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Abstract. Traditional methods for light field depth estimation establish the cost
data to measure the photo consistency of pixels refocused into a specific depth
range, with the highest level of consistency indicating the correct depth. These
methods are based on the photo consistency of Lambertian surface. However, the
photo consistency is broken when occlusion and specular reflection occur. In this
paper, a new depth estimation algorithm is proposed to solve the problem that
the photo consistency is broken. Firstly, the central view image is segmented into
multiple superpixel regions. The cost ranges of the un-occluded points and oc-
cluded points in the refocusing process are analyzed, and a penalty term is added
to the pixel whose color deviation exceeds an adaptive threshold to detect the
occluded points. Because the un-occluded pixels in the angular sampling image
still keeps the photo consistency, we propose a voting method to select the un-
occluded pixels to obtain the initial depth of the occluded point. We use a method
to determine the specular region based on similar features of color and texture in
the superpixel region and then present an optimization energy function to obtain
the depth of the specular region. Finally, a more accurate depth map is obtained
by using a globally optimization. Experimental results show that the proposed
method is superior to other comparison algorithms, especially in the cases of the
specular regions and multi-occlusion.

Keywords: Light field · depth estimation · occlusion detection · specluar reflec-
tion · 3D reconstruction

1 Introduction

Different from traditional cameras, light field [12] can record spatial and angular infor-
mation simultaneously by a single shot, and it has been used in microscopic scene [28]
for life sciences, the temperature distribution reconstruction [32] and 3D reconstruction
[7]. Since a single light field image has multi-view information, it can be applied to
surveillance security [33] and fake face recognition [8]. Depth information is essential
to accomplish these tasks. At present, many depth estimation methods have been pro-
posed using different light field image formats, such as stereo matching in sub-aperture
images [6, 4], slope estimation in epipolar plane image (EPI) [30, 29] and focusness es-
timation in focal stacks [2, 31]. These methods are based on the property of Lambertian
surface that the image of a point obtained from different views should satisfy the photo
consistency. However, occlusions and specular reflections are always present in real
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scenes. The photo consistency assumption will be broken on the occlusions or specular
reflection regions, which results in inaccurate depth estimation on these regions. There-
fore, it is very important to accurately handle occlusion and specular reflection problems
for depth estimation. Both the occluded and specular regions violate the photo consis-
tency, so we denote the occluded and specular regions as non-photo consistency regions
(NPCR).

The previous works [22, 21, 34] always used the Canny detector to detect edge
points in the central view image and identified these edge points as occlusion points.
However, some occlusion points in non-center view images will be missed. These meth-
ods are hard to detect occlusion correctly, which limits obtaining an accurate depth map.
For the specular regions, the previous works [19, 27] estimated an initial depth map
based on the assumption of the photo consistency, and each point was refocused to the
estimated initial depth. The angular sampling image was clustered into two clusters to
remove the specular reflection component for obtaining the final depth. However, the
clustering result will be affected by the error of the initial depth, and it is not suitable
for the saturated specular points. In addition, it is time-consuming to process each point
in the central view image. At present, it is still challenging to well solve the NPCR
problem.

In this paper, we propose a novel depth estimation method which can well deal with
the NPCR problem. Our main contributions have four aspects, including

– The central view image is segmented into multiple superpixel regions. The NPCR
can be determined based on the characteristic of superpixel which can save more
time.

– An adaptive threshold is determined by combining the spatial domain and angular
domain. We introduce a penalty term for the pixel whose color deviation exceeds
the adaptive threshold to detect the occluded points.

– We propose a voting method to choose the un-occluded pixels from the angular
sampling image of the occluded point to estimated the initial depth.

– We use the chrominance similarity among pixels in the same superpixel region to
detect specular regions. Then, we develop an energy function to compute the depth
of the specular region.

2 Related Work

The main reasons that cause the photo consistency of Lambertian surface to be broken
are occlusion and specular reflection. A lot of algorithms have been proposed to solve
the two problems separately.
Occlusion problem. Williem et al. [25, 26] defined the constrained angular entropy cost
and the constrained adaptive defocus cost to estimate the initial depth map. Zhang et al.
[14] proved that if the depth of occlusion is constant in the angular sampling image, the
occlusion boundary in the angular sampling image is similar to that of the reference im-
age. Therefore, they estimated the depth map by developing an integral guided filter to
estimate the occlusion probabilities in angular sampling images. Han et al. [2] estimated
the depth map by counting the number of pixels whose deviation from the refocused
pixel to the central view pixel was less than an adaptive threshold. Although they used
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the adaptive threshold to reduce the influence of the occlusion, the threshold will be
affected in the real scene with severe noise. Chen et al. [1] detected partially occluded
boundary regions based on superpixel segmentation and applied shrinkage operation
on the label confidence map and reinforcement operation on the occluded boundary to
estimate the depth map. But the whole algorithm process takes a long time. Wang et
al. [22, 21] demonstrated the occlusion edges in both spatial and angular domains are
consistent when refocused to the proper depth. They divided the angular domains into
two regions with the guidance of the spatial domain, and the depth is estimated using
the region with less variance. Their method is limited to a single occluder and is highly
dependent on edge detection. Zhu et al. [34] improved the occlusion model of Wang et
al. [22, 21], and proposed a model suitable for both single-occluder and multi-occluder
occlusions. They selected the un-occluded pixels using the K-means strategy to esti-
mate the depth map. However, it is time-consuming and is not always effective when
multiple occluders are distributed at different depths.

