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Abstract. For a long time, deep learning-based 6D object pose esti-
mation networks have lacked the ability to address the problem of pose
estimation of the unknown objects beyond the training datasets, due to
the closed-set assumption and the expensive cost of high-quality annota-
tion. Conversely, traditional methods struggle to achieve accurate pose
estimation for texture-less objects. In this work, we propose a silhouette-
based 6D object pose estimation method. being a conventional method
As a traditional method, our approach achieves high accuracy without
any need of annotation data, demonstrating excellent generalization.
Additionally, we employ silhouette to mitigate texture dependency is-
sues, ensuring effectiveness even in the case of textureless objects. In
the method, we introduce a dimensionality reduction strategy for SE (3)
pose space, accompanied by theoretical proofs, which make it possible to
perform pose estimation through search, rendering, and comparison in
a reduced-dimensional space efficiently and accurately. Experimental re-
sults demonstrate the high precision and generalization of the proposed
method. Our code is available at https://github.com/worldTester/STI-
Pose.

Keywords: Object pose estimation · generalization · silhouette ·
texture-independent.

1 Introduction

6D object pose estimation from a single image is a classical problem in com-
puter vision. Its objective is to accurately estimate the precise 6D pose of a
target object relative to the current camera. This problem plays a crucial role in
various tasks, including robotic technology(e.g. automatic manufacturing [22],
cooperative assistance [4, 9]), where precise object poses are required to guide
grasping, and augmented reality (AR) technology, which relies on determining
the real-world object poses for seamless integration with the virtual world [19,
23].

In traditional approaches to object pose estimation, the most common meth-
ods are based on correspondence [17]. These methods establish the 2D-3D cor-
respondences between the object in the image and its 3D model and then esti-
mate the object pose through the PnP [15]/RANSAC framework. They typically
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employ texture-dependent feature point extracting and matching algorithms like
SIFT [17] and ORB [24] to establish the 2D-3D correspondences. Consequently,
they struggle to handle pose estimation for those objects with weak or no texture.
To address this issue, one approach is to adopt template matching-based meth-
ods [10, 20]. These methods require generating a collection of images with ground
truth object poses from different views prior to usage. Thus, transforming the
6D object pose estimation problem into an image retrieval problem. However,
the accuracy of the result obtained through these methods heavily relies on the
density of the constructed templates. Another approach to tackle the challenge
of pose estimation for weakly-textured or textureless objects involves leveraging
depth information [7, 25]. It begins by extracting local shape descriptors of the
partial-view point cloud of objects in the image from the current perspective
and the complete point cloud on the 3D model. Subsequently, registration is
performed to obtain the pose estimation result, thereby circumventing the re-
liance on object surface texture. However, the limited precision of depth sensors
and the constraints of applicable scenarios hinder the widespread usage of these
methods.

In recent years, significant progress has been made in the field of object pose
estimation, thanks to the advancements in computer vision and deep learning.
Numerous deep learning-based approaches have been proposed for pose estima-
tion [26, 31, 30, 21, 29, 6, 13], alleviating many of the challenges encountered by
traditional methods. One category of methods involves directly training a single
object pose estimation network. These methods employ deep convolutional neu-
ral networks to directly regress the position and rotation of the object [29, 31, 6,
13]. Alternatively, an approach is proposed aiming to make the PnP/RANSAC
module differentiable [12], enabling end-to-end training of pose estimation net-
works. Another category of methods achieves higher accuracy in object pose
estimation by leveraging neural network outputs that establish sparse or dense
2D-3D correspondence relationships. These methods subsequently estimate the
object pose using traditional PnP/RANSAC algorithms [26, 21, 30].

However, deep learning-based approaches inevitably suffer from the closed-
set assumption issues, which limit the widespread application of object pose
estimation methods. Firstly, such methods require datasets [3, 5, 11] with highly
accurate annotations of object poses. The task of annotating 6D poses for in-
dividual objects is expensive and the precision is limited. Secondly, training a
single object pose estimation network requires a significant amount of time. The
state-of-the-art methods that achieve high accuracy often sacrifice the general-
ization between object instances. They train a network that exclusively serves a
single object instance, aiming to maximize the pose estimation capability for that
specific object. However, when faced with pose estimation tasks involving multi-
ple objects, it becomes necessary to train multiple network models. Lastly, many
downstream tasks of object pose estimation do not prioritize texture but instead
focus on the shape information of object, such as robotic arm grasping. These
methods heavily rely on texture, requiring the construction of new dataset and
retraining networks even for objects with the same shape but different textures.
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In response to these issues, we propose a silhouette-based texture-independent
object pose estimation method (STI-Pose), which employs an iterative rendering
and comparing methodology. By utilizing the 3D model of the object, STI-Pose
renders the silhouette in the 6D pose space and compares it with the silhouette
of the target object in the reference image, seeking the pose corresponding with
the strongest consistency as the estimation result. The method solely relies on
silhouettes, which not only avoids the need for object appearance texture but
also eliminates the requirement for annotated object poses, exhibiting impressive
generalization capabilities.

