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Abstract. The extraction of robust feature descriptors is crucial for achieving
accurate point cloud registration. While the attention mechanism plays an im-
portant role in enabling sparse point features to learn global position-aware con-
textual information, the high sparsity at sub-sampled points can yield ambiguity
in the corresponding features due to the loss of fine-grained structural informa-
tion. In this paper, we propose TopFormer, a topology-aware Transformer that
leverages surface-based geodesic topology to learn robust feature descriptors for
point cloud registration. In particular, we design a topological structure encod-
ing to capture point-pair surface-based structure in a sparse-through-dense man-
ner. It couples the geodesic distance with the normal-based directional informa-
tion, which provides a strong topological relation between each point pair. The
proposed sparse-through-dense strategy is achieved by querying the information
(e.g., geodesic distance) calculated from the dense point cloud for a pair of sparse
points that exist in the dense point cloud. By doing so, the Transformer is able to
learn feature descriptors that are more aware of the surface-based structural infor-
mation. We evaluate the performance of our method on both indoor and outdoor
datasets with different point cloud pair overlapping ratios. Experimental results
show that our approach produces higher registration recalls than state-of-the-art
techniques.
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1 Introduction

Given a pair of partially overlapped point clouds, point cloud registration seeks to esti-
mate the relative posture and further predict the transformation to align them together.
This is a long-existing and fundamental task in the visual media and 3D vision field [23,
24], which can facilitate a wide range of practical scenarios such as autopilot, VR/AR
applications, and automated robot positioning, among others. As 3D imaging devices
such as RGB-D cameras, structured light scanners, and LiDAR become more com-
mercially available, point cloud registration has gained noticeable attention from re-
searchers recently [7, 2, 17].

While the attention mechanism [33] originated from natural language processing
[28], it has witnessed huge successes in various multimedia and vision tasks [5, 22, 6,
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Fig. 1. Consider two points located at the top of a chair (the yellow star) and the corner of a desk
(the red dot), respectively. As illustrated by the green lines (the shortest paths) in (a) and (c), they
are close to each other in Euclidean space, and meanwhile are distant from each other along the
surface. These characteristics are straightforward in dense points, which, however, is difficult to
observe in sparse points. Our TopFormer proposes the sparse-through-dense encoding to capture
surface-based topological structure that helps mitigate the correspondence error (see (b) and (d),
where red lines represent the wrong matches).

18]. Recent research [16, 35] has adopted the attention mechanism in the point cloud
registration task, resolving the matching ambiguity brought by the limited perception
field of convolution-based neural networks, e.g., Kernel Point Convolution (KPConv)
[32]. While the architecture of the Transformer allows for the interactions between each
sparse point and all other sparse points within a given point cloud pair, it tends to over-
look the ordering and position of those points. Recent works overcome such issues by
either fusing the point-wise position to the sparse point features [41] or injecting point-
pair relative position information into the Transformer [21, 27] to mitigate the potential
ambiguity caused by the lack of non-local geometry information. Nevertheless, am-
biguity among features might still arise under circumstances where two sparse points
are spatially close but geodesically distant. As illustrated in Figure 1, considering two
points located on a chair and a desk corner, simply merging relative position information
to the local feature fails to overcome the feature ambiguity due to two reasons. 1) They
share similar local geometry structures since they lie in the vicinity of one another. 2)
The inserted relative position information fails to provide distinguishable information
for them since they are close to each other in Cartesian space.

Human vision tends to perceive a point cloud as multiple surfaces and can fur-
ther deduce the underlying topology (i.e., neighborhood relationships among points).
By determining this, humans can easily identify the ambiguity of geometrically close
but semantically faraway points. Motivated by this, we propose TopFormer, a novel
point cloud registration approach that captures the fine-grained surface-based geodesic
topology information. In particular, we design a topology structure encoding to fuse
the surface-based geodesic distance with the normal-based directional information in a
sparse-through-dense manner. More specifically, given a pair of sparse points that exist
in the dense points, we obtain their geodesic distance by querying this information from
dense points. It provides strong cues for learning discriminative features, especially for
sparse points that are spatially close while geodesically distant. Then, we strengthen
the encoding by fusing the geodesic distance with the normal-based directional infor-
mation. The designed directional information overcomes the issue of normal orientation
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due to arbitrary poses since it is invariant against unoriented normals, as illustrated in
Figure 2. Finally, we aggregate the encoding with the sparse local-based geometry fea-
tures extracted from KPConv and adopt self-attention layers to learn global contextual
features that are aware of topological structural information.

