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Abstract. With the rising ubiquity of digital touch devices and sketch-based in-
terfaces, freehand sketching has become an essential mode of visual communica-
tion. Nevertheless, interpreting these often ambiguous and sparse sketches poses
challenges for computers. This paper presents Sketchformer++, a hierarchical
transformer architecture for the neural representation of vector sketches. It treats
a vector sketch as a three-level structure, i.e., sketch level, stroke level, and seg-
ment level. Three self-attention modules are adopted in the network architecture,
corresponding to the sketch hierarchy. The semantics of sketches are aggregated
from local to global, resulting in neural representations of sketches. Extensive
experiments show that Sketchformer++ exhibits superior performance in vari-
ous downstream tasks, including sketch reconstruction, sketch recognition, and
sketch semantic segmentation, demonstrating its robustness and effectiveness in
sketch representation.

Keywords: Vector sketch · Transformer · Hierarchy · Neural representation ·
Sketch recognition · Sketch semantic segmentation.

1 Introduction

With the continuous evolution of digital touch devices, such as smartphones and tablets,
freehand sketching is increasingly becoming one of the prevalent and efficient means
of visual communication. Different from photos that possess rich textural and color
information, sketches are often in an ambiguous and sparse form. While humans can
easily recognize the semantics of sketches, interpreting sketches remains a challenge
for computers.

Many previous works have tried to understand the semantics of sketches in differ-
ent tasks, e.g., sketch recognition [21, 31, 32], sketch semantic segmentation [15, 27,
32, 36], and sketch-based image retrieval [2, 6, 20, 33]. They treat sketches as different
modalities. Some methods [13, 15, 30, 37, 38] consider sketches as raster images and
use convolutional neural networks [12] to estimate the semantics of sketches. These
methods might be versatile for sketches in various drawing styles, e.g., sketches con-
taining hatching or shadow, but they neglect the structures of vector sketches. Alterna-
tively, sketches can be viewed as graphs [4, 25, 28, 32, 35] and fed to graph neural net-
works [32] for semantic estimation. These methods emphasize the structure of sketches
but ignore the drawing order, as discussed in [36]. Another line of research [8, 18]
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Fig. 1. Our method can help perform various downstream tasks, including sketch reconstruction,
sketch recognition, and sketch semantic segmentation.

considers sketches as sequences of points and adopts RNN-based [8] or transformer-
based [18] architectures to extract the semantics of sketches. These methods exploit
the structure and drawing order of sketches, but fail to consider the inherent hierarchy
possessed by sketches.

Sketches naturally possess hierarchical structures [31, 32]: a sketch is composed of
a set of strokes, and a stroke is composed of a sequence of points. Due to the existence
of this hierarchy, the correlations between different parts of a sketch also have differ-
ent levels. For example, there exist low-level correlations, i.e., the correlations between
points, and high-level correlations, i.e., the correlations between strokes. Low-level cor-
relations are critical for forming a local part of a sketch, e.g., a stroke, and high-level
correlations are important for composing a whole sketch. It would be essential to con-
sider the correlations at different levels when estimating the semantics of sketches.

Based on the above observation, we propose a hierarchical transformer architec-
ture for the neural representation of vector sketches, named Sketchformer++. We treat
a vector sketch as a three-level structure, i.e., sketch level, stroke level, and segment
level. We introduce the extra segment level since some strokes in a sketch may have
excessive lengths. Such long strokes may contain multiple semantics and should be de-
composed into simpler entities [31]. With this hierarchical structure, we devise three
corresponding levels of self-attention mechanisms. From the lowest level, i.e., the seg-
ment level, to the highest level, i.e., the sketch level, we hierarchically aggregate the
sketch semantics from local to global, resulting in three latent spaces that embed seg-
ments, strokes, and sketches, respectively. The constructed latent spaces help perform
various downstream tasks (see Figure 1), including sketch reconstruction, sketch recog-
nition, and sketch semantic segmentation. Our experiments show that our method ad-
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vances existing methods in these tasks, demonstrating the effectiveness of sketch neural
representation estimated by our method.

2 Related work

Representation learning refers to the methods of automatically learning representations
from raw data to make subsequent downstream tasks easier or more meaningful. Rep-
resentation learning is a core topic in computer vision, especially when dealing with
images. However, sketches differ from ordinary images in that they often contain only
contours, edges, and certain feature lines without color and texture information. There-
fore, representation learning for sketches requires specific strategies and methods. Be-
fore the widespread use of deep learning models, traditional image-based descriptors,
such as the Histogram of Oriented Gradients (HOG) [10] and Scale-Invariant Feature
Transform (SIFT) [11], were commonly used. Although limited in their ability to cap-
ture complex patterns, these handcrafted features provided a basic understanding of
the sketch semantics. With the booming development of deep learning, many learning-
based methods emerged to obtain neural representations of vector sketches. We review
some representation learning methods for sketches and classify them according to their
required sketch formats. Then we discuss the related methods that exploit the hierarchi-
cal structure of sketches.

Image-based methods. These methods treat sketches as raster images and feed them
to the networks to obtain the neural representation of the sketches. Bhunia et al. [1]
proposed a self-supervised learning approach, training an encoder-decoder architecture
with raster sketches as inputs to obtain their neural representations. Yu et al. [33] pro-
posed a multi-scale multi-channel deep neural network by using a CNN with a large
convolutional kernel to adapt to the sparsity of stroke pixels. These aforementioned
image-based methods have exclusively focused on the spatial information of sketches,
neglecting the temporal and structural information inherent in the sketching process.
Yet, the drawing sequence of sketches is paramount to understanding their essence.
Consequently, our approach employs Transformer [23] as the backbone network to cap-
ture the temporal nuances of sketch drawing.

Graph-based methods. With the rise of Graph Neural Networks (GNN), many stud-
ies have attempted to employ this network to estimate the semantics of points. Wang
et al. [26] introduced DGCNN, which uses GNNs to capture the relationship between
local and global features of point sets, thereby obtaining their neural representations.
Qi et al. [16] proposed SketchLattice, which integrates a raster sketch with a lattice,
extracts key points on this raster sketch, and subsequently constructs a GNN-based en-
coder based on these key points. Zang et al. [34] partition a sketch image into mul-
tiple segments, each of which is encoded by a CNN. These neural representations
of the segments are then fed to a GNN-based encoder-decoder architecture. These
aforementioned graph-based approaches overlook the sequential information inherent
in sketches. In contrast, a primary focus of our proposed method is to exploit both the
local and global sequential information of sketches.
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Sequence-based methods. Recent works have begun to directly take vector sketches as
input, in the form of point sequences. A representative work is SketchRNN [8], which
exploits a sequence-to-sequence (seq2seq) network architecture based on LSTM [9],
and is trained on a large public sketch dataset named QuickDraw. The inherent lim-
itation of this LSTM-based architecture results in the loss of semantic information
when dealing with sketches containing long sequences. As the emergence of Trans-
former [23], this issue was resolved by Sketchformer [18], a transformer-based method.
Although Sketchformer solves the problem of semantic information loss that exists in
SketchRNN, it simply considers sketches as a sequence of points, neglecting the hierar-
chical structure possessed by sketches. In our research, we exploit the hierarchical struc-
ture of sketches and propose multiple attention mechanisms to extract the semantics of
sketches from local to global. This makes our method more effective in estimating the
neural representation of sketches.

Hierarchical structure of sketches. Our method is not the first that recognizes the im-
portance of the sketch’s hierarchical structure. Yang et al. [32] presented SketchGNN,
a convolutional graph neural network for sketch semantic segmentation. This network
extracts the sketch features as three levels, i.e., point level, stroke level, and sketch level.
Zheng et al. [36] proposed Sketch-Segformer, a transformer-based network for sketch
semantic segmentation. This network exploits both sketch-wise and stroke-wise self-
attentions. S3Net [31] is a network for sketch recognition. It uses an RNN to extract
segment-level features and a GCN to extract sketch-level features. SSR-GNNs [4] is a
network that first estimates a sketch’s stroke features and then constructs a graph to esti-
mate the sketch feature. Although all these works have implicitly or explicitly exploited
the hierarchical structure of sketches for different tasks, none of them have attempted
to estimate the neural representation of sketches, which is, in contrast, the focus of our
work.