To address the search problem in the 6D pose space, we introduce a Homography-
based Spherical Intersection over Union method (HSIoU), which determines the
similarity of camera poses corresponding to two silhouette images while equiva-
lently reducing the search task of the six degrees of freedom in SE (3) space to
three, significantly enhancing the computational efficiency. We provide theoret-
ical derivations to demonstrate the equivalence of this dimensionality reduction
strategy. Furthermore, we propose an Optimized Particle Swarm Optimization
algorithm, denoted as O-PSO, designed for efficient and robust search within
the reduced-dimensional object pose space.

We approach silhouette extraction as an image segmentation task, which is
a relatively simpler task compared to object pose estimation. The silhouettes
required by our method can be obtained through various means: for cases with a
straightforward background, green screen extraction or foreground segmentation
methods suffice; for more complex backgrounds, universal segmentation methods
such as SAM [14] or SEEM [33] can be employed. None of these segmentation
methods impose a closed-set assumption, allowing for segmentation of arbitrary
objects.

We validated our method on commonly used datasets [3, 5] for object pose
estimation and datasets specifically created for pose estimation of objects with
various textures. The results demonstrate that our method is independent of
object surface texture, while simultaneously exhibiting high precision and gen-
eralizability. Our contributions can be summarized as follows:

1. We propose a silhouette-based object pose estimation method that achieves
high accuracy without the requirement of annotated object poses. This break-
through surpasses the limitation of current networks that can only handle objects
in the datasets.

2. Through extensive experiments, we demonstrate the robustness of our
method to variations in object appearance, making it highly suitable for real-
world applications involving numerous objects with similar geometric structures
but different appearances.

2 Related Work

In this section, we will discuss the pose estimation methods most relevant to our
work with the input of RGB image, dividing them into two parts: traditional
methods and deep learning methods.
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2.1 Traditional Methods

Traditional methods often rely on establishing 2D-3D correspondences and uti-
lize the PnP/RANSAC framework to solve object pose estimation, such as [18],
achieving high-precision results. However, these methods require the use of fea-
ture descriptors such as SIFT [17], SURF [1], or ORB [24], hence struggle to
handle textureless objects. To address this issue, a template matching method
called LineMod [10] has been proposed. LineMod constructs a large number
of templates and utilizes image gradients for template matching, transforming
the pose estimation problem into an image retrieval problem. This approach ef-
fectively handles textureless objects. However, the accuracy ceiling of template
matching methods depends on the density of the templates.

[32] proposed a contour-based pose estimation method for textureless space
objects. This method involves extracting the contour of the target object and
performing an initial coarse matching with a pre-built library of contour tem-
plates. Subsequently, the ORB [24] algorithm is used to establish 2D-2D corre-
spondences between the contours, and the 3D information within the contour
templates is used to establish 2D-3D correspondences. The object pose is then
computed using the PnP/RANSAC algorithm, thereby improving the accuracy
ceiling of template matching methods. However, this method places higher de-
mands on the object’s shape, as the contours should not be excessively smooth,
as it may cause the 2D-2D correspondences between the contours to fail.

2.2 Methods with Deep Learning

Deep learning methods surpass traditional approaches in terms of both accu-
racy and computational speed, and they exhibit excellent capability in handling
textureless objects.

End-to-end approaches, such as PoseCNN [31], DenseFusion [29], directly
regress the pose of the object. [12] attempt to transform PnP/RANSAC into
a differentiable module. The end-to-end architecture of these methods enhances
their flexibility, enabling them to serve as differentiable pose estimation modules
that can be applied to a wider range of tasks.

Non-direct methods, which leverage the powerful regression capability of
neural networks, achieve higher prediction accuracy. These methods predict
sparse or dense 2D-3D correspondence relationships and subsequently utilize
PnP/RANSAC methods to compute the object’s pose. Each of these methods
employs different approaches to predict the 2D-3D correspondence relationships.
PVNet [21] predicts the pixel coordinates of 3D feature points, generating sparse
correspondence relationships. GDR-Net [30] divides the object surface into mul-
tiple fragments, initially classifying 2D pixel points into a specific fragment and
then regressing the offset within that fragment. ZebraPose [26] employs binary
encoding for the object’s vertices, and the network predicts the corresponding
encoding for 2D pixel points, thereby establishing the 2D-3D correspondence
relationships. GDR-Net and ZebraPose generate dense correspondence relation-
ships, exhibiting superior performance.
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Despite the significant advancements of deep learning methods compared to
traditional approaches, they do have certain drawbacks due to their reliance on
data. Firstly, these methods necessitate lengthy training on meticulously anno-
tated pose estimation datasets, which can be time-consuming for both dataset
creation and training. Secondly, they lack generalizability and can hardly esti-
mate poses for unknown objects not present in the training dataset.

3 The Method

In this section, we propose a silhouette-based object pose estimation method
that is texture-independent (STI-Pose). As shown in fig. 1, STI-Pose takes as
input the silhouette image of an object in a reference image, along with the
corresponding 3D model of the object.HSIoU

Iteration

··· ···0-th t-th K-th

HSIoUHSIoU

3D model

(a)

(c)(b)

HSIoUHSIoUHSIoU

Fig. 1. Working flow of the silhouette-based object pose estimation (STI-Pose). The
input is silhouette Sref and 3D model. (a) is the optimized particle swarm optimization
(O-PSO) algorithm to obtain the optimal pose in the reduced space. (b) and (c) are
homography-based spherical intersection over union (HSIoU) method to determine the
proximity of the camera poses corresponding to the two silhouette images.
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We introduce a homography-based spherical intersection over union (HSIoU)
method to determine the proximity of the camera poses corresponding to the
two silhouette images. By reducing the dimensionality of the object pose space
from six dimensions to three, with the help of HSIoU, we use an optimized
particle swarm optimization algorithm (O-PSO) in the reduced space to obtain
the optimal pose. In the following, we will describe the method in detail.