All of these methods use Canny detector to detect the occlusion points in the central
view image, but the occlusion points in the other views may be neglected. Different
from these methods, we analyze the range of data cost and add a penalty term to a pixel
whose color difference exceeds the adaptive threshold to detect the occluded points.
We choose the un-occluded pixels in the angular sampling image of the occluded point
according to the voting method using an adaptive threshold.

Specular reflection. Wang et al.[19] used the depth estimation method by Tao et al.[17]
to obtain initial depth. Each point is refocused to the initial depth to classify its angular
sampling image into two clusters using k-means clustering. Light source was estimated
using the difference between two clusters through several iterations to remove the spec-
ular reflection component. Wang et al. [27] used a threshold strategy to classify the
points in the central view image into saturated specular points and unsaturated specular
points, after estimating initial depth using the method by Tao et al. [17]. For unsaturated
specular points, they used k-means clustering to divide the angular sampling image into
the part without specular and the part with specular. The specular components will be
removed using the difference between the two clusters. These methods all use initial
depth obtained based on photo consistency to remove specularity. Moreover, all these
methods can not handle the saturated specular points. Wang et al. [18] proposed point-
consistency to estimate the initial depth and line-consistency to estimate light source
color through analyzing the dichromatic reflection model. They estimated the specular
intensity using light source color and removed the specular components. Unlike these
methods, we utilize the characteristic of superpixel and energy function to estimate the
depth of the specular reflection region.

Deep learning methods. There are also some learning based methods for light field
depth estimation. Shin et al. [15] used a multi-stream convolutional neural network
to estimate accurate depth maps with subpixel accuracy. However, their network fails
to infer accurate disparities in reflection and textureless regions. Tsai et al. [20] fused
multi-view information using an attention-based views selection module and used a
spatial pyramid pooling to extract more context information of the image for depth
estimation. Huang et al. [5] designed a lightweight disparity estimation model with
physical-based multi-disparity-scale cost volume aggregation to estimate depth map. It
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Fig. 1. The proposed algorithm overview. The proposed method mainly consists of four parts:
Segment the central view image using SLIC algorithm; Detect the NPCR including occlusion
and specular regions; For the occlusion, the un-occluded pixels in the angular sampling image
are used to compute the initial depth; For the specular regions, the depth is estimated according
to the depth of the adjacent non-specular regions; Depth optimization.

significantly improved the geometric details near edges by introducing a sub-network
of edge guidance. Wang et al. [23] constructed an occlusion-aware cost by modulating
pixels from different views and integrated pixels by using the convolutions with specif-
ically designed dilation rates. They aggregated these costs constructed via convolutions
to estimate the depth map.

The above methods only consider the occlusion or specular regions, so they cannot
handle the two cases well at the same time. In this paper, we unify the two cases into
a NPCR problem, and propose a new depth estimation algorithm to solve this problem
better.

3 The Depth Estimation

In this section, we first segment the central view image using the SLIC superpixel algo-
rithm. The initial depth map is estimated based on the characteristic of the superpixel
region. The final depth map is obtained after optimization. The complete algorithm flow
chart is shown in Fig. 1.

3.1 Consistency Data and Confidence

A 4D light field image can be represented as L(x, y, u, v), where (x, y) means the
spatial coordinate in the sub-aperture image, and (u, v) means the angular coordinate.
According to the imaging characteristic of the light field, the light field image can
be refocused to a new imaging plane [12]. Therefore, the refocused light field image
Lα(x, y, u, v) is represented as

Lα(x, y, u, v) = L(x+ u(1− 1

α
), y + v(1− 1

α
), u, v) (1)

where α is the candidate depth label.
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According to the photo consistency of Lambertian surface, the pixels in the angular
sampling image should have the same color when a point is refocused to the correct
depth. We calculate the color deviation between the pixels in the central view and the
non-central view in different candidate depths using Eq. 2.

dα(x, y, u, v) = ∥Lα(x, y, u, v)− L(x, y, 0, 0)∥ (2)

where L(x, y, 0, 0) means the central view pixel of the angular sampling image, and ∥·∥
means L2-norm.

From Eq. 2, we calculate the mean and the variance of the color deviations to mea-
sure the consistency of the angular sampling image in different candidate depths,

Dα(x, y) =
1

N

∑
u,v

ρ(dα(x, y, u, v)) (3)

and
Cα(x, y) =

1

N − 1

∑
u,v

{ρ(dα(x, y, u, v))−Dα(x, y)}2 (4)

whereN is the number of pixels in the angular sampling image. ρ(x) = 1−e−
x2

2σ2 is the
distance function, and σ controls the sensitivity of the function to large color difference.