3 Method

We propose a transformer-based deep neural network to estimate the neural represen-
tation of vector sketches. It exploits the inherent hierarchical structure of sketches. The
hierarchy has three levels, i.e., sketch level, stroke level, and segment level. At each
level, we use a transformer to estimate the neural representations of sketches and use
them to achieve different tasks including sketch recognition and sketch semantic seg-
mentation. In the following, we first introduce the sketch formats adopted in our method
and then explain the details of our method.

3.1 Data representation

Existing transformer-based methods usually represent a sketch as a sequence of points,
with additional symbols to indicate the drawing state. For example, SketchRNN [8] and
Sketchformer [18] adopt the ‘stroke-5’ format. With this format, a point is represented
as (∆x,∆y, p1, p2, p3), where (∆x,∆y) is the point’s relative position to the previous
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Fig. 2. The hierarchical transformer architecture of our method. Our network architecture consists
of three levels, corresponding to the hierarchical structure of sketches. Given a sketch with a
hierarchical structure, we can embed this sketch into a latent space in a bottom-up manner.

point; p1 (draw), p2 (lift), and p3 (end) indicate the drawing states. Since our method ex-
ploits the hierarchical structures of sketches, we adopt the ‘stroke-3’ format to represent
a point. Given a vector sketch, its sketch-level and stroke-level structures can be easily
determined. The additional segment-level structure is obtained by splitting long strokes
into short segments. We adopt a simple strategy for the splitting: we treat a segment as
a sequence of Npt points. After extracting the segment-level structure, we represent the
vector sketch hierarchically.

At the segment level, a segment is a sequence of points. Each point in this segment
is represented as (∆x,∆y, p), where p indicates the validity of the point. For the first
point of the segment, we store its absolute position. According to our stroke splitting
strategy, a segment contains at most Npt points. If a segment contains less than Npt

points, we use a special token to pad the corresponding point sequence.

At the stroke level, a stroke is a sequence of segments. Each segment in this stroke
is not represented as a sequence of points, but a latent code estimated by our method to
be described later. We adopt the segment’s neural representation since it has already ag-
gregated the semantics of the segment. Therefore, a segment is represented as (fsg, p),
where fsg is the latent code and p indicates the validity of this segment. The maximum
segments Nsg of a stroke can be determined by datasets. If a stroke contains less than
Nsg segments, we use another token to pad the corresponding segment sequence.

At the sketch level, a sketch is a sequence of strokes. Similarly, we adopt the neu-
ral representation of strokes. Thus, a stroke is represented as (fst, p), where fst is the
stroke’s latent code estimated by our method and p indicates this stroke’s validity. The
maximum strokes Nst of a sketch can be determined by datasets. If a sketch contains
less than Nst strokes, we also use a token to pad the corresponding stroke sequence.
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3.2 Hierarchical transformer architecture

As illustrated in Figure 2, our network architecture consists of three levels, correspond-
ing to the hierarchical structure of sketches. We introduce three pairs of transformer-
based encoders and decoders, i.e., segment encoder/decoder, stroke encoder/decoder,
and sketch encoder/decoder. Given a sketch with a hierarchical structure, we can em-
bed this sketch into a latent space in a bottom-up manner. First, we obtain the neural
representations of the segments with the segment encoder. With the latent codes of the
segments, we can obtain the neural representations of the strokes with the stroke en-
coder. Finally, the neural representation of the whole sketch can be estimated by the
sketch encoder. The decoders can reconstruct the sketch by feeding the obtained sketch
code to the decoders, in a top-down way. Below we describe the encoders/decoders in
detail.

Segment encoder/decoder. The segment encoder takes as input a segment, which con-
sists of a sequence of points. The first layer of this encoder is an embedding layer, which
includes a dense layer to convert a point (∆x,∆y, p) into a feature vector and an addi-
tion of the positional code [23]. After this layer, a point is converted into an embedding
feature fpt ∈ Rdf

pt . Then a segment can be represented as Fsg ∈ RNpt×df
pt , where Npt

is the maximum number of points in a segment. This layer is followed by Lsg basic
MHA (multi-head attention) layers [23]. After these blocks, we obtain the hidden fea-
ture of this segment F′

sg ∈ RNpt×df
pt . To obtain a latent code of this segment, we add

an additional layer to aggregate the hidden features as Sketchformer [18] does. Finally,
this segment encoder produce a segment code zsg ∈ Rdz

sg .
The segment decoder is the inverse of the segment decoder. Given a segment code

zsg, we feed it to a dense expansion layer, which includes a dense layer and an addition
of positional codes, to obtain the hidden feature of the corresponding segment F̂sg ∈
RNpt×df

pt . This hidden feature is then fed to Lsg basic MHA layers to obtain a updated
hidden feature F̂′

sg ∈ RNpt×df
pt . To reconstruct the segment, we append a dense layer

to produce the points in this segment in an autoregressive way.