We evaluate the proposed TopFormer on 3DMatch [43] and KITTI [12] datasets.
Extensive experiments show that our TopFormer outperforms state-of-the-art methods,
demonstrating the effectiveness of our proposed method. Our contributions are:

– We propose TopFormer, which is capable of learning topology-aware structural
features, yielding robust correspondence predictions.

– We design a topology structure encoding and a sparse-through-dense strategy to
capture the pair-wise surface-based information.

– We conduct extensive experiments on the proposed method and compare the results
with the state-of-the-art approaches, demonstrating the effectiveness of our method.
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Fig. 2. An illustration of the invariance against unoriented normals. Given two sparse points p
and q and their oriented normals n⃗p and n⃗q , we can obtain the corresponding angle α and β.
The unoriented normals might point in the opposite direction, represented by f⃗p and f⃗q . Our
proposed topological structure encoding ensures the invariance against unoriented normals since
α+ αf = β + βf = π and therefore sin(α) = sin(αf ) = sin(β) = sin(βf ).

2 Related Work

Local feature descriptors. In general, most point cloud registration methods follow a
four-step pipeline: 1) extract feature descriptors, 2) form correspondences based on the
similarity of the features, 3) reject the correspondences outliers (e.g., RANSAC), and 4)
compute the transformation matrix with Singular Value Decomposition (SVD). Exten-
sive research has been focused on the first yet the most crucial step. Zeng et al. [43] used
a 3D convolution network to extract local feature descriptors from the truncated volu-
metric grid. Inspired by it, Gojcic et al. [13] leveraged the local reference frame (LRF)
and proposed the smoothed density value (SDV), enabling sensor modalities general-
ization. Although pioneer works show promising results, they have limitations as they
only consider local structural information of randomly sampled blocks. This makes
it difficult to strike a balance between computational efficiency and repeatability. To
overcome this, Deng et al. [8] built the local geometry representation by exploiting the
hand-crafted Point Pair Feature (PPF) [10] and then used PointNet [26] to learn local
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features that are aware of the global context. Bai et al. [3] took an alternative approach
and resorted to KPConv [32] to directly consume the unstructured point cloud. Then the
extracted point features are supervised by a descriptor loss and detector loss in a joint
learning fashion. Despite the high performance across different datasets, this method
suffers from 1) limited perception fields of the convolution operation, and 2) the lack of
awareness of the information from the other point cloud fragment. A milestone work,
Predator [16], addressed the above-mentioned limitations by incorporating the graph
neural network (GNN) [37] and Transformer [33] to respectively strengthen contextual
information and allow mutual information exchange.

Transformers have witnessed significant breakthroughs in many fields including
natural language processing [28] and 2D/3D visual data processing [25, 44], among oth-
ers. Early attempts for adopting Transformers to point cloud registration usually over-
look the position/structural information of the point cloud and instead feed the high-
level point features directly into the Transformer [35, 42]. To fill the information gap
between the unordered point cloud and Transformer, some recent works concentrated
on combining the high-level point features input with structural-revealing embeddings.
Li et al. [21] proposed to insert relative positional encoding in sparse point features to
mitigate the ambiguity of the repetitive geometry patterns in the point cloud scene data.
Likewise, Qin et al. [27] introduced the non-local geometric structure encoding, which
strengthens the geometrical discriminability of the learned sparse point features, and on
the other hand, provides transformation-invariant structural information for extracting
robust features from point clouds with arbitrary poses. Yet, sparse points themselves are
topologically less representative, leading to ambiguity in feature space, particularly for
the spatially close but geodesically distant points. Different from the above methods,
our insight is to design a topology structure encoding aiming to mitigate such ambigu-
ity.