The initial depth α∗ of point (x, y) can be obtained using Eq. 5.

α∗(x, y) = argmin
α

Wα(x, y) (5)

where Wα(x, y) = Dα(x, y) + Cα(x, y). The depth confidence is defined using the
mean and minimum of data costs Wα(x, y) among all the candidates as Eq. 6.

w(x, y) = 1− exp(−
mean{Wα(x, y)}/min{Wα(x, y)}

2δ2w
) (6)

where δw controls the sensitivity of ratio.

3.2 NPCR Depth Estimation

The occluded region is a small part of the image, and the un-occluded pixels in the an-
gular sampling image still satisfy the photo consistency. Moreover, the specular region
is a small part of most images, except when most of the objects in the image are metal
or transparent. Therefore, we need to detect the occluded points and specular regions to
reduce computational time.

A superpixel is a small region consisting of a series of adjacent points with similar
features such as color, brightness, and texture. We use the SLIC superpixel segmenta-
tion algorithm [13] to segment the central view image. In the experiments, the size of
superpixel segmentation is set as 15. We take the light field image Mona as an example
shown in Fig. 2 (a). From Fig. 2 (a), we can find that the light field image is divided to
many tiny regions, and each region is a superpixel.
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Fig. 2. (a) The superpixel segmentation result of the light field image Mona. (b) Zoom in on some
small regions that contains occlusion and specular for a clearer observation. (c) The illustration
of boundary points set Γj,l between two adjacent superpixels Ψj and Ψl.

To more clearly show the relationship of adjacent superpixels and their boundary
points, a concise illustration is shown in Fig. 2 (c). These superpixels are noted as
Ψj , j = 1, 2, ..., n. It is not difficult to find that the occluded points only exist at the
boundary of two adjacent superpixel regions, as shown in the green region Γj,l in Fig. 2
(c). We define these pixels as the boundary region by dilating the edge of two adjacent
superpixels. From Fig. 2, the occluded points are located at the boundary of the su-
perpixel and in the region near the boundary of the superpixel, and the specular points
are clustered in a superpixel. In conclusion, we identify occluded points and specular
points from the superpixel boundary to the interior. It can reduce the time of detecting
occluded points and specular regions.

Occluded Points If there exist occluded pixels in the angular sampling image, the
photo consistency will be broken. It is key that the occluded points should be detected
accurately. There is an important prior condition that the occluder and the occluded
point have a large color difference.

We take the light field image Mona as an example, and the illustration is shown in
Fig. 3. From Fig. 3 (a), the photo consistency of the angular sampling image is the high-
est when the un-occluded point is focused at the correct depth, and the corresponding
data cost is also the minimum of all data costs. From Fig. 3 (c), the un-occluded pixels
in the angular sampling image of the green point have the highest photo consistency
when the occluded point is focused at the correct depth. However, the corresponding
data cost is not the minimum among all data costs. In addition, from Fig. 3 (a) and
(c), we can observe that the ranges of data cost between the occluded point and the
un-occluded point are different.

For a more intuitive comparison, we plot the cost curves of the occluded points and
the un-occluded points in the same graph. The illustration is shown in Fig. 4. There are
four points in Fig. 4 (a), which are un-occluded points A, B and the occluded points C,



Robust Light Field Depth Estimation over Occluded and Specular Regions 7

Fig. 3. The cost curves of the occluded point and the un-occluded point in the light field image
Mona focused on different depth. (a) The cost curve of the red point. (b) The red and green
rectangles are the spatial sampling images of the two points in the central view image. (c) The
cost curve of the green point.

Fig. 4. The trend of the data cost of the four points in the light field image Mona. (b) The cost
curves of four points A, B, C and D. (c) The cost curves of four points A, B, C and D after adding
the penalty term.

D. From Fig. 4 (b), we can find that the maximum cost Wmax and the minimum cost
Wmin of the points C, D are greater than those of the points A, B. We can identify the
occluded point according to the minimum cost. However, the difference between the
minimum cost of point C and the minimum cost of points A, B is small. The reason is
that there are fewer occluded pixels in the angular sampling image of point C.

To avoid the impact of this case on determining occlusion, we add a penalty weight
to pixels that the color deviation dα(u, v) is too large. We propose an adaptive thresh-
old ∆ε to control the color deviation dα(u, v), which can increase the impact of the
occluded pixel on the data cost. The new color deviation d̃α can be obtained using Eq.
7, if the color deviation dα(u, v) is greater than the adaptive threshold ∆ε.

d̃α(u, v) = dα(u, v) + ς(u, v) (7)

where ς(u, v) = |dα(u, v)−∆ε| is the penalty term.
Because different occlusion situations have different color differences, we use an

adaptive threshold to judge whether the pixel in the angular sampling image is from
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the occluder. In Wang’s method [22], they proved that the occlusion edge of the spatial
domain is consistent with that of the angular sampling image when refocused to the
correct depth. We build the local square window WUV centered at p = (x, y) in the
central view image, and U ∗V is same as the angular resolution of the light field image.
We compute the color difference E(p) between point p and each point q = (s, t) in the
local square window WUV ,

E(p) = ∥L(s, t, 0, 0)− L(x, y, 0, 0)∥ , q ∈WUV (8)

To avoid the effect of large color differences caused by occlusion or overly small
color differences between point p and its adjacent points, we sort these color difference
values and define them as a set AUV . We take these values in the middle third of set
AUV . According to Eq. 9, the average of these color differences is calculated as the
adaptive threshold.