3.1 Problem Formulation and Notation

In this paper, we use a 3D rotation R ∈ SO (3) and a 3D translation t ∈ R3 to

indicate the pose P ∈ SE (3), i.e., P =

[
R t
0T 1

]
⋍ ⟨R, t⟩. We use the uppercase

and lowercase subscripts to indicate the relative relationship, specifically, PB
A

denotes the pose of coordinate system B relative to coordinate system A. We use
the capital letter C to indicate the camera while the capital letter O to indicate
the object. In addition, we utilize Euler angles to represent the rotation matrix,
denoted as rx, ry, and rz, respectively. For the camera model, we denote the

intrinsic parameter matrix as K =

fx 0 cx
0 fy cy
0 0 1

. In addition, the homogeneous

coordinates of a 3D point X ∈ R3 are represented as X̃ = [x, y, z, 1]T, while
the homogeneous coordinates of a 2D pixel point p ∈ R2 are represented as
p̃ = [u, v, 1]T.

We transform the pose estimation problem into an optimization problem in
SE (3) space, specifically as follows:

PO
C

∗
= argmin

PO
C∈SE(3)

∥∥∥Sren
PO

C
− Sref

∥∥∥
2
, (1)

where Sref is the reference silhouette image and Sren
PO

C
is the rendered silhou-

ette image using object pose PO
C . Obtaining the global maximum in the six-

dimensional SE (3) space is indeed a hard task. However, STI-Pose allows for
efficient and stable identification of the optimal pose. It is worth mentioning
that the 3D models used in this paper consist of triangular mesh representa-
tions, containing solely geometric shape information and devoid of any texture
information.

3.2 Dimensionality Reduction

The key factor to the accurate object pose estimation through iterative search,
rendering, and comparison is to determine the similarity of the camera pose cor-
responding to the reference silhouette image and the rendered silhouette image,
thereby deciding the search termination, and obtaining the final estimated ob-
ject pose. In this section, we propose a homography-based spherical intersection
over union (HSIoU) method to determine the proximity of the camera poses cor-
responding to the two silhouette images. At the same time, we provide detailed
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instructions on how to effectively reduce the search task of six degrees of freedom
in SE (3) space to three degrees.

Homography-based spherical intersection over union The process of the
HSIoU is illustrated in Fig. 2. Given two camera images of an object silhouette,
S1 and S2, captured by cameras with the same intrinsic parameters K but
different poses, HSIoU computes the proximity of the translation vectors t1 and
t2 between the unknown camera poses PC1

O ≃ ⟨R1, t1⟩ and PC2

O ≃ ⟨R2, t2⟩.
Additionally, the algorithm also outputs the relative rotation R = RT

1 ∗ R2

when the proximity s is high enough. RICP

H=KR K
T -1

W

contour

contour

ICP

R
T

R

S1

S2

1

2

R

Fig. 2. Illustration of the homography-based spherical intersection over union (HSIoU)
method.

Theorem 1. When t1 is equal to t2 and the only difference between PC1
O and

PC2
O lies in rotation R, there exists a transformation relationship between S1 and

S2 through a homography matrix H. Applying H to S1 yields S1
′, which perfectly

aligns with S2.

The proof is as follows.

Proof. For the 2D pixel points p̃1, p̃2 which are projections of a spatial point X
onto the two image planes of the cameras, we have

p̃1 = KX,

p̃2 = KRTX = KRTK−1p̃1.
(2)

Thus, p̃2 = Hp̃1 when defining H = KRTK−1. Hence, there exists a homogra-
phy transformation between the pixel points of S1 and S2. Applying this trans-
formation to S1 yields S1

′, the Intersection over Union (IoU) between S1
′ and

S2 is always 1.

The H matrix is easily computable. Firstly, we utilize the contour extraction
algorithm [27] to extract the contour points from S1 and S2. We then back-
project these points onto the unit sphere using the camera intrinsic parameters
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K, resulting in point clouds {X1i} and {X2i}. Next, we employ a specialized
ICP [2] algorithm to align the two point clouds and obtain R, from which we
derive H. The specialized ICP algorithm only applies rotation operations to the
point clouds, disregarding translation. It is important to note that the projection
onto the unit sphere is necessary to ensure that all points in {X1i} and {X2i}
have equal distances from the camera optical center. This requirement satisfies
the prerequisites of the specialized ICP algorithm for aligning the point clouds.
When t1 is not equal to t2, we can still calculate the IoU using the aforemen-
tioned process. Note that, in this case, the IoU value will always be less than 1,
and we can use it to quantify the proximity between t1 and t2.