Stroke encoder/decoder. The stroke encoder has a similar architecture to the segment
encoder. It takes as input a stroke, which consists of a sequence of segments. We adopt
the neural representations of the segments, thus a segment is in the form of (zsg, p).
After a similar embedding layer, a segment is converted into an embedding feature
fsg ∈ Rdf

sg and the stroke can be represented as Fst ∈ RNsg×df
sg , where Nsg is the

maximum number of segments in a stroke. After Lst basic MHA layers and feature
aggregation layer, we can obtain the neural representation of the stroke as zst ∈ Rdz

st .
The stroke decoder is similar to the segment decoder. It consists of a dense expansion
layer, Lst MHA layers, and a dense layer. It consumes a stroke code and produces a list
of segment codes in an autoregressive way.

Sketch encoder/decoder. The sketch encoder and decoder are similar to the stroke en-
coder and decoder in terms of architecture and encoding/decoding procedure. Given a
sketch consisting of a sequence of strokes, each of which is in the form of (zst, p), an
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embedding layer converts each stroke into an embedding feature fst ∈ Rdf
st , and the

sketch can be represented as Fsk ∈ RNst×df
st , where Nst is the maximum number of

strokes in a sketch. The sketch encoder produces a sketch code zsk ∈ Rdz
sk . The sketch

decoder consumes this sketch code and produces a list of stroke codes. There are Lsk

MHA layers in the sketch encoder and decoder.

3.3 Training

We adopt the reconstruction task for the network training. To improve the training effi-
ciency, the three pairs of encoders and decoders are trained separately. We first train the
segment encoder and decoder. After this training, we use the segment encoder to obtain
the neural representations of all segments. The obtained segment codes are then used
for the training of the stroke encoder and decoder. In the end, the sketch encoder and
decoder can be trained with the stroke codes.

Loss. For each pair of encoder and decoder, we adopt L1 and L2 loss for the training.
Since the decoders produce the points, segment codes, and stroke codes in an autore-
gressive way, we also include a binary cross-entropy loss for the prediction of the EOS
(end of sequence) symbol. Therefore, the loss function is L = αL1 + βL2 + γLCE,
where α, β, and γ are the weights for these losses. For different pairs of encoders
and decoders, the computations of the loss are slightly different. For the segment en-
coder/decoder, the loss is computed based on the positions of points. For the stroke and
sketch encoders/decoders, the losses are computed based on the segment and stroke
codes, respectively.

4 Experiments

We investigate the effectiveness of our method according to three tasks, i.e., sketch re-
construction, sketch recognition, and sketch semantic segmentation. We first introduce
the datasets for the experiments, then describe the implementation details, and finally
demonstrate the results of the experiments.

Datasets. We train our model on the QucikDraw dataset [8]. It contains 50 million
sketches with 345 categories. Each category consists of 70,000 training samples, 2,500
validation samples, and 2,500 testing samples. For each category, we randomly selected
700 sketches from the training samples as our training set, and 100 sketches from the
validation samples as our validation set. In total, the training set has 241,500 sketches
and the validation set has 34,500 sketches. Similar to existing works [18, 32, 36], we
adopt the Ramer-Douglas Peucker (RDP) algorithm [5] to simplify the sketches. In
the sketch reconstruction and sketch recognition tasks, we evaluate our method on the
QucikDraw dataset. In the sketch semantic segmentation task, we test our method on the
SPG [15] and the SketchSeg-150K [27] datasets, both of which are constructed based
on the QuickDraw dataset.



8 P. Xu et al.

Hyperparameters Value
Npt: maximum points in a segment 20
Nsg: maximum segments in a stroke 20
Nst: maximum strokes in a sketch 20
dfpt: dimension of point embedding feature 128
dfsg: dimension of segment embedding feature 128
dfst: dimension of stroke embedding feature 256
dfsk: dimension of sketch embedding feature 512
Lsg: number of MHA layers in segment level 2
Lst: number of MHA layers in stroke level 3
Lsk: number of MHA layers in sketch level 4
H: number of attention heads in MHA layers 8
dropout 0.1
optimizer Adam
scheduler linear warmup and decay
learning rate 0.0001

Table 1. The hyperparameters in our model.