∆ε =
1

k

2k∑
i=k+1

Ai (9)

where k =
⌈
UV/3

⌉
.

We can obtain the new cost curves of the points A, B, C, D from Eq. 7 as shown in
Fig. 4 (c). From this figure, we can find that the difference between the minimum cost
of point C and the minimum cost of points A, B is greater than before. We can use Eq.
10 and the threshold δ1 (set as 0.5 in the experiments) to determine whether the point
p = (x, y) is the occluded point,

t(p) = f {[Wmin(p) < δ1]} (10)

If t(p) = 1, the point p is an occluded point.
When a point is determined as the occluded point. It is obvious that the pixels from

the occluder no longer satisfy the photo consistency with the central pixel in the angular
sampling image. To obtain the accurate depth of the occluded point, we need to choose
the un-occluded pixels from the angular sampling image. The color deviation dα(u, v)
of each pixel (u, v) in different label α is calculated using Eq. 2. If the color deviation
dα(u, v) is greater than the adaptive threshold ∆ε, we set 0 as the label of this pixel
(u, v). Otherwise, we set 1 as the label of this pixel (u, v).

labelα(u,v) =

{
1,
0,

dα(u, v) ≤ ∆ε
dα(u, v) > ∆ε

(11)

Using Eq. 11, we can obtain all the labels of pixel (u, v) in the angular sampling
image. The sum of these labels of pixel (u, v) is noted as s(x, y, u, v). If s(x, y, u, v)
is more than half of the total number of candidate depth labels, the pixel (u, v) is un-
occluded. Therefore, the un-occluded pixels can be accurately chosen using a threshold
ξ (set as 60 in the experiments). That is

occ(u, v) =

{
0,
1,

s(x, y, u, v) ≤ ξ
s(x, y, u, v) > ξ

(12)
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From Eq. 12, the pixel can be determined as an un-occluded pixel when occ(u, v) = 1.
Therefore, the initial depth of the occluded point can be determined using these un-
occluded pixels in the angular sampling image by Eq. 5.

Specular Region As shown in the purple rectangle of Fig. 2 (b), the specular region is
a small part of the image. The point p in the specular region can be described using the
dichromatic reflection model [13],

Ic(p) = md(p)Λc(p) +ms(p)Tc(p) (13)

where c ∈ {R,G,B} denotes the color channels.Λc(p) and Tc(p) represent diffuse and
specular reflection components, respectively. md(p) and ms(p) are the corresponding
weight factors, respectively.

The diffuse components of adjacent diffuse points in the same superpixel region are
very close. In addition, because of the small proportion of the specular component in
the diffuse point, the weight factor ms(p) is very small. As shown in Fig. 2 (c), if there
are three adjacent diffuse points p, p1 and p2 in the superpixel Ψj , Λc(p), Λc(p1) and
Λc(p2) should be approximately equal. For the two points p and p1, we have

Ic(p1)− Ic(p) ∼= [md(p1)−md(p)]Λc(p1, p) (14)

where Λc(p1, p) means either of Λc(p) and Λc(p1), because Λc(p) and Λc(p1) are ap-
proximately equal.

Combining the three color channels, we have∑
c

[Ic(p1)− Ic(p)] = [md(p1)−md(p)]
∑
c

Λc (15)

Let ΛR + ΛG + ΛB = 1, Eq. 15 can be rewritten as∑
c

[Ic(p1)− Ic(p)] = md(p1)−md(p) (16)

Combining Eq.14 and Eq. 16, we can compute the diffuse chromaticity of p and p1 in
the superpixel Ψj ,

Λc(p1, p) =
Ic(p1)− Ic(p)∑
c[Ic(p1)− Ic(p)]

(17)

Similarly, Λc(p2, p) can be also obtained. If the superpixel Ψj is not a specular
region, the difference in chromaticity values should be very small. Therefore, we have
∆κ = |Λc(p1, p)− Λc(p2, p)|. If ∆κ is larger than a predefined threshold (set as 0.1 in
the experiments), the three points p, p1, and p2 are voted as the specular points. Because
the point p has four adjacent points, each point in the superpixel Ψj is tested six times.
If the number of votes for the point is greater than 4, then the point is a specular point.
If the number of points with votes greater than 4 is more than half of the total points in
the boundary region of Ψj , the superpixel Ψj is a specular region.