However, performing IoU calculations on a pixel plane can be susceptible to
the influence of the perspective effect, leading to unstable IoU values. Conse-
quently, we have introduced a weight map W during the IoU computation to
ensure that the results are equivalent to performing IoU calculations on the unit
sphere, as represented by Eq. (3), where i and j represent pixel coordinates.

IoU(S1,S2,W) =

∑
(i,j)∈S1∩S2

W(i, j)∑
(i,j)∈S1∪S2

W(i, j)
∈ (0, 1]. (3)

d=1 M

O

dS
2

dS
1

N

x

y

z

T

Fig. 3. Derivation illustration of the weight map W

The weight map W has the same size (width W and height H) as S1 and S2,
where the value of each pixel represents the ratio of the area occupied by that
pixel on the unit sphere to its area on the normalized plane. The creation of W
is solely dependent on the camera intrinsic parameters K. Fig. 3 and Eqs. (4-6)
give the derivation process.
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According to the back-projection relationship of camera internal parameters,
we have the coordinate (x, y) of the point T in the normalized plane,

x =
i− cx
fx

, y =
j − cy
fy

, (4)

where 1 ≤ i ≤ W, 1 ≤ j ≤ H. Thus, The distance between T and the vertical
point M of the optical center O on the normalized plane is

∥MT∥ = l = tan(θ) =
√
x2 + y2. (5)

Hence, the weight map W (the ratio of the infinitesimal area element dS1 on the
unit sphere to the corresponding infinitesimal area element dS2 on the normalized
plane) can be calculated by

W(i, j) =
dS1
dS2

=
sin(θ) · dϕ · dθ

l · dϕ · dl
=

sin(θ)

tan(θ) · dl
dθ

= cos3(θ)

= ((
i− cx
fx

)2+(
j − cy
fy

)2+1)−
3
2 ∈ (0, 1].

(6)

By introducing the weight map W and modifying the IoU calculation, we refer
to the algorithmic process described above as HSIoU, which can be represented
by Eq. (7).

s,R = HSIoU(S1,S2,K), (7)

where the proximity s is the result of Eq. (3), it solely reflects the proximity
between t1 and t2, with no relation to R1 and R2. On the other hand, R =
R1

TR2 represents the disparity between the unknown R1 and R2, and its value
is meaningful only when s approaches 1.

The dimensionality reduction by HSIoU HSIoU gives a naive method for
object pose estimation, it can effectively reduce the search task of six degrees of
freedom in SE (3) space to three. It allows us to first determine the translation t
of the camera pose, and then obtain the rotation R to accomplish pose estima-
tion. To obtain the accurate translation vector t of the camera pose PC

O ≃ ⟨R, t⟩,
we traverse the R3 space. When t takes the value ti, since the rotation R does
not affect the computation of HSIoU, we can set it as an arbitrary rotation
matrix Ri. We set the z-axis of camera points towards the origin of the object
coordinate system for convenience. This configuration is illustrated in Fig. 4 (a).

We denote these poses as {Ri, ti} and use them to render silhouettes {Sren
⟨Ri,ti⟩}.

We then compute HSIoU with respect to the reference silhouette Sref . Then, we
can obtain the pose ⟨R∗, t∗⟩ that yields the maximum s ≈ 1, along with the
corresponding R. This can be expressed using Eq. (8).

s,R = HSIoU(Sren
⟨R∗,t∗⟩,S

ref ,K). (8)
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(b)

objects

T T

virtual camera

(a)

objects virtual cameras

T

T

Fig. 4. Two types of reduced-dimensional pose spaces. (a) is the dimensionality reduc-
tion of the camera pose space after reduction. (b) is the dimensionality reduction of
the object pose space after reduction.

In this way, the camera pose can be represented as PC
O ≃ ⟨R∗R, t∗⟩, and the

object’s pose can be obtained as PO
C = PC

O
−1. During this computation process,

we traverse only the translation vector t = [x, y, z]T ∈ R3, thus, reducing the
dimensions that need to be searched in the pose space.

However, this approach has several limitations. Firstly, traversing only the
translation vector t is not the optimal choice. Considering that the individual
influence of the three dimensions of t on the silhouette does not vary signifi-
cantly, expressing t in spherical coordinates (r, θ, ϕ) would magnify this differ-
ence. Specifically, r primarily influences the size of the area of Sren, while θ and
ϕ have a greater impact on the shape of Sren. This representation can achieve
a certain level of decoupling, providing better properties for exploration within
the pose space. Secondly, the approach calculates the camera pose PC

O and then
converts it into the object pose PO

C , which may seem less straightforward.
Based on the aforementioned approach and its shortcomings, we reduce the

dimensionality of the pose space and provide a more precise definition. This di-
mensionality reduction method is more concise and rational. As shown in Fig. 4
(b), the coordinate of the reduced-dimensional space is denoted as (z, rx, ry),
where z represents the z-coordinate of the object in the camera coordinate sys-
tem, while rx and ry denote the object’s Euler angles around the x and y axes,
respectively, in the camera coordinate system. The dimensions that have been
reduced are x, y, and rz, which are set to 0. x = y = 0 signifies that the origin
of the object lies on the z-axis of the camera coordinate system, aligning with
the earlier approach. Considering that rz corresponds to the in-plane rotation of
the camera, we can indeed set rz = 0.