End-to-end registration. Another line of research is to estimate the transforma-
tion in an end-to-end manner. Following the pioneering work Iterative Closest Point
(ICP) [4], researchers focus on employing deep learning techniques to predict soft cor-
respondences iteratively, and the transformation parameters can be obtained by solving
a weighted-SVD on the soft correspondences [35, 36, 40]. They effectively alleviate
the issue of falling into local optima in the ICP method. Xu et al. [38] adopted the
overlapping mask in the iterative process and aggregated the global feature with a max-
pooling operation. Although it achieves nice performance in partial object data registra-
tion tasks, it yields less satisfactory results when applied to scene data. Yew et al. [41]
took an alternative approach and directly predicted the final set of correspondences in
the sparse point level by exploiting the powerful attention mechanism.

3 Methodology

Our approach adopts a coarse-to-fine pipeline inspired by established methods such as
CoFiNet [42] and GeoTransformer [27]. The method unfolds in a structured sequence
comprising five key steps: local feature extraction, global contextual feature extraction,
sparse points matching, dense points refinement, and RANSAC outliers removal. Lo-
cal geometry features are first extracted from the point clouds with KPConv. We then
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develop a topological structure encoding in a sparse-through-dense manner with the
points in different sparsities outputted by KPConv. The encoding is further packed with
local features and fed into the Transformer to aggregate global context while enabling
mutual information exchange between two point clouds. We leverage the sparse points
matching module to generate loose correspondences, which are subsequently used as
constraints to obtain dense-level correspondences. Finally, RANSAC is applied to the
dense-level correspondences, and the transformation that aligns two point clouds can
be computed. Figure 3 illustrates the overview of our proposed method.
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Fig. 3. Illustration of our method. Dense and sparse points and their corresponding local features
are extracted from the KPConv encoder. Points in different sparsities are then utilized to gen-
erate topological structure encoding which is merged with the sparse local features to perform
self/cross-attention. We compute a confidence matrix from ΨX and ΨY to obtain sparse point
matches, which are used as constraints for selecting dense correspondence C̈i. We employ a
learnable optimal transport module for dense point refinement and further select the mutual top-k
matches as the final correspondence.

3.1 Problem Definition

Given two point clouds X ∈ Rm×3 and Y ∈ Rn×3 which share sufficient overlap,
our task is to establish a set of correspondences C∗ = {(Cxi,Cyi)|Cxi ∈ R3,Cyi ∈
R3, i = 1, . . . , t}. Then the rigid transformation TY

X = {R ∈ SO(3), t ∈ R3} that
aligns X to Y can be optimized by solving the following equation:

R, t = min
R,t

∑
(Cxi,Cyi)∈C∗

∥R · Cxi + t− Cyi∥22 (1)
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3.2 Local Feature Encoder

KPConv is a typical local feature extractor that is proven to be feasible and efficient
for the point cloud registration task [3, 16]. We follow these works and employ such
convolution strategies to design a network κ(·) which consists of a chain of ResNet-
based [14] convolutional layers and multiple downsampling layers.

{Ẋ, ḞX , Ẍ, F̈X} = κ(X), {Ẏ, ḞY , Ÿ, F̈Y } = κ(Y ), (2)

where Ẋ ∈ Rm′′×3 and Ẏ ∈ Rn′′×3 are the down-sampled points from the sparse layer.
ḞX ∈ Rm′′×df and ḞY ∈ Rn′′×df are the corresponding features. df is the feature
dimension. Similarly, Ẍ ∈ Rm′×3, Ÿ ∈ Rn′×3, F̈X ∈ Rm′×df , and F̈Y ∈ Rn′×df are
the points and their corresponding features from the dense layer. Note that instead of
using grid sampling to sub-sample the point cloud, we employ Furthest Point Sampling
(FPS) to ensure Ẋ ∈ Ẍ and Ẏ ∈ Ÿ, which will facilitate our proposed sparse-through-
dense encoding. It will be elaborated in Section 3.3.

3.3 Topology-Aware Transformer
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Fig. 4. An illustration of our topological structure encoding. Considering two sparse points p and
q (represented by red and blue dots, respectively), we first build a KNN graph on dense points
(grey dots), then the shortest path (i.e., geodesic distance, represented by green arrow) from p to
q through dense points (aquamarine dots) can be computed progressively. The final topological
structure encoding comprises the geodesic distance and the directional information.