Let Mj be the set of all adjacent superpixels of the specular reflection region Ψj , and
Γj,l be the set of boundary points between Ψj and Ψl(Ψl ∈ Mj). Therefore, the depth



10 Xuechun Wang, Wentao Chao, and Fuqing Duan B

of the specular reflection region Ψj is computed by minimizing the following energy
function, ∑

p∈Ψj

w(p)∥ψ(j)− α∗(p)∥2 + λ
∑
Ψl∈Mj

∑
q∈Γj,l

∥ψ(j)−ψ(Ψl)∥2

|∇I(q)| (18)

where ∇I(q) is the gradient of the boundary point Γj,l, α∗(p) is the initial depth of
point p, and λ (set as 0.05 in the experiments) is a weight of the depth of the adjacent
superpixel. ψ(Ψl) is the weighted mean depth of the superpixel Ψl. It is calculated using
the following equation,

ψ(Ψl) =

∑
t∈Ψl

α∗(t)/min{Wα(t)}∑
t∈Ψl

1/min{Wα(t)}
(19)

In order to avoid the depth difference of adjacent superpixel regions in the specular
region being too large, which will affect the depth accuracy of the specular region, a
depth difference threshold is added when optimizing the energy function to discard the
unreliable adjacent region. The depth of ψ(j) can be solved efficiently using Eq. 18
within a weighted least squares framework [16].

3.3 Depth Refinement

We optimize the initial depth map using the global optimization. The energy function is

E = E1(p, α
∗(p)) + λsE2(p, q, α

∗(p), α∗(q)) (20)

where q is the adjacent point of point p, λs is a weight factor (set as 5 in the experi-
ments). The unary term E1 is defined as Eq. 21

E1 =
∑
p

w(p)∥α(p)− α∗(p)∥2 (21)

The smooth regularization term E2 is defined as Eq. 22

E2 =
∑
p,q

exp(− (α(p)−α(q))2
2δ2 )

|∇I(p)−∇I(q)|+ µ |t(p)− t(q)|
(22)

where µ is a weighting factor, t(p) and t(q) mean whether the two points are occlusion
points or not, which can be obtained from Eq. 10. ∇I(q) is the gradient of the point q.
The final depth can be derived by solving Eq. 20 using the standard graph cut algorithm
[9].

4 Experiment

In this section, the proposed algorithm is evaluated on the synthetic and real light field
images. The synthetic light field images are from Wang et al. [22], Wanner et al. [24]
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Fig. 5. (a) The visual comparisons of occlusion detection results. (b) The PR-curves of occlusion
detection results using OAD [22], GAC [34], IGF [14], and Ours on the dataset from Wanner et
al. [24].

and Honauer et al. [3], and the real light field images are collected using Lytro Illum
camera [11] and Lytro camera [10]. We compare the proposed algorithm with traditional
estimation methods including Wang et al. [22] (OAD), Zhu et al. [34] (GAC), Shen et
al. [14] (IGF), Han et al. [2] (OAVC) and Wang et al. [18] (PLC), and the learning
based methods including Shin et al. [15] (Epinet), Wang et al. [23] (OACC), Tsai et al.
[20] (LFnet) and Huang et al. [5] (Fastnet). Because there are ground truth in synthetic
light field datasets, we use the mean squared error (MSE) and badpixel(0.07) error [3]
to evaluate the estimated depth results. F-measure [15] is computed to evaluate the
performance of the occlusion detection methods. The values of the hyperparameters
have been stated in Section 3. The values of the hyperparameters in the experiments
are the ones that have been tested many times or generally recognized, and we will not
describe them in detail due to the lack of space.

4.1 Occlusion Processing Comparisons

We detect the occluded points using different occlusion-aware methods including OAD
[22], IGF [14], and GAC [34]. The comparison results are shown in Fig. 5 (a), which
takes the light field image StillLife from Wanner et al. [24] as an example. From Fig.
6 (a), we can see our method can get more completed occluded points than the other
three comparison methods. In addition, we quantitatively evaluate the occluded point
detection method compared with OAD [22], IGF [14], and GAC [34] by computing the
recall and precision to obtain the PR-curve, and the result is shown in Fig. 5 (b). The
PR-curve also demonstrates the proposed method performs best. Experimental results
shown in Fig. 5 demonstrate that the performance of the proposed method is better
than these comparison algorithms. The reason is that the proposed method detects the
occluded points according to the minimum cost of each point, while OAD [22] and
GAC [34] use the Canny detector to determine the occluded points in the central view
image, and the occlusions in other views may be ignored. For IGF [14], the accuracy of
occluded point detection is highly dependent on the central view image. If there are too



12 Xuechun Wang, Wentao Chao, and Fuqing Duan B

Table 1. The badpix error of the occlusion points on the synthetic datasets [24, 22].