Thus, to express the mapping relationship from the reduced-dimensional
space to the 6D pose space, we employ the notation PO

C = Pose(z, rx, ry). Given
Sref , we traverse the (z, rx, ry) coordinate space, rendering {Sren

Pose(zi,rxi,ryi)
}

with {Pose(zi, rxi, ryi)} and calculating the HSIoU with respect to Sref . This
process yields the coordinates (z∗, rx

∗, ry
∗) that maximize the proximity mea-
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sure s produced by HSIoU.

s,R = HSIoU(Sren
Pose(z∗,rx∗,ry∗),S

ref ,K). (9)

Based on the aforementioned calculations, the 6D pose of the object can be
expressed as:

PO
C = ⟨RT,0⟩Pose(z∗, rx∗, ry∗). (10)

3.3 Optimized Particle Swarm Optimization

In the previous section, we discussed how to reduce the dimensionality of the
object pose space but did not provide a detailed explanation of how to search for
the global maximum of the variable s in the HSIoU algorithm. In this section,
we utilize an optimized particle swarm optimization (O-PSO) algorithm to ac-
curately and reliably accomplish this task, thereby achieving a good object pose
estimation.

初始化阶段 初始化完成后 正常的粒子群优化迭代 收敛后

(a) (b) (d)(  )c

Fig. 5. Execution process of the optimized particle swarm optimization (O-PSO) algo-
rithm. The color of the particle reflects its corresponding s of HSIoU, with red indicating
a larger value and blue indicating a smaller value. (a) depicts the initialization of the
particle swarm, which is on the spherical surface with a radius of znear and moving
radially. (b) represents the motion during the first stage (prior to P iterations). The
particles gradually accelerate in the radial direction until they reach the radius of zfar.
(c) showcases the motion during the second stage (after P iterations), where particles
start acquiring tangential velocity. (d) illustrates the convergence of O-PSO and the
particles gather around the peak of s.

Due to the non-differentiability of HSIoU, it is not possible to compute the
gradients with respect to (z, rx, ry). Therefore, we choose the Particle Swarm
Optimization (PSO) algorithm [8], which is suitable for finding maximum points
in spaces with unknown gradients. However, PSO is prone to get trapped in local
maxima, and to mitigate this issue, we need a larger number of particles to cover
a wider range, which can affect the convergence speed of the algorithm. As shown
in Fig. 5, taking into account the characteristics of the object pose space after
dimensionality reduction, we propose an initialization and movement strategy for
the particle swarm. This strategy effectively addresses the local optima problem
without introducing an excessive number of particles.
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x,y,z,i

xyzi

O

Fig. 6. Initialization for the coordinate of the particle swarm.

Particle Swarm Initialization. Since rx and ry in the (z, rx, ry) space
represent angles, it follows that rx and ry are in the interval (−π, π]. For the
variable z, we set a search range of [znear, zfar]. Therefore, the search range for the
O-PSO algorithm is [znear, zfar]× (−π, π]× (−π, π]. To initialize the particles, we
first assign initial coordinates to each particle. Assuming we have N particles,
we utilize the Fibonacci sphere algorithm to uniformly sample N points on a
sphere centered at the object with a radius of 1. As shown in Fig. 6, we use
(ai, bi, ci) to represent the coordinates of the i-th particle,

bi = 1− 2i
N−1 ,

ai =
√
1− bi

2 · cos(iϕ),
ci =

√
1− bi

2 · sin(iϕ),
ϕ = (

√
5− 1)π,

(11)

where ϕ represents the golden angle in radians. Then, we convert {(ai, bi, ci)} to
the reduced object pose space, represented as {(zi, rxi, ryi)},

ŷ = [0, 1, 0]T,

ẑi
′ = −[ai, bi, ci]

T,

x̂i
′ = ŷ × ẑi

′,

ŷi
′ = ẑi

′ × x̂i
′.

(12)

Hence, we have the rotation matrix Ri of an object relative to the coordinate
system of the i-th particle,

Ri = [
x̂i

′∥∥x̂i
′∥∥ , ŷi

′∥∥ŷi
′∥∥ , ẑi′]T. (13)

In particular, we use the Euler angle to represent the Ri, that is Ri ≃ ⟨rxi, ryi, rzi⟩.
Subsequently, we replace the zi values in {(zi, rxi, ryi)} with znear, resulting in
{(znear, rxi, ryi)}. This signifies that all N particles are located on a spherical
surface with a radius of znear from the center of the object, which is shown in
Fig. 5(a). Thus, we consider {(znear, rxi, ryi)} as the initial coordinates for the
particles.
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Particle Swarm Movement Strategy. Firstly, we define a random vector
X,

X = (X1, X2, X3) s.t. Xi ∼ U(0, 1). (14)

Then the the velocity v(t)
i = [vzi, vrx i, vry i]