Implementation details. As shown in Figure 2, our model consists of three pairs of
transformer-based encoders and decoders. In the segment encoder and decoder, the
maximum number of points in a segment Npt is 20; the dimension of the point em-
bedding feature dfpt is 128; the number of MHA (multi-head attention) layers Lsg is
2; the dimension of the produced segment code dzsg is 128. In the stroke encoder and
decoder, the maximum number of segments in a stroke Nsg is 20; the dimension of
the segment embedding feature dfsg is 256; the number of MHA layers Lst is 3; the
dimension of the produced stroke code dzst is 256. In the sketch encoder and decoder,
the maximum number of strokes in a sketch Nst is 20; the dimension of the stroke em-
bedding feature dfst is 512; the number of MHA layers Lsk is 4; the dimension of the
produced sketch code dzsk is 512. In all the MHA layers, the number of attention heads
H is 8. For the loss functions, for all pairs of encoders and decoders, we set α as 0.3,
β as 0.7, and γ as 1. The learning rate is 0.0001 initially and is adjusted with a linear
warmup and decay. These hyperparameters are also listed in Table 1.

4.1 Sketch reconstruction

The sketch reconstruction is achieved by first obtaining a latent code of a sketch with
the encoder and then reconstructing the sketch from the code with the decoder. The
reconstruction quality implies whether the latent code is an appropriate representa-
tion of the sketch. In this task, we compare our method with SketchRNN [8] and
Sketchformer [18], both of which have encoders to convert a sketch into a latent code.
SketchRNN and Sketchformer treat a sketch as a sequence of points. They use RNN and
Transformer as their network architecture. The experiment is conducted on the Quick-
Draw dataset. We use the pre-trained models of SketchRNN and Sketchformer for this
experiment. SketchRNN provides six pre-trained models, each of which was trained
with sketches in one single category. The selected categories include owl, sheep, cat,
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Fig. 3. The qualitative results of the sketch reconstruction. We select six categories in the Quick-
Draw dataset for evaluation. For each category, we select three sketches, each of which is the best
reconstruction of a compared method across all samples. The best reconstruction is determined
by the CD score. Our method achieves the best sketch reconstruction, indicating that the neural
representation estimated by our method better retains the semantic information of sketches.

elephant, bus, and pig. Sketchformer provides one single pre-trained model trained with
sketches in all categories. Similar to Sketchformer, we provide one single model trained
with all sketches. The training data of our model and Sketchformer’s pre-trained model
are the same.

Evaluation metrics. We adopt the Chamfer distance (CD) [7, 29], the earth mover’s
distance (EMD) [19], and the CLIP similarity (CLIPSim) [17, 24] as the evaluation met-
rics. CD and EMD measure the geometry similarity between the input sketch and the
reconstructed sketch, and CLIPSim reflects the semantic similarity between them. To
compute the CLIPSim score between two sketches, we first render them as images and
then use the equation introduced in [24] for the computation.

Results. Since SketchRNN’s pre-trained models can only handle six categories, i.e.,
owl, sheep, cat, elephant, bus, and pig, we only select these categories for evaluation.
We randomly select 500 sketches from the testing samples for reconstruction in each
category. Table 2 shows the quantitative comparison between the compared methods.
According to the evaluation metrics, our method achieves the best performance on
sketch reconstruction. Figure 3 shows some representative reconstruction results ob-
tained by the compared methods. For each category, we select three sketches, each of
which is the best reconstruction of a compared method across all samples. The best re-
construction is determined by the CD score. This qualitative comparison also indicates
that our method achieves the best sketch reconstruction. From these quantitative and
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Method CD ↓ EMD ↓ CLIPSim ↓
SketchRNN [8] 0.001573 0.0331 0.1347
Sketchformer [18] 0.001116 0.0651 0.1172
Ours w/o segment level 0.000742 0.0293 0.1025
Ours w/o stroke level 0.001482 0.0864 0.1413
Ours 0.000461 0.0154 0.0717

Table 2. Quantitative comparisons on the sketch reconstruction task between the compared meth-
ods. In all metrics, our method achieves the best performance, indicating that the neural repre-
sentation estimated by our method better retains the semantic information of sketches.

qualitative comparisons, we conclude that the neural representation estimated by our
method better retains the semantic information of sketches.

