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Abstract. Language Embedded Radiance Fields (LERF) achieves promising re-
sults in real-time dense relevancy maps within NeRF 3D scenes. Although LERF
shows impressive zero-shot ability in many long-tail open-vocabulary queries,
the quality of relevancy maps could degrade in certain camera angles especially
novel views and may even fail to localize. In this work we propose a method to
bring in prior knowledge as the guidance of building a multi-scale CLIP (Con-
trastive Language-Image Pretraining) feature pyramid, achieving better localiza-
tion ability and 3D consistency without any harm to original zero-shot capability.
Specifically, we use panoptic segmentation to preprocess training images and re-
construct multi-scale image pyramid with segmented tiles. Unlike some other
works, we only use the continuous semantic meaning of image tiles for accurate
CLIP features, instead of labels or IDs which are inconsistent across views. And
the tiles are partially overridden based on location and scale, preserving also a
large amount of non-prior knowledge. And in order to effectively compare the
results with LERF, we designed a metric based on pixel relevancy, which could
further support future research based on LERF representation. Additionally, we
explore the possibility of grounding dense 3D consistent segmentation informa-
tion within LERF during experiments, providing an inspiring train of thought
about distilling 2D knowledge into 3D scenes for 3D manipulation.

Keywords: Neural Radiance Fields · CLIP feature · zero-shot learning · semantic
3D scene · cross-modal distillation.

1 Introduction

In recent years, the Neural Radiance Fields (NeRF)[26] has witnessed remarkable growth
and development. This advancement has led to substantial improvements in both the
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Fig. 1. LERF (left) vs ours (right). Query:“porcelain hand”. While LERF has almost all high
relevancy pixels misplaced, our method has a more accurate outcome.

precision of reconstructed novel views and the efficiency of the training process[2, 15,
29, 39], paving the way for NeRF to find promising applications in industries such as
films, games, and Digital Twin production. However, NeRF is lack of language-level
semantic information, making the training process rather difficult to respond to the hu-
man purpose, which becomes one of the key challenges of applying NeRF to achieve
3D contextual awareness.

Fortunately, a recent approach, Language Embedded Radiance Fields (LERF)[18],
emerges and grounds semantic information within NeRF by directly training a CLIP[30]
field, successfully utilizing CLIP’s zero-shot ability to achieve the large-scale seman-
tic understanding of NeRF reconstructed 3D scenes. While LERF is able to deal with
a wide range of language proposals including abstract concepts (“spill”), text (“Com-
puter Vision”) and long-tail labels, some queries may render defective relevancy maps
as shown in Figure 1.left where “porcelain hand” is queried but high relevancy pixels
are rendered around the human hand. This problem may even get worse in views ren-
dered using camera angles that are not in training data set, becoming a serious limitation
of LERF.

One of the key causes of such limitation is that LERF utilizes no prior knowledge
and directly implements CLIP for uniformly divided image tiles. Although LERF uses
a multi-scale pyramid to ensure attention on objects of different sizes, in most cases
these targets are either partially cut in smaller scales or not big enough to pass sufficient
information through the CLIP encoder. This leads to fuzzy CLIP feature both inside
and around objects, which gets worse after trilinear interpolation, causing defective
outcomes.

To address this problem, in this work, we propose to bring in prior knowledge ob-
tained in image segmentation tasks to guide the preprocessing of image patches. Dif-
ferent from other works[21, 32], we first conduct panoptic segmentation on all training
images and cut out image tiles for each segmentation label. This step will extract image
parts with continuous semantics yet we only keep image information without segmenta-
tion labels to maintain the original zero-shot ability. Next, we go through all scales and
override the preprocessed image tiles centered at certain segmentation with segmenta-
tion tiles of closest scales. After overriding the image patches now share no restriction
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that tile sizes should be the same in one scale, endowing preprocessed ray origins with
overridden scales to have the most possibly accurate CLIP features. This method can not
only increase pixel relevancy among queried objects but also decrease the relevancy for
pixels outside that belong to another segmentation. It is clearly shown that our method
has better results (Figure 1.right).

Notably, our way of using prior knowledge does not weaken the original zero-shot
ability nor significantly slow down the implementation process and can still query ob-
jects that segmentation models fail to extract. Meanwhile, because LERF renders query
results by pixel relevancy, common metrics used in image segmentation and NeRF may
not be suitable for quality representation. Thus we present a new metric (Sec 3.5) for
effective evaluation upon queried relevancy maps. Besides, we also found it possible to
directly distill segmentation information into CLIP field (See Sec 4.3 Ablation Study)
during experiments, which could be a new research direction.

In summary, we make the following contributions:

• We put forward and prove it feasible to bring in prior knowledge to optimize
LERF’s language field without harming the original zero-shot ability.

• We propose a method to utilize panoptic segmentation information in re-constructing
CLIP feature pyramid and achieve higher quality results across scenes.

• We present a new metric for evaluation based on queried pixel relevancy, which
could serve many future works that use LERF representation.

• We found a novel way of distilling segmentation information into NeRF using CLIP
feature instead of segmentation label ID during experiments, showing a possible
direction of 3D segmentation.

2 Related Works

2.1 NeRF with Semantics

NeRF [26] is a deep learning model employed for three-dimensional scene reconstruc-
tion which can predict the color and density in novel views. NeRF’s capacity for high-
quality three-dimensional reconstruction and its flexibility have established it as a cor-
nerstone in the field of three-dimensional vision. In subsequent work, Semantic NeRF
[41] enhances semantic output by designing a network that jointly considers semantic
and geometric shape. It can predict high-quality new viewpoint segmentation results
using only a small number of keyframes in large scenes. CLIP-NeRF [36] incorporates
CLIP embeddings into the network space, enabling the use of simple textual prompts
or image manipulations with NeRF.

Panoptic Lifting [32] utilizes a pre-trained network to infer a two-dimensional panoramic
mask, allowing the generation of a unified multi-view 3D panoramic representation.
Embedding 2D image features into 3D space has proven to be feasible. FFD [20] ad-
dresses the semantic scene segmentation challenge of NeRF by refining the knowledge
from an existing 2D image feature extractor into a parallel-optimized 3D feature field
within the radiance field. This enables specific queries to be made. In [23], CLIP [30]
and DINO’s [5] open-vocabulary and textual knowledge are distilled into a neural ra-
diance field for 3D segmentation, but query capabilities are limited. LERF [18], on the
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other hand, integrates language into NeRF using CLIP, allowing for real-time zero-shot
queries. However, LERF’s performance at high resolutions falls short of expectations.

2.2 Panoptic Segmentation

Although existing works on panoptic segmentation have successfully identified and seg-
mented objects within images [4, 38], these methods largely operate under a closed-
vocabulary assumption. Approaches like Panoptic-DeepLab [7] and DETR [4] utilize
models that are trained to recognize and segment only objects and instances from a pre-
defined vocabulary. This becomes a significant limitation in 3D reconstruction tasks,
where the types of objects and instances are not always known in advance.

For our 3D reconstruction, the diversity and unpredictability of real-world objects
require a model capable of operating within an open vocabulary. Conventional methods
[8, 9, 38] are constrained by their inability to adapt to such scenarios, underