods with respect of “Style Consistency”, “Con-
tent Consistency” and “Least Artifacts” corresponding to the three criteria above.
We found significant effects of our method for all three criteria: style consistency
(F(5,126) = 6.8, p < 0.0001), content consistency (F(5,126) = 3.44, p < 0.05) and
least artifacts (F(5,126) = 2.36, p < 0.05). Our method has obvious advantages
in "Style Consistency", has a more consistent style with the reference image,
and produces the least artifacts based on subjective evaluations. We also show
a radar plot summarizing the user selections of the images with the best overall
visual quality, where our method also got the most votes.

4.5 Quantitative Evaluations

We also sought image-translation tasks where we could get the ground truth
translation results to evaluate our method quantitatively.
Visual Effect on both style and content We show quantitative comparisons
with previous methods in Table 2 using the content/style perceptual losses (Lc

and Ls) used in StyTr2 [4] and FID on results generated using 300 style and
content image pairs. WCT2, STROTSS, and AdaIN gets the best Lc, Ls and
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FID, respectively. Note that our method outperforms SpliceViT which has the
same single image setting. In addition, we propose patchFID as a quantitative
metric for style consistency (Table 2) since the artistic style features usually
exist at the patch level. We randomly sampled 100 64 × 64 patches from the
reference style image and regularly picked 16 64 × 64 patches from the stylized
result, and took the mean of the FIDs between these patches as patchFID. We
achieve the best patchFID. Note that there have not been any widely accepted
metric for quantitative evaluation of style transfer, especially for artistic styles.
We believe a user study that relies on human perceptual evaluation as in our
paper is a meaningful and important measure.

Table 1: Quantitative evaluation.
Methods Ours StyTr2 AdaAttN WCT2 STROTSS SpliceViT AdaIN AAMS SANET StyleFormer DST photoWCT Avatar-Net

Lc 2.31 1.00 2.55 0.33 2.19 3.01 1.76 2.50 2.46 2.41 0.69 1.16 2.12
Ls ↓ 0.93 0.80 0.90 1.83 0.34 2.28 0.89 2.02 0.90 0.56 1.32 2.19 2.02
FID 2.77 1.73 5.81 1.26 5.42 8.58 0.74 4.12 2.33 1.74 4.88 7.64 7.83

patchFID ↓ 2.61 3.21 2.78 4.05 3.33 7.62 3.74 3.72 4.57 3.31 3.49 5.20 6.17

Rationality of Color Distribution. We chose the colorization task since the
paired grey-scale images and the colorized images are all available. We use the
three datasets of different cartoon characters provided by [3] as our evaluation
data. We randomly select 10 sets of unpaired color and grey-scale images as
style and content images respectively from each of the three datasets. We train
the models of CycleTransformer and the previous methods (i.e. AdaIN, Avatar-
Net, AAMS, SANET, StyleFormer, photoWCT, DST, CycleGAN) in the same
manner as mentioned in Sec. 4.2. Table 2 reports the performance of all the
tested methods measured by the peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM). Our CycleTransformer significantly
outperforms existing methods both in PSNR and SSIM. Fig. 11 shows some
of the colorization results. It seems difficult for previous style transfer methods
without cycle consistency (i.e. AdaIN, Avatar-Net, AAMS, photoWCT, DST)
to learn complex patch-wise correspondences, leading to badly saturated colors.
Compared to our method, CycleGAN is unable to achieve compelling results
without being trained on large datasets.

4.6 Discussion CycleTransformer v.s. CycleGAN

CycleGAN is a successful approach for unpaired cycle image translation. But
it still needs plenty of images for each domain in training. As shown in Fig. 7,
their one-shot bi-directional mapping is unable to converge, thus the results
suffer from noises and blurriness. The same artifacts can be seen in Fig. 11,
a colorization task. Based on this work and the observed challenges, our work
aims at using multi-level patch features for single reference image style transfer.
For both photo stylization and colorization, CycleTransformer achieves a much
higher visual quality on the contrary.
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Table 2: Quantitative validation on the colorization task.

Method
character1 character2 character3

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Ours 22.327 0.889 26.134 0.932 26.917 0.920
AdaIN 16.724 0.809 17.315 0.863 17.865 0.850
AAMS 22.626 0.888 15.161 0.705 16.944 0.712
SANET 22.606 0.720 17.435 0.768 19.252 0.872

StyleFormer 13.243 0.433 12.338 0.705 15.324 0.657
DST 20.993 0.863 20.636 0.852 20.118 0.832

photoWCT 18.98 0.878 22.011 0.931 23.303 0.928
Avatar-Net 14.971 0.693 16.868 0.720 15.697 0.729
CycleGAN 12.484 0.472 14.762 0.472 12.754 0.556

5 Conclusion and Future Work

We focus on the challenge of learning to transfer style with only a single reference
image. We introduce CycleTransformer, a deep model based on Transformers
and the cycle-consistent learning scheme to model complex relationships within
multi-level patches and across these patches. We integrate them with global
features in a dynamic filter-based decoder to achieve a rich stylization effect
and better content preservation. Our method uses randomly sampled patches
to successfully model the distribution of the visual content with a certain style
when only one style image is available. Experiments show the superiority of
our method over the state-of-the-art methods on the single-image-based style
transfer task. In the future, we will extend CycleTransformer to learn semantic-
related patch-level features and utilize our feature learning scheme for other
related tasks, such as sketch-based image synthesis.
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Fig. 8: Ablation study of MPT’s structure. We compare the results of our method
(d) with (a) “GlobalTE”: only global features are fed to a transformer encoder
(TE); (b)“PatchTE”: patches are only processed by TEs individually; and (c)
“CrossTE”: patch features are directly processed by the cross-level TE.
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Fig. 9: Subjective scores on the similarity between the generated images of dif-
ferent methods and the corresponding content and style images, as well as the
visual realism of the generated images. The additional radar plot summarizes
the user selections of the images with the best overall visual quality.

Fig. 10: Comparisons of patch pyramids and nested patches.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 11: Comparison of one-shot image colorization. (a) is the input grey image
and (b) is the reference color image. The results of (c) AdaIN [16], (h) photoWCT
[28], (g) StyleFormer[43] and (j) DST [19] generate results similar to global color
filtering. The results of (d) Avatar-Net [38], (e) AAMS [44], (f) SANET[33] and
(i) CycleGAN[49] suffer from blurry artifacts surrounding edges. Our method
(k) is able to generate clean results and respect the boundaries in grey images
well. (l) is the ground truth