4.2 Sketch recognition

Our method estimates the neural representation of sketches. This representation is used
for sketch recognition. To accomplish this task, we append a dense layer and a softmax
layer to the sketch encoder, fix the parameters of our model, and train the parameters
of the appended layers. We compare our method with a list of existing works, includ-
ing Sketch-a-Net [33], SketchRNN [8], Sketchformer [18], S3Net [31]. Sketch-a-Net
is a CNN-based method for sketch recognition. SketchRNN and Sketchformer treat
sketches as a sequence of points, using RNN and Transformer as the network architec-
tures. S3Net is the state of the art in the task of sketch recognition. It also considers the
hierarchical structure of sketches but adopts RNN for extracting segment-level features
and GNN for sketch-level features. The experiment is conducted on the QuickDraw
dataset. We select 7,000 sketches from the training samples in each category for the
training of the appended layers, all 2,500 sketches from the validation samples for the
validation, and all 2,500 sketches from the testing samples for the computation of the
recognition accuracy.

Results. Table 3 shows the recognition accuracy of the compared methods. Our method
achieves the best accuracy among all methods. The recognition accuracy of Sketch-a-
Net is low, implying that CNN-based methods are less appropriate for extracting the
semantics of sketches. The performance of SketchRNN is not satisfactory. Although
it considers the drawing order of sketches, the limitation of RNN architecture makes
it less effective for long sequences. Sketchformer achieves a better result, indicating
the advantage of Transformer architecture. S3Net achieves state-of-the-art performance,
demonstrating the necessity of considering the hierarchical structure of sketches. Our
method also recognizes the importance of this hierarchical structure and adopts a power-
ful transformer-based architecture, therefore reaching the highest recognition accuracy.

4.3 Sketch semantic segmentation

Sketch semantic segmentation can be achieved with the stroke’s neural representation
estimated by our stroke encoder. We design a lightweight transformer-based network
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Method (Acc %)
Sketch-a-Net [33] 68.71
SketchRNN [8] 67.69

Sketchformer [18] 77.68
S3Net [31] 84.22

S3Net (Stroke-5) 85.10
Ours w/o segment level 80.63
Ours w/o stroke level 78.82

ours 85.73
Table 3. Quantitative comparisons on the sketch recognition task between the compared meth-
ods. Our method outperforms the state-of-the-art methods, demonstrating the effectiveness of our
network architecture.
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Fig. 4. Our designed lightweight segmentation network in the sketch semantic segmentation task.
It exploits a simple transformer architecture. With the aid of neural representation estimated by
our method, this network achieves state-of-the-art performance.

for this task (see Figure 4). This segmentation network contains 4 basic MHA layers,
a dense layer, and a softmax layer. Given a sketch, we first extract the stroke codes of
its strokes. For each point in this sketch, we form a feature vector by concatenating
the neural code of the stroke that contains this point and the absolution position of this
point. This leads to a sequence of feature vectors. We then feed this sequence to the
segmentation network. We evaluate our method on this task with the SPG dataset [15]
and the SketchSeg-150K dataset [27]. Both of these datasets are constructed upon the
QuickDraw dataset. The SPG dataset consists of 25 categories, each of which contains
800 sketches. We split the sketches in each category in a ratio of 13:2:1 for training,
testing, and validation. The SketchSeg-150K dataset consists of 20 categories, each of
which contains 7,500 sketches. The splitting ratio of this dataset is the same as the SPG
dataset.

Many works have been proposed for the sketch semantic segmentation task, e.g.,
SketchSeg [27], SPGSeg [14], DeepLabv3+ [3], FastSeg [15], CBL [22], SketchGNN [32],
and Sketch-Segformer [36]. Among these methods, SketchGNN and Sketch-Segformer
are the state of the arts and achieve the best performance on this task. We, therefore,
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Fig. 5. The qualitative results of the sketch semantic segmentation. In general, our method reaches
the state-of-the-art methods in this task. For some categories, our method achieves better perfor-
mance.

compare our method with SketchGNN and Sketch-Segformer to show the effectiveness
of the sketch’s neural representation estimated by our method.