Point-wise features extracted from the local feature encoder are merely dependent
on the geometry relation in a local patch. Therefore, points at spatially disjoint positions
that share similar local structures can be ambiguous in feature space due to the narrow
perception field. To tackle this problem, Transformer has been widely used to strengthen
global contextual information for the point cloud registration task [16, 27, 21, 35, 42,
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41]. Early attempts directly feed the local geometry-based features to the Transformer,
making the learned features spatially less distinctive at the global level [16, 35, 42].
This is later refined by either injecting point spatial information [41] or employing
additional relative position encoding [27, 21] to the input features. Nevertheless, these
methods only take into account the rough structural information of the sparse/super
points, neglecting the underlying fine-grained topological structure.

Motivated by the analysis, we propose TopFormer which leverages the sparse-through-
dense geodesic distance information, to allow the Transformer with sparse point-wise
features input to perceive the dense-level topological information.

Topological structure encoding. To capture the fine-grained surface-based struc-
tural information in sparse points, we design a novel topological structure encoding in
a sparse-through-dense manner. Its visualization is shown in Figure 4.

To encode the dense point topological structure into sparse features, we first con-
struct a dense graph Gx on the dense points Ẍ by connecting ∀p ∈ Ẍ to their K-nearest-
neighbours (KNN) with a radius constraint τ :

Gx = (Ẍ, E), (3)

where E = {(i, j)|i, j ∈ Ẍ, j ∈ KNN(i), ∥i− j∥2 < τ}. And ∥ · ∥2 is the Euclidean
norm. Given two sparse points p, q ∈ Ẋ, we can further compute its geodesic distance
gpq ∈ R1 from p to q through performing shortest path algorithms such as Dijkstra’s
[9], Floyd-Warshall [11] and Johnson’s algorithms [19] on the dense graph G. Similar to
previous methods [15], Dijkstra’s algorithm is selected in our experiments. We propose
to use point normal to strengthen the directional information between p and q. However,
directly utilizing the normal can be problematic since the normal estimated by Principal
Component Analysis (PCA) is usually unoriented. On the other hand, the point cloud in
the registration task can be in arbitrary poses, making it difficult to reorient the normal
consistently. To deal with the dilemma, we take an alternative strategy and use the sine
value of the angles involving the normals, ensuring the invariance against unoriented
normals (see Figure 2). The topological structure encoding t̂pq ∈ Rdf can be defined
as follows:

t̂pq = S([gpq; ∥d⃗pq∥2; sin(∠(n⃗p, d⃗pq)); sin(∠(n⃗p, n⃗q))]), (4)

where S(·) ∈ R4×df is the sinusoidal mapping function [33], [·; ·] is the concatenation
operation, d⃗pq is the vector from p to q. n⃗p and n⃗q are the sparse point normals. Normals
are estimated at the dense point level by performing PCA on the local neighborhoods E
that surround each point. ∠(⃗a, b⃗) is the angle between a⃗ and b⃗.

Topology-aware self-attention. The self-attention module enables each point in the
point cloud to interact with every other point within the point cloud. By leveraging this
mechanism, we are able to jointly learn the local-based geometry features associated
with the intrinsic global topological correlation among the sparse points. Given a point
p ∈ Ẋ and its corresponding feature fp, we first compute its topological structure
encoding according to Eq. (4) with respect to all points in Ẋ, forming Tp ∈ Rm′′×df .
Then the self-attention output SX

p with respect to p can be formulated as follows:

SX
p = softmax(

fpW
Q · (ḞXWK + TpW

E)T√
df

) · ḞXWV , (5)
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where WQ, WK , WV , WE ∈ Rdf×df are learnable matrices of weights.
Mutual information exchange. We also adopt cross-attention to enable feature

interaction between the two point clouds, allowing the pair to perceive each other. Given
the features SX ∈ Rm′′×df and SY ∈ Rn′′×df outputted by the self-attention module,
the cross-attention can be formulated as:

C(K,Q, V ) = softmax(
QWQ · (KWK)T√

df
) · VWV , (6)

then the K (key), Q (query), and V (value) for X are SX , SY and, SY , respectively.
And similarly, for Y are SY , SX , and SX , respectively.