T of the i-th particle at the t-th
iteration can be represented as

v(t)
i =


[(zfar−znear) e

k
P−1 −1
ek−1

e
k

P−1 (t−1), 0, 0]T, t ≤ P − 1

ωv(t−1)
i + c1(p(t−1)

i − x(t−1)
i )+

c2X(g(t−1) − x(t−1)
i ), P ≤ t ≤ K

(15)

where pi represents the position corresponding to the maximum value of s en-
countered during the traversal by the i-th particle, while g denotes the one by
all particles, k is a hyperparameter. And the coordinate x(t)

i = [zi, rxi, ryi]
T of

the i-th particle at the t-th iteration in Eq.( 15) is

x(t)
i =

{
p(t−1)
i , t = P

x(t−1)
i + v(t−1)

i , t ̸= P
(16)

In the first P iterations, the algorithm is at the first stage, which is shown in
5 (b). The velocities vrx and vry are set to 0, while vz increases incrementally.
This setting indicates that the particles only accelerate radially in relation to the
center of the object. This choice is made because, at larger distances from the
center of the object, the impact on silhouette size from the same distance becomes
less significant. Hence, we allow vz to increase with each iteration, resulting in
a longer distance. Upon completion of the P iterations, we set the coordinate
xi of the particle to the maximum point, pi, it has traversed. After P iterations
is the second stage, where we proceed with the standard PSO algorithm. Upon
convergence of the particle swarm (as shown in Fig. 5 (d)), we obtain g =
(z∗, rx

∗, ry
∗), which enables us to compute the object pose PO

C using Eqs. (9-
10).

4 Experiments

In this section, we will substantiate the high precision, texture independence,
excellent generalization, and numerical stability of STI-Pose through a series of
experiments. In this context, the distinctive characteristic of STI-Pose will be
emphasized.

4.1 Experiments Setup

Implementation Details. Our approach involves rendering silhouette images
based on object poses and comparing them with reference silhouette images. We
utilize OpenGL for image rendering and use a fragment shader to output white
color, enabling direct rendering of silhouettes. For contour extraction, we employ
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the "findContours" function from OpenCV. Additionally, if multiple contours
are detected, we select the one with the maximum length to eliminate noise
interference. The pure rotational ICP algorithm is implemented by adapting
the source code of the point cloud registration algorithm from Open3D. We
perform dense interpolation on the back-projected point cloud of the reference
silhouette image contours, while no processing is applied to the back-projected
point cloud of the rendered silhouette image contours. This minimizes point
cloud registration errors as much as possible. The scale map can be computed
offline and stored since it only depends on the image size and the camera intrinsic
K.

We have implemented the particle swarm optimization algorithm ourselves,
with the following settings in Eqs. (15,16): k = 2, inertia weight ω = 0.8, acceler-
ation coefficients c1 = c2 = 0.5, and a maximum iteration limit of K = 200. For
all datasets, the search space for the particle swarm optimization algorithm is
constrained with znear = 400mm, zfar = 1400mm. P is set to 20, and the number
of particles N is set to 50.

Datasets. Currently, the commonly used object pose estimation datasets
includes LM-O [3] and YCB-V [5] . LM-O consists of 8 objects, with a higher
proportion of textureless objects. On the other hand, YCB-V comprises 21 ob-
jects, most of which are symmetrical and have textured surfaces. Since our pro-
posed method requires complete silhouettes, we filtered the test sets of these
two datasets based on occlusion conditions and conducted experiments only on
datasets with occlusion rates below 10%. In our experiments, we employ the
combination of bounding box detector FCOS [28] and SAM [14] to obtain the
object silhouettes. The FCOS detector is provided by CDPNv2 [16].

To demonstrate the STI-Pose is texture-independent, we created two dataset
of objects with various surface textures. The first dataset based on the YCB-V
dataset called YCB-V-NT(YCB-V with new texture), which is a virtual render-
ing dataset. Specifically, we replaced the texture maps of the original objects
in YCB-V with three different texture images. We then rendered the objects
using the ground truth object poses and synthesized the rendered images with
the original ones. The synthesized data is illustrated in Fig. 7. Additionally, we
has curated an dataset comprising 155 images collected from the real world,
called texture replacement dataset from real world(TR-RW). The dataset in-
cludes three variations of identical-shaped cans and two types of industrially
molded components with distinct textures. Pose annotations were manually ob-
tained for accurate positioning. The data is illustrated in Fig.. 8.

Error Metrics. We employ the commonly utilized ADD(-S) metric for the
task of object pose estimation. The ADD metric assesses whether the average de-
viation of the transformed model points falls below 10% of the object’s diameter.
In the case of symmetric objects, the ADD-S metric is utilized to measure the
error as the average distance to the nearest model point. Additionally, we utilize
the Area Under the Curve (AUC) of the ADD(-S) with a maximum threshold
of 10 cm.
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Fig. 7. Samples from the dataset YCB-V-NT rendered using three different textures.
The first, second, and third rows correspond to the textures of grid, stone, and metal,
respectively.

Fig. 8. Samples from the TR-RW dataset.

It is worth noting that, as our method is texture-independent, for objects
with shape symmetry, we will consistently use the ADD-S metric for comparison
with other methods, without considering symmetry in texture.

4.2 Comparison to State of the Art

We compared our STI-Pose with the state-of-the-art methods on the unoccluded
data from YCB-V and LM-O datasets to demonstrate the high accuracy.