Evaluation metrics. We use the widely adopted pixel metric (P-metric) and component
metric (C-metric) for evaluation. Given a sketch and its corresponding segmentation, P-
metric is defined as the percentage of points that are predicted with the correct semantic
labels; C-metric is defined as the percentage of strokes that are predicted with the correct
semantic labels. In our experiment, we consider a stroke to be correctly labeled if more
than 75% of the points in this stroke are assigned the correct label.

Results. Table 4 and 5 show the comparison results on the SPG and SketchSeg-150K
datasets respectively. Figure 5 shows the visual segmentation results produced by the
compared methods. For the SPG dataset, according to P-metric and C-metric, our method
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Category
SketchGNN Sketch-Segformer Ours Ours w/o segment level Ours w/o stroke level

P-metric C-metric P-metric C-metric P-metric C-metric P-metric C-metric P-metric C-metric
Airplane 96.9 92.9 96.7 92.0 97.1 93.7 95.2 90.9 77.5 66.1

Alarm clock 98.0 95.7 98.4 95.3 98.2 96.0 95.9 92.3 85.9 74.9
Ambulance 94.1 90.1 92.6 88.6 93.8 89.9 91.0 85.6 79.4 67.6

Ant 93.5 91.9 93.9 92.3 94.5 92.5 93.1 91.7 78.1 76.2
Apple 97.1 91.8 97.3 93.1 97.4 93.0 95.4 87.8 90.9 77.8

Backpack 92.4 85.9 93.2 86.5 92.6 85.7 90.1 82.0 75.7 58.5
Basket 97.5 97.0 96.9 96.7 97.9 97.6 95.7 95.3 88.1 85.6

Butterfly 99.4 97.3 98.8 96.5 98.6 96.7 98.0 95.7 87.9 79.6
Cactus 97.2 94.5 96.5 95.3 97.4 96.2 96.3 95.6 87.6 84.1

Calculator 99.1 98.2 99.2 98.0 99.4 98.5 99.2 98.2 94.8 89.5
Campfire 96.9 95.6 97.5 96.1 97.0 96.3 95.0 91.5 89.5 87.2
Candle 99.2 98.3 99.3 98.2 98.7 96.7 98.2 95.8 92.1 83.8

Coffee cup 98.9 97.1 99.0 98.3 99.3 98.4 97.3 95.2 91.0 81.2
Crab 95.6 93.6 96.5 93.7 96.2 93.4 94.5 91.2 77.8 67.8
Duck 97.8 96.1 98.1 96.8 97.5 95.9 96.8 94.0 85.6 76.8
Face 98.4 97.3 98.2 97.1 98.0 97.3 96.7 94.5 89.5 75.3

Ice cream 94.7 95.1 96.9 95.4 97.8 96.2 92.2 90.9 88.7 80.5
Pig 98.9 97.7 98.9 97.6 98.3 98.0 96.1 97.4 83.4 73.0

Pineapple 98.7 95.2 98.6 96.3 98.2 96.1 93.2 94.9 95.8 89.4
Suitcase 99.6 98.0 99.5 97.9 99.2 97.4 97.2 94.0 92.3 82.4
Average 97.3 95.9 97.3 95.1 97.4 95.3 95.7 92.7 86.7 77.9

Table 4. Quantitative comparison on the sketch semantic segmentation task between the com-
pared methods. The compared methods are tested on the SPG dataset. Our method achieves
state-of-the-art performance. The rightmost four columns list the results of our method by re-
moving the segment and stroke level structures respectively. In these two settings, the hierarchy
of sketches is reduced from three to two.

is comparable to these two state-of-the-art methods. Each of the compared methods has
advantages for certain categories. On average, our method is slightly better, but the lead
is not significant. For the SketchSeg-150K dataset, the performance of the compared
methods is even closer. We thus conclude that our method has been one of the state-of-
the-art methods in the sketch semantic segmentation task. It is worth noting that, sketch
semantic segmentation is only an application of our methods. In contrast, the other two
methods are specifically devised for this task. In addition, our method only exploits
the very basic transformer blocks for estimating the neural representation of sketches.
It is expected that the performance of our method could be further improved if more
sophisticated learning techniques are adopted.