Buddha Medieval Papillon Buddha2 Horses Mona StillLife Bedroom Livingroom Outdoor Plant

Epinet[15] 18.22 27.67 43.97 58.71 23.91 22.51 25.81 16.51 13.24 32.56 21.74
OACC[23] 12.71 25.53 31.55 43.67 20.14 18.53 22.17 12.31 10.56 26.73 17.60
Fastnet[5] 16.13 28.93 35.45 55.12 22.88 21.74 24.37 15.55 13.33 30.28 20.91
LFnet[20] 14.39 26.44 37.98 50.52 21.16 23.13 25.66 15.33 14.47 28.77 19.16
OAD [22] 15.01 13.29 24.44 20.70 23.75 20.75 28.82 8.38 10.78 9.87 7.33
IGF[14] 8.34 9.96 20.83 15.79 9.62 12.67 19.63 7.42 10.75 10.85 9.57

GAC [34] 13.64 12.57 15.16 13.85 15.80 18.81 21.71 7.41 11.79 13.88 10.18
PLC [18] 21.13 19.15 25.65 27.64 23.59 22.78 28.93 49.13 22.14 32.65 27.17
OAVC[2] 7.67 12.43 8.91 12.25 9.96 10.71 13.32 7.35 9.95 8.87 8.89

Ours 7.59 9.72 7.50 13.89 8.85 8.77 12.83 6.51 7.85 6.89 5.87

many noisy and complex occlusions in the central view image, the detection method
may fail.

Fig. 6. The comparison results of the detection of the specular regions in the light field image
Bedroom. (a) The central view image, (b) The ground truth, (c) Wang et al. [27], (d) Ours.

After the occluded points are determined, the accuracy of the depth estimation of
the occluded points has a great influence on the final depth map. To quantitatively eval-
uate the performance of our occlusion detection and processing method, we calculate
the badpix error of all comparison algorithms at the occluded points on the synthetic
datasets [22, 24] according to the ground truth, and the results are shown in Table 1.
From Table 1, we can find the error of the proposed algorithm is much lower than that
of other comparison algorithms. OAD [22] can not handle the case of multiple occlu-
sions, and GAC [34] is affected by the distribution of multiple occlusions. However,
PLC [18] does not deal with occlusion in the depth estimation algorithm. The proposed
method selects the un-occluded pixels in the angular sampling image using an adaptive
threshold. It is not affected by different images and occlusion conditions.
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Fig. 7. The comparison results of the light field image Bedroom. (a) GAC [34],(b) OAD [22], (c)
IGF [14], (d) OAVC [2], (e) PLC [18], (f) Epinet [15], (g) Fastnet [5], (h) LFnet [20], (i) OACC
[23], (j) Ours without processing specular, (k) Ours.

4.2 Specular Regions Processing

In this subsection, we evaluate the performance of our specular region detection method
compared with that of Wang et al. [27]. The detection results of image Bedroom are
shown in Fig. 6. From Fig. 6, we can find the proposed method can detect more ac-
curately. The reason is that the detection method of Wang et al. [27] used a threshold
value strategy based on the initial depth, and the initial depth is obtained based on the
assumption of the photo consistency, while the initial depth in the specular region had
a large error. The proposed method uses superpixel segmentation to segment the the
central view image into several tiny regions. According to the similarity of points in the
same superpixel region, each point in the superpixel region is judged without the initial
depth, thus improving the detection accuracy.

Table 2. The badpixel error of the points in the specular regions on synthetic datasets [24, 22].

Buddha Medieval Papillon Buddha2 Horses Mona StillLife Bedroom Livingroom Outdoor Plant

Epinet[15] 25.81 19.95 21.71 43.37 27.18 33.37 28.19 62.78 58.19 23.67 56.81
OACC[23] 22.11 18.98 20.13 40.17 25.57 29.19 26.76 58.18 53.27 18.87 52.98
Fastnet[5] 26.25 18.82 20.91 42.18 24.57 28.88 26.65 60.19 55.77 22.18 58.91
LFnet[20] 24.13 20.13 21.72 41.18 26.64 31.88 27.71 61.18 59.89 21.36 54.46
OAD [22] 22.13 15.57 13.37 28.97 15.75 18.16 16.56 42.88 32.18 19.97 43.17
IGF[14] 21.87 16.61 14.87 25.61 16.88 17.73 15.58 39.97 28.75 18.53 40.11

GAC [34] 23.33 14.76 15.57 26.73 15.79 18.81 14.34 38.87 26.65 17.73 38.87
PLC[18] 13.36 8.89 9.26 13.86 9.13 10.30 8.87 22.27 13.34 11.23 28.91
OAVC[2] 23.17 12.25 16.36 22.27 16.88 16.73 15.51 36.55 23.73 16.59 32.28

Ours 9.73 7.92 7.68 10.40 7.98 9.57 10.33 16.85 9.78 8.81 18.45

We also use the compared algorithms, the proposed method without processing the
specular points and the proposed method to estimate the depth map of image Bedroom.
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Table 3. The MSE errors of the estimated depth for the light field images from the synthetic
datasets [24, 3]. The first set of images is from Wanner et al. [24], and the seconde set of images
is from Honauer et al. [3] (Red means the best result in learning based methods, and blue means
the best result in traditional methods.)