Results on YCB-V.We present the results of ADD(-S) and its correspond-
ing AUC in Table 1. Both ZebraPose [26] and GDR-Net [30] are deep learning
approaches based on 2D-3D correspondences, exhibiting exceptional accuracy.
Since our method relies solely on silhouettes and does not consider the inter-
nal textures of objects, we solely consider the object shape symmetry. In the
experimental process, for shape-symmetric objects, Zebrapose, GDR-Net, and
the proposed STI-Pose, all employ ADD-S for evaluation. To ensure fair com-
parisons, Zebrapose and GDR-Net utilize pre-trained models provided by their
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Fig. 9. Visualization of pose estimation results using STI-Pose on the YCB-V and
LM-O datasets. The estimated poses are represented by blue contours overlaid on the
reference images. (a) displays visualizations from the YCB-V dataset, and (b) shows
visualizations from the LM-O dataset.

authors. Additionally, since both methods require RoI as input, we employ the
same detector, FCOS [28], to obtain the RoI images.

Experimental results demonstrate that STI-Pose performs the best. More-
over, STI-Pose extremely accurately estimates the poses of textureless objects
such as the bowl and banana. Our method outperforms others in both metrics
for the bowl object, owing to its symmetry and lack of texture. Thus, deep learn-
ing methods struggle to learn pose-related features based on texture or shape,
whereas our approach solely utilizes silhouette, eliminating such limitations.

Results on LM-O.We compared the STI-Pose with the methods presented
in Table 2. The experiment shows that although STI-Pose does not achieve the
highest accuracy, it exhibits performance comparable to state-of-the-art meth-
ods. It is noteworthy that in LM-O, a significant portion of the object lacks sur-
faces texture or have no texture, yet STI-Pose, a conventional approach, achieves
sufficiently high precision.

It is noteworthy that our methods were directly tested on the evaluation
dataset, confirming the generalization capability of STI-Pose for object pose
estimation on various objects.
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Method
ZebraPose GDR-Net STI-Pose

ADD(-S) AUC-ADD(-S) ADD(-S) AUC-ADD(-S) ADD(-S) AUC-ADD(-S)

master_chef_can 100 94.4 98.3 93.4 100 96.5
cracker_box 100 85.5 100 97.2 100 97
sugar_box 100 94.5 100 95.9 97.3 93.1

tomato_soup_can 100 96.2 100 94.2 100 95
mustard_bottle 100 96.4 100 95.3 100 96
tuna_fish_can 97.3 95.3 94.6 95.4 85 94.1

gelatin_box 86.8 94.7 88.9 94.1 100 94.4
potted_meat_can 100 95.2 100 90.3 100 94.8

banana 100 90.0 100 92.8 100 89.2
pitcher_base 100 92.9 100 90.3 89.7 85.5

bleach_cleanser 100 91.1 97.8 89.7 100 92.4
bowl 62.5 78.5 74.9 81.8 100 95.4
mug 76.0 89.7 72.1 90.5 60 80.8

power_drill 98.8 90.5 100 92.3 100 93.9
large_clamp 98.1 91.0 92.4 83.3 95.2 93.2

extra_large_clamp 100 94.6 100 90.3 93.8 97.6
foam_brick 100 95.2 100 94.6 100 95.8

mean 95.3 92.7 95.2 91.8 95.4 93.2

Table 1. Comparison results between STI-Pose and other state-of-the-art methods on
the YCB-V dataset. The table showcases the ADD(-S) and AUC-ADD(-S) metrics for
each object in %.

4.3 Performance on YCB-V-NT and TR-RW

Although it is evident that utilizing silhouettes allows our method to be texture-
agnostic, we still conducted experiments on two self-constructed datasets YCB-
V-NT and TR-RW, which fully illustrate that existing methods lack texture
generalization.

We conducted comparative experiments on the YCB-V-NT dataset, compar-
ing it with the state-of-the-art ZebraPose, which has shown excellent perfor-
mance in deep learning approaches. The experimental results are presented in
Table 3, where it can be observed that STI-Pose maintains high accuracy even
on the texture-replaced dataset, while the deep learning methods struggle to
achieve correct pose estimation. This indicates that deep learning approaches
fundamentally rely heavily on extracting features from the surface texture of
objects, and their training on data with a specific texture does not generalize
well to objects with different textures. In contrast, our method only requires the
input of silhouettes and is completely independent of object surface textures. As
a result, it naturally possesses texture generalization capabilities.

Furthermore, we also tested STI-Pose on our self-constructed TR-RW dataset,
as shown in Table 4 The experimental results on cans and injection-molded sam-
ples demonstrate that variations in object surface textures, when the shapes are
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Method ADD-S AUC of ADD-S

ZebraPose 91.2 88.1
GDR-Net 78.1 89.6
RePose 80.4 86.5
SO-Pose 74.3 88.9

Ours 90.4 90.0

Table 2. Comparison with state-of-the-art methods on LM-O. We compare our STI-
Pose with these methods using metrics of ADD-S, AUC of ADD-S in %.

Method
ZebraPose STI-Pose

ADD(-S) AUC-ADD(-S) ADD(-S) AUC-ADD(-S)

YCB-V 95.3 92.7 95.4 93.2
YCB-V-NT 4.6 13.3 91.3 92.9

Table 3. Comparison with ZebraPose on YCB-V and YCB-V-NT. We compared our
STI-Pose with the state-of-the-art deep learning pose estimation method, ZebraPose,
using the metrics of ADD(-S) and AUC-ADD(-S) in %.

the same, have negligible impact on the accuracy of our approach. This further
validates the texture-agnostic nature of STI-Pose.