4.4 Ablation study

Our method only adopts the basic transformer blocks and does not take advantage of
other advanced learning techniques. The loss function is also simple. The novelty of our
method lies in the adoption of the hierarchical structure of sketches and the associated
encoding/decoding procedure. To test the necessity of our design, we conduct the fol-
lowing ablation study. We remove the segment and stroke level structure respectively
and reduce the hierarchy of sketches from three to two. Further reducing the hierarchy
would lead to the architecture of Sketchformer.

We conduct the ablation study on all the tasks, including sketch reconstruction,
sketch recognition, and sketch semantic segmentation. The quantitative results can be
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Category
SketchGNN Sketch-Segformer Ours

P-metric C-metric P-metric C-metric P-metric C-metric
Angel 98.6 97.1 99.4 99.1 98.3 98.5
bird 98.8 98.1 99.5 99.0 99.2 98.4

Bowtie 100.0 100.0 100.0 100.0 100.0 100.0
Butterfly 99.8 99.8 100.0 100.0 100.0 100.0
Candle 99.2 98.1 99.1 97.5 98.6 98.0

Cup 98.0 98.0 98.0 98.1 98.0 98.1
Door 100.0 100.0 100.0 100.0 100.0 100.0

Dumbbell 99.9 99.9 100.0 100.0 99.9 99.9
Envelope 100.0 100.0 100.0 100.0 100.0 100.0

Face 99.2 97.6 99.3 97.7 98.3 97.6
Ice 100.0 100.0 100.0 100.0 100.0 100.0

Lamp 95.6 95.6 97.0 96.5 96.2 95.6
Lighter 99.9 99.9 99.7 99.9 99.7 99.8
Marker 98.9 98.9 99.1 98.9 99.3 99.1

Mushroom 99.5 97.9 99.7 98.6 99.1 98.3
Pear 100.0 100.0 100.0 100.0 100.0 100.0
Plane 100.0 100.0 100.0 100.0 100.0 100.0
Spoon 87.3 87.3 88.5 88.4 92.0 89.1
Traffic 95.7 97.1 96.1 97.3 98.6 97.6

Van 99.5 99.4 99.6 99.6 99.1 99.1
Average 98.5 98.3 98.8 98.5 98.8 98.5

Table 5. Quantitative comparison on the sketch semantic segmentation task between the com-
pared methods. The compared methods are tested on the SketchSeg-150K dataset. Our method
achieves state-of-the-art performance.

found in Table 2, 3, and 4. These results confirm the necessity and effectiveness of our
three-level hierarchical transformer architecture.

5 Conclusion

In this work, we have presented Sketchformer++, a novel transformer-based neural net-
work that estimates the neural representation of vector sketches. It exploits the inherent
hierarchical structure of sketches, adopts three attention mechanisms, and aggregates
the semantics of sketches from local to global. It consists of three pairs of encoders and
decoders, which help extract the neural representation of sketches at different levels.
The estimated neural representation of sketches facilitates several downstream tasks,
including sketch reconstruction, sketch recognition, and sketch semantic segmentation.
The experiments have shown that our method reaches or outperforms the state of the art
in these tasks, indicating the effectiveness of the neural representation estimated by our
method.

Our method has some limitations. First, our method requires the hierarchical struc-
ture of sketches, therefore it can not be directly applied to raster sketches. A prepro-
cessing for sketch vectorization is necessary in this case. Second, our method may fail
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Fig. 6. Our method may fail to retain all the semantics of a sketch, thus the reconstruction may
contain artifacts.

to retain all the semantics of a sketch. For example, the reconstruction may contain ar-
tifacts as shown in Figure 6, although most reconstructions are of high quality. Third,
when accomplishing certain tasks, e.g., sketch recognition on a specific dataset, our
method requires two rounds of training, thus is less efficient than the methods specifi-
cally designed for this task. To avoid training our model on every dataset, it is possible
to train a general model by increasing the parameters of our model and feeding suffi-
cient sketches to the model.

Our method may promote many research directions. By aligning the constructed
latent space of vector sketches with a latent space of raster sketches, it would be pos-
sible to achieve sketch vectorization. With the aid of CLIP, it would be able to convert
texture images to sketches. It would be also interesting to extend our method to other
applications, such as sketch healing or sketch completion.
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