3.4 Sparse Point Matching

To bridge the features ΨX and ΨY extracted from the Transformer with the correspon-
dence proposals, we utilize the normalized features ΩX = norm(ΨX) and ΩY =
norm(ΨY ) to compute a Gaussian correlation matrix S ∈ Rm′′×n′′

:

S = exp(2(ΩXΩT
Y − 1)). (7)

We further use a dual-normalization operation [29] to suppress the ambiguity caused
by the geometrically less distinguishable patches (e.g., large flat surface in scene data):

s̄i,j =
si,j∑m′′

k=1 si,k
· si,j∑n′′

k=1 sk,j
. (8)

Finally, the top-k largest value entries of S̄ are selected to be the matched sparse
point pairs:

Ċ = {(ẋi, ẏj)|(i, j) ∈ topki,j(S̄)}. (9)

3.5 Dense Points Refinement

The points matched in the sparse level are only able to provide coarse correspondences,
meaning that given an optimal match point pair (ẋi, ẏj) ∈ Ċ, ẏi is not guaranteed to
be in the vicinity of ẋi. We use the dense points to further refine the coarse correspon-
dences. Following [42, 20], given a point cloud X , its dense points Ẍ are assigned to
their nearest sparse points. Then a local patch PX

i ∈ Rl×3 with respect to a sparse point
ẋi ∈ Ẋ can be defined as follows:

PX
i = {ẍ ∈ Ẍ|i = argminj(∥ẍ− ẋ∥2), ẋ ∈ Ẋ} (10)

Similarly, the local patch PY
j ∈ Rk×3 with respect to a sparse point ẏj ∈ Ẏ can

be constructed in the same way. Then the corresponding patch features ΘX
i and ΘY

j are
obtained from dense points’ features Ẍ and Ÿ, respectively.

Given a coarse correspondence (ẋi, ẏj), we use an optimal transport layer [30] to
sort out the correspondences from dense point patches ΘX

i ∈ Rl×df and ΘY
j ∈ Rk×df .
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Concretely, we compute the correlation matrix Oi ∈ R(l+1)×(k+1) with additional row
and column as slack entries:

Oi =

[
ΘX

i (ΘY
j )T z

zT z

]
, (11)

and all slack entries are filled with a learnable parameter z. Then the Sinkhorn Algo-
rithm [31] is applied to Oi, allowing points without the target match (e.g., points at
non-overlapping area) to match their corresponding slack entries. The dense match-
ing score matrix Di ∈ Rl×k can be recovered from Oi by dropping all slack en-
tries (i.e., the last row and column). We select the final dense point correspondences
C̈i ∈ Rl′×k′

(l′ ⩽ l, k′ ⩽ k) by picking up the mutual top-k entries on Di:

C̈i = {PX
i (k), PY

j (l)|(k, l) ∈ mutual topkk,l(Di)}. (12)

The final output correspondences can be formulated as C∗ =
⋃|Ċ|

i C̈i, which is the
union of Eq. (12) throughout all matched sparse point correspondences.

3.6 Loss Function

Our supervision loss function L = Ls+λLd comprises two parts: sparse matching loss
Ls and dense matching loss Ld.

Sparse matching loss. For the sparse point features, we attempt to minimize the L2

distance of the matched point features in a metric learning manner. Similar to [16, 27],
we employ a weighted circle loss to minimize the feature distance of a given ωX

i ∈ ΩX

and its ground truth matches ωY
i ∈ GY

Xi
(positive pair), and meanwhile maximize the

feature distance of ωX
i and ωY

i ∈ ĜY
Xi

= ΩY \ GY
Xi

(negative pair). The ground truth
matches GY

Xi
is defined as the corresponding features of the sparse points ẏj ∈ Ẏ

whose dense patch PY
j shares over 10% overlap ratio with PX

i . As for X , we select
ωX
i with both positive and negative pairs, forming ΛY

X . The loss with respect to X can
be formulated as:

LX
s =

1

|ΛY
X |

∑
ωX

i ∈ΛY
X

log[1 +
∑

ωY
j ∈GY

Xi

eλ
j
iβ

i,j
p σi,j

p ·
∑

ωY
k ∈ĜY

Xi

eβ
i,k
n σi,k

n ], (13)

the positive pair σi,j
p = dji − ∆p and the negative pair σi,k

n = ∆n − dki , where dji =

∥ωX
i − ωY

j ∥2, and the positive and negative margins are ∆p = 0.1 and ∆n = 1.4,
respectively. And the weights are defined as βi,j

p = γσi,j
p and βi,k

n = γσi,k
n for positive

and negative pairs, respectively. An additional overlap weight λj
i =

√
oij is used to

emphasize the positive pairs that share a higher overlapping ratio. oij is the overlap ratio
between PX

i and PY
j . The total sparse point loss is formulated as Ls = (LX

s +LY
s )/2,

where LY
s can be calculated in a similar way to Eq. (13) with respect to Y .

Dense matching loss. For the dense point, given a pair of matched patches Pk =
{PX

i , PY
j }, the dense matching loss aims to maximize the matching score Di at the
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entries of matched points Mi. The matched points Mi are selected with a matching
threshold τd. For the unmatched points UX

i ∈ PX
i and UY

j ∈ PY
j , the loss tries to

maximize the scores at the corresponding slack entries. The dense matching loss is thus
formulated as follows:

Ld,k = −
∑

(x,y)∈Mi

logDi
x,y −

∑
x∈UX

i

logDi
x,k+1 −

∑
y∈UY

j

logDi
l+1,y, (14)

where Di is the dense matching score matrix. The total dense matching loss is the
average sum of Nd matched patches: Ld = 1

Nd

∑Nd

k Ld,k.

4 Experiments

4.1 Implementation

Our method is implemented in PyTorch and we use Adam optimizer during the training
stage with an initial learning rate of 1e-4 and a decay rate of 0.95 for every epoch and
a weight decay of 1e-6. All the training is conducted on an Nvidia A100 GPU. For
the 3DMatch dataset, we train the network for 20 epochs with a batch size of 1, which
requires approximately 24 hours. For the KITTI dataset, the network is trained for 160
epochs with a batch size of 1, which requires approximately 12 hours.

4.2 Indoor Scene: 3DMatch

The 3DMatch dataset [43] is an indoor scene dataset for the point cloud registration
task. The dataset contains 46, 8, and 8 scenes for training, validating, and testing, re-
spectively. Following [16], we further split the test set into two evaluation sets based on
their overlapping ratio, namely 3DMatch, and 3DLoMatch. Specifically, after removing
the scene pairs with an extremely low overlapping ratio (i.e., less than 10%), we cate-
gorize those with an overlapping ratio of less than 30% as 3DLoMatch, while the rest
were included in the 3DMatch evaluation set.

We follow [16] and compare experimental results with state-of-the-art methods us-
ing different correspondence numbers: PerfectMatch [13], FCGF [7], D3Feat [3], Spin-
Net [1], Predator [16], YOHO [34], CoFiNet [42], and GeoTransformer [27].

Evaluation metrics. Following [16], we report three metrics: (1) Inlier Ratio (IR),
(2) Feature Matching Recall (FMR), and (3) Registration Recall (RR) to evaluate the
performance of our method. The first two evaluate the quality of the predicted cor-
respondence under the ground truth transformation. IR measures the fraction of the
correspondence with a distance less than 0.1m compared with the ground-truth trans-
formation and FMR estimates the fraction of the point cloud whose inlier ratio is over
5%. RR calculates the fraction of the point cloud pairs whose transformation RMSE is
less than 0.2m, showing the quality of the final putative alignment.

Correspondence results. As shown in Table 1, despite that the feature matching
recall is nearly saturated for the 3DMatch evaluation set, with CoFiNet [42] achiev-
ing over 98%, our method still outperforms all state-of-the-art methods consistently by
0.4 ∼ 0.6 percentage points. Similarly, our performance on the 3DLoMatch evaluation
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(c) TopFormer (d) Vanilla Transformer(b) ground truth(a) input (d) GeoTransformer

3DLoMatch 
Overlap ratio: 19.5%

3DMatch 
Overlap ratio: 43.1%

KITTI 
Overlap ratio: 68.4%

Fig. 5. Qualitative registration examples on both indoor and outdoor datasets with different over-
lap ratios.

set reaches around 88% consistently across most correspondence numbers. It surpasses
GeoTransformer [27] by 0.2 ∼ 1.4 percentage points, despite the slightly weaker per-
formance at the correspondence number of 250. For the inlier ratio, our method achieves
comparable results at larger correspondence number cases (i.e., 5k and 2.5k). Although
it fails to outperform GeoTransformer [27], it still dominates all other methods, surpass-
ing Predator [16] by a large margin of 10.5 percentage points. Our method sees more
significant improvement at low correspondence number cases (i.e., less than 2.5k). De-
spite the fluctuation at the 500 correspondence number, our other results outweigh those
of GeoTransformer [27] with increasing 1.5 ∼ 6.9 percentage points. Moreover, our
method surpasses the third-best methods (i.e., YOHO [34] or CoFiNet [42]) on both
3DMatch and 3DLoMatch by a large margin of 7.3 ∼ 34.8 percentage points.