Objects/Metrics ADD(-S) AUC-ADD(-S)

Coca-Cola can 96.8 97.6
Sprite can 100 98.1
Fanta can 100 97.8

Blue injection-molded part 96.8 90.3
Gray injection-molded part 93.5 88.5

Table 4. The experimental results of STI-Pose on the TR-RW dataset.

4.4 Silhouette stability experiments

Due to the utilization of silhouettes as input in STI-Pose, it is essential to in-
vestigate the stability of the algorithm with respect to silhouette extraction
accuracy. In this paper, based on the YCB-V and LM-O datasets, we introduce
various degrees of perturbations to the silhouette images segmented by SAM and
evaluate the accuracy of STI-Pose on perturbed data. We employ the function
δ = A cos(x) as a random perturbation method. For each silhouette edge point,
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a random value x is chosen to calculate the perturbation value δ, and the point
is displaced along the normal direction by δ to obtain the new silhouette image.
In this perturbation data generation method, the amplitude A determines the
perturbation magnitude. During actual generation, different values ranging from
0 to 2.5 are used to simulate various silhouette extraction accuracies. The visual
effects of silhouettes under different perturbation amplitudes are illustrated in
Fig. 10.

A=0 A=0.5 A=1.0 A=1.5 A=2.0

ape

cat

duck

Fig. 10. Silhouette images under different perturbation amplitudes.

Datasets/A 0 0.25 0.5 1 1.5 2 2.5

YCB-V 1 1.06 1.14 1.23 1.33 1.57 1.85
LM-O 1 1.04 1.11 1.18 1.35 1.52 1.77

Table 5. The relative change in estimation error of STI-Pose as the silhouette pertur-
bation amplitude varies.

Table 5 presents the relative changes in the ADD(-S) values of STI-Pose
under both unperturbed and perturbed data at different amplitude levels. The
data in the table represent the relative change rates of the ADD(-S) distance
values. It can be observed that as the perturbation level increases, STI-Pose
initially maintains stability until a significant decrease in accuracy occurs when
the perturbation becomes excessive. This may be attributed to the calculation of
Intersection over Union (IoU). The results indicate that the proposed method ex-
hibits a certain tolerance to silhouette extraction accuracy, effectively addressing
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potential issues of inaccurate object silhouette extraction in practical applica-
tions.

4.5 Ablation Study on YCB-V

Exp.
Module Selection Evaluation Metrics

W O-PSO ADD(-S) AUC-ADD(-S)

1 63.7 73.2
2 ✓ 65.6 75.3
3 ✓ 85.6 90.4
4 ✓ ✓ 95.4 93.2

Table 6. Ablation Study on YCB-V. We conducted ablation experiments on the weight
map and O-PSO in STI-Pose, and the results are represented in % using ADD(-S) and
AUC-ADD(-S).

We conducted ablation experiments on the YCB-V dataset to examine the
effects of the weight map W and O-PSO. Specifically, the weight map W was
used to calculate the IoU on a spherical surface, while the calculation was per-
formed on a planar surface otherwise. In the absence of the proposed O-PSO
algorithm, we employed a regular PSO algorithm with parameters aligned with
those of O-PSO.

The experimental results, as depicted in Table 6, clearly demonstrate the
significant performance improvement achieved with O-PSO. This improvement
indicates its ability to assist STI-Pose in reliably locating the global maximum.
Furthermore, the inclusion of the weight map W leads to further precision en-
hancement when using O-PSO. However, without O-PSO, the impact of the
weight map is less pronounced. This is because, in scenarios near non-global
maximum points, the improvement in HSIoU precision brought about by the
weight map does not directly translate into improved pose estimation accuracy.

5 Conclusion and Outlook

In summary, we propose a silhouette-based 6D object pose estimation method,
achieving high accuracy in the experiments. This method eliminates the need for
annotated data, overcoming the limitations of deep learning-based pose estima-
tion methods that can only handle several objects in the datasets. Furthermore,
this method does not rely on object surface characteristics, exhibiting excel-
lent generalization on objects with similar structures but different appearances,
and demonstrated that achieving reasonably accurate object pose estimation is
possible solely through silhouette information.
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The use of silhouettes is the key factor in achieving generalization in our
approach. However, relying solely on silhouettes comes with several limitations.
STI-Pose requires precise and complete silhouette as input, and when an object
is occluded, silhouettes may not be effectively extracted, making the method in-
effective. In cases where silhouette ambiguity arises due to symmetry, STI-Pose
can align silhouettes but may not provide correct pose values. Therefore, we plan
to improve the method for assessing silhouette overlap in future work, enhanc-
ing the occlusion tolerance of HSIoU. Furthermore, while we have demonstrated
that using only silhouette information can achieve satisfactory object pose es-
timation, completely disregarding texture information is not an optimal choice.
We plan to consider object texture as an optional attribute and incorporate it
into the HSIoU calculation. This integration aims to address potential silhouette
ambiguity issues by leveraging texture information when needed.
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