Image Epinet[15] OACC[23] Fastnet[5] LFnet[20] OAD[22] IGF[14] GAC[34] PLC[18] OAVC[2] Ours

Papillon 6.12 3.38 7.42 4.98 0.23 0.81 0.41 2.31 0.84 0.32
Medieval 2.28 1.61 3.37 0.50 0.18 1.03 0.67 1.27 0.88 0.09
StillLife 2.43 2.07 23.2 14.1 0.21 1.46 0.23 1.63 1.07 0.17

Mona 1.33 2.33 1.56 0.79 0.25 0.44 0.46 0.79 0.44 0.36
Buddha 0.36 0.78 0.42 0.33 0.38 0.59 0.29 0.64 0.36 0.19
Buddha2 6.64 4.31 5.06 6.06 1.18 0.64 1.02 2.42 1.29 0.53
Hourse 7.35 2.21 5.67 6.32 1.36 1.21 1.37 2.08 0.53 0.77
Average 3.79 2.24 6.67 4.72 0.68 0.88 0.64 1.59 0.77 0.35

Cotton 0.27 0.18 0.32 0.21 0.32 4.31 1.56 2.07 0.60 0.25
Boxes 6.09 3.32 4.39 3.99 9.85 12.32 9.42 10.31 6.99 8.18

Pyramids 0.010 0.004 0.018 0.004 0.021 0.039 0.098 0.21 0.04 0.013
Bakgmamon 2.62 2.69 1.52 3.65 3.71 5.83 6.08 4.67 3.84 2.94

Dots 2.52 1.01 3.17 1.63 3.01 3.89 5.82 3.87 16.6 2.61
Dino 0.17 0.08 0.19 0.09 1.14 0.12 0.31 0.41 0.27 0.54

Sideboard 0.83 0.54 0.75 0.53 2.30 0.13 1.02 0.99 1.05 0.32
Stripes 0.95 0.84 0.98 0.89 8.13 22.81 6.96 4.62 1.32 5.58

Average 1.68 1.08 1.42 1.37 3.56 6.18 3.91 3.39 3.84 2.55

The results are shown in Fig.7. From Fig. 7, it can be found that there are some holes in
the depth maps of all the algorithms except the proposed method. Learning based meth-
ods also do not work well with specular regions. The main reason is that the learning
based methods do not consider the effect of specular regions and the dataset used for
training contains fewer specular regions. That means the performance of deep learning
methods will be affected by the image characteristics of the training dataset, which has
the generalization problems. The experimental results again prove the effectiveness of
the proposed method in the specular reflection region.

In order to further test the proposed energy function for estimating the depth of the
specular region, we calculate the badpix error of the estimated depth in the specular re-
gion using all depth estimation algorithms. The specular regions are detected using the
proposed detection algorithm. The results are shown in Table 2. From Table 2, it can
be found that compared with other estimation algorithms, PLC [18] and our method
have smaller badpix errors. However, the average error of PLC [18] is higher than our
method. This is mainly because PLC [18] is based on the differences between the spec-
ular components in multiple views, but the baseline between the sub-aperture images
of the light field camera is too short, which results in a small difference. In addition,
PLC [18] can not deal with saturated specular points. Our method uses the proposed
energy function to obtain the depth of the specular region based on the depth of ad-
jacent non-specular regions. It also can estimate the depth of saturated specular point.
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Table 4. The badpix error of the estimated depth for the light field images from the synthetic
datasets [24, 3]. The first set of images is from Wanner et al. [24], and the seconde set of images
is from Honauer et al. [3] (Red means the best result in learning based methods, and blue means
the best result in traditional methods.)

Image Epinet[15] OACC[23] Fastnet[5] LFnet[20] OAD[22] IGF[14] GAC[34] PLC[18] OAVC[2] Ours

Papillon 35.6 23.6 31.8 34.8 6.35 15.2 7.17 22.7 14.4 5.58
Medieval 18.8 15.4 16.6 11.7 2.22 8.04 2.13 2.49 10.9 0.78
StillLife 11.4 12.7 11.5 11.7 1.72 8.14 2.37 8.67 5.97 2.11

Mona 10.8 9.56 8.89 10.8 4.92 9.79 5.13 9.79 6.01 4.75
Buddha 1.55 3.33 2.23 2.02 7.21 6.85 2.34 3.09 1.78 1.68
Buddha2 34.8 28.6 31.4 34.2 14.4 9.35 10.2 19.1 11.7 8.68
Hourse 16.4 13.7 15.8 16.2 17.7 9.03 6.38 29.2 5.45 7.54
Average 18.5 15.3 16.9 17.4 8.92 9.48 5.12 13.7 8.03 4.44
Cotton 0.51 0.49 0.71 0.27 7.61 7.76 4.37 7.19 2.55 3.38
Boxes 6.09 13.31 18.70 11.04 9.85 12.32 9.42 24.06 16.1 12.36

Pyramids 0.29 0.11 0.61 0.19 0.34 0.41 0.57 0.44 0.83 0.22
Bakgmamon 2.29 4.81 3.75 3.13 3.49 5.15 5.21 5.48 3.12 3.15

Dots 5.36 1.65 21.06 1.43 7.49 7.98 12.41 8.84 69.1 5.85
Dino 1.29 0.97 2.41 0.85 14.91 1.94 2.18 4.08 3.94 2.65