Registration results. Registration recall directly reflects the success rate of the final
registration, which is the dominant indicator of registration performance. We compare
our registration results following [16]. Specifically, we run 50K RANSAC iterations on
the established correspondence to estimate the final transformation. In general, Table
1 shows that our method outperforms state-of-the-art methods, regardless of the over-
lap ratio of the evaluation set. For the 3DMatch set, we obtained the best registration
recall using 5k correspondence, achieving 92.4%. It surpasses GeoTransformer [27]
(rank 2nd) and YOHO [34] (rank 3rd) by 0.4 and 1.6 percentage points, respectively.
Improvements in the results with smaller correspondence numbers also demonstrate
the effectiveness and robustness of our method. For the 3DLoMatch set, our method
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Table 1. Evaluation results on 3DMatch and 3DLoMatch, with the top and second-ranking results
highlighted in bold and underlined, respectively.

3Dmatch 3DLoMatch
#Samples 5k 2.5k 1k 500 250 5k 2.5k 1k 500 250

Feature Matching Recall %

PerfectMatch [13] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [7] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [3] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [16] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [34] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [42] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer [27] 97.9 97.9 97.9 97.9 97.6 87.2 87.2 86.8 87.4 87.1
TopFormer 98.6 98.7 98.7 98.4 98.5 87.8 88.1 88.2 87.6 86.8

Inlier ratio%

PerfectMatch [13] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [7] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [3] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [1] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [16] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [34] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [42] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer [27] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
TopFormer 71.7 76.6 82.8 82.3 87.0 37.2 45.4 53.1 56.7 59.2

Registration Recall %

PerfectMatch [13] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [7] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [3] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [16] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [34] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [42] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer [27] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
TopFormer 92.4 92.1 92.1 91.4 91.4 75.1 75.7 74.3 74.3 74.0

exceeds GeoTransformer [27] (rank 2nd) by 0.1 ∼ 0.9 percentage points and CoFiNet
[42] (rank 3rd) by at least 7.6 percentage points.

4.3 Outdoor Scene Data: KITTI

The KITTI odometry dataset [12] is an outdoor driving scene dataset consisting of 11
LiDAR-scanned sequences. Following [16, 7], we split the sequences into three parts:
0-5, 6-7, and 8-10 for training, validating, and testing, respectively. According to [7, 3],
the provided ground truth poses are refined with ICP [4] and we only evaluate those
point cloud pairs that are less than 10 meters away from each other.

Evaluation metrics. We follow [16] and report the Relative Translation Error (RTE),
Relative Rotation Error (RRE), and Registration Recall (RR). RTE is defined as the L2

norm of the deviation between the predicted and ground truth translation vector, i.e.,
RTE = ∥t− tgt∥2. The RRE is defined as the follows:

RRE = arccos(
tr(RT ·Rgt − 1)

2
), (15)
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where tr(·) is the trace operator. R and Rgt are the predicted rotation matrix and the
ground truth rotation matrix, respectively. RR is calculated as the fraction of the point
cloud pairs whose RRE and RTE are both below certain thresholds (i.e., RRE < 5◦

and RTE < 2m).

Table 2. Evaluation results on KITTI, with the top and second-ranking results highlighted in bold
and underlined, respectively.

Model RTE (cm) RRE (◦) RR (%)

3DFeat-Net[39] 25.9 0.25 96.0
FCGF[7] 9.5 0.30 96.6
D3Feat[3] 7.2 0.30 99.8
SpinNet[1] 9.9 0.47 99.1
Predator[16] 6.8 0.27 99.8
CoFiNet[42] 8.2 0.41 99.8
GeoTransformer[27] 7.4 0.27 99.8

TopFormer 6.7 0.27 99.8

Registration results. We compare our results with the state-of-the-art methods:
3DFeat-Net[39], FCGF [7], D3Feat [3], SpinNet [1], CoFiNet [42], and GeoTrans-
former [27] in Table 2. For registration recall, all state-of-the-art approaches perform
strongly on the dataset and have achieved over 95%. A majority of them even achieved
a nearly saturated score of 99.8%. Interestingly, our method also shows strong capabili-
ties in outdoor scenarios, reaching 99.8%. For RRE, TopFormer is slightly weaker (0.02
degree) than 3DFeat-Net [3]. However, it surpasses D3Feat-Net [3] in terms of RTE by
a large margin of 19.2 cm. Moreover, the proposed TopFormer also beats the strong
competitor Predator [16] by 0.1 cm, thus highlighting the robustness of our proposed
approach.

4.4 Ablation Study

To demonstrate how each component contributes to the overall performance, we con-
duct a series of ablation experiments and follow [27] to report Inlier Ratio (IR), Feature
Matching Recall (FMR), Registration Recall (RR), and an additional metric Pair Inlier
Ratio (PIR) that measures the fraction of the sparse point patches with the actual over-
lap. The ablation experiments are trained and evaluated on 3DMatch with both high
and low overlap benchmarks. The results are listed in Table 3 which can answer the
following questions:

Is the Topological Structure Encoding useful? Removing the proposed Topologi-
cal Structure Encoding from TopFormer makes it degenerate into a Vanilla Transformer.
It fails to take into account either the global position information or the structural in-
formation of the input feature, causing ambiguity when dealing with locally similar but
globally faraway points. The evaluation results in Table 3 show that the performance of
the Vanilla Transformer is significantly weaker than the proposed TopFormer. Specifi-
cally, the registration recall of the Vanilla Transformer is inferior to that of TopFormer
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Table 3. Ablation study results on 3DMatch & 3DLoMatch, with the top result highlighted in
bold.

3Dmatch 3DLoMatch
Method PIR FMR IR RR PIR FMR IR RR

Vanilla Tranformer 79.5 97.5 63.1 89.7 45.0 85.2 31.6 67.4
w/o normal 84.4 98.5 67.9 91.9 48.4 87.9 35.1 73.9
w/o geodesic distance 83.6 98.1 69.9 90.3 48.8 87.5 37.1 72.3
Default 85.3 98.6 71.7 92.4 51.8 87.8 37.2 75.1

by 2.7 percentage points and 7.7 percentage points for 3DMatch and 3DLoMatch, re-
spectively. All other metrics also show the remarkable capability of the proposed Topo-
logical Structure Encoding. In particular, benefiting from the strong topological infor-
mation captured by this module, the inlier ratio of Vanilla Transformer is surpassed
by TopFormer by a large margin of 8.6 percentage points and 5.6 percentage points
for 3DMatch and 3DLoMatch, respectively. Visual comparisons between the Vanilla
Transformer and TopFormer are shown in Figure 5.

Does the sine-based directional information make sense? The directional rela-
tionship information between two sparse points is depicted by the sine value of the angle
involving the normals of the corresponding sparse points. Here we try to remove both
cos(∠(n⃗p, d⃗pq)) and cos(∠(n⃗p, n⃗q) from the Topological Structure Encoding while re-
maining the other components. Results show that the performance is weakened for both
high and low overlap benchmarks by 0.5 percentage points and 1.2 percentage points,
respectively. This confirms the usefulness of our introduced sine-based directional in-
formation between two sparse points.

How important is the geodesic distance? The topological information of the point
cloud is mainly captured by the geodesic distance. To demonstrate the effectiveness of
the injected surface-based structural information, the geodesic distance is removed from
the Topological Structure Encoding while maintaining the other components. From Ta-
ble 3, the registration recall observes a significant drop from 92.4% to 90.3% and from
75.1% to 72.3% for 3DMatch and 3DLoMatch, respectively. These results demonstrate
the advantage of our introduced topological information during the registration task.

5 Conclusion

We have presented TopFormer, a novel point cloud registration approach that leverages
surface-based structural information to learn robust topology-aware representations for
feature matching. We designed a topology structure encoding to capture the point-pair
surface-based structure in a sparse-through-dense manner, enabling the learned sparse
feature descriptors to take into account the dense point surface-based structure. We
evaluate our method on both indoor and outdoor datasets. Experimental results show our
approach outperforms the state-of-the-art methods. We also conduct ablation studies to
analyze and verify the effectiveness of the key components in TopFormer.
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