Sideboard 4.81 3.35 7.03 2.87 18.49 2.13 9.29 8.65 12.4 7.96
Stripes 2.46 2.92 9.44 2.93 18.41 29.31 14.99 5.12 29.31 6.88

Average 2.89 3.45 7.96 2.89 10.07 8.38 7.31 7.98 17.17 5.31

4.3 Depth Map

To further evaluate the performance of the proposed algorithm, we use the different
comparison algorithms to estimate the depth map on the synthetic datasets [24, 3]. We
compute the MSE and badpix error to quantitatively analyze the estimated depth map.
The results are shown in Table 3 and Table 4. From Table 3 and Table 4, the proposed
method achieves the best result compared with those traditional algorithms. Moreover,
although the deep learning methods obtain less error in Honauer et al. [3], which is the
trianing dataset of these methods, they obtain large errors on Wannar’s dataset [24].
To make a qualitative comparison, Fig. 8 shows the estimated depth maps of three
light field images. As shown in Fig. 8, the results of the proposed method have clearer
boundaries. The depth map results obtained by other compared traditional methods have
more noise and fuzzy boundaries. The learning based methods get poor results in the
three light field images because their methods are not trained on this dataset [24]. That
means the deep learning methods have generalization problems in some other datasets.

Table 5. The running time of all the estimation algorithms. (unit:s)

Epinet[15] OACC[23] Fastnet[5] LFnet[20] OAD[22] IGF[14] GAC[34] PLC[18] OAVC[2] Ours (w/o specular) Ours

Time 3.51 0.049 1.71 2.77 362.38 425.93 635.17 398.42 105.58 315.33 371.88
Language Python/CUDA Python/CUDA Python/CUDA Python/CUDA Matlab/C++ Matlab/C++ Matlab/C++ Matlab/C++ Python/CUDA Matlab/C++ Matlab/C++
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Fig. 8. Depth estimation for synthetic light field images. The first two images are from the dataset
[24], and the third image is from the dataset [3]. (a) GAC [34],(b) OAD [22], (c) IGF [14], (d)
OAVC [2], (e) PLC [18], (f) Epinet [15], (g) LFnet [20], (h) Fastnet [5], (i) OACC [23], (j) Ours.

We also accomplish a lot of experiments to evaluate the performance of our method
in real scenes. The estimated depth maps of four images with occlusion and specular
regions from the real datasets [11, 10] as shown in Fig. 9. The results of the first two
images demonstrate our method is effective in occlusion modeling, whether for sin-
gle occluders or multiple occluders. The results of the last two images show that our
method is effective for depth estimation of the specular regions. Although PLC [18]
performs better in the specular regions, the method gets too smooth occlusion bound-
ary. The other traditional methods and deep learning methods all produce some holes
in the specular regions. The experiment results verify the proposed method can handle
occlusions and specular regions effectively.
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Fig. 9. Comparisons of depth maps from the real-scene images. (a) GAC [34], (b) OAD [22], (c)
IGF [14], (d) OAVC [2], (e) PLC [18],(f) Epinet [15], (g) LFnet [20], (h) Fastnet [5], (i) OACC
[23], (j) Ours.

4.4 Computational Time

The proposed method is implemented on a notebook computer with an Intel i5 2.50GHz
CPU and 16GB RAM. The running platform is Matlab R2016b. The running time and
running platforms of all comparison algorithms are shown in Table 5. Depth estima-
tion of the specular region is performed by minimizing the energy function using the
weighted least square method, which is a time-consuming step in the complete algo-
rithm. We also show the running time with or without specular processing in Table 5.
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LFnet [20] needs a long time to load the model. OAVC [2] takes less time using Python
with CUDA. From Table 5, we can see that compared with traditional algorithms, the
proposed method takes less time. The time taken to estimate the depth of the specu-
lar region does not affect the running speed of the whole algorithm. In general, the
proposed method is faster than most of these compared algorithms.

5 Conclusion and Limitation

In this paper, we present a novel depth estimation method for light field cameras to
handle occlusion and specular reflection problems. Firstly, the central view image is
segmented using superpixel segmentation algorithm. The occluded point is determined
according to the minimum cost value of this point after adding a penalty term to the
pixel in the angular sampling image whose color difference exceeds an adaptive thresh-
old. We propose a voting method using label accumulation to select the un-occluded
pixels for depth estimation of occlusion points. The specular regions are detected using
the properties that the pixels in the same superpixel region have similar diffuse chro-
maticity. Finally, the depth of the specular region is estimated by minimizing the energy
function. The proposed method can detect the occlusion and specular regions accurately
and estimate the depth of these regions accurately. Compared with the previous works,
experimental results demonstrate that the proposed method has better performance on
both synthetic and real light-field datasets, especially in multi-occluder occlusions and
specular regions.

The proposed method can accurately estimate the depth of NPCR. However, the
depth of the specular region is estimated based on the adjacent superpixel regions. If
the specular region is too large or distributed extensively around the scene, the proposed
method can not handle such cases. Although we can consider adjusting the parameters
of the superpixel segmentation, this would make the depth map too smooth. In addition,
this will increase the running time of the proposed algorithm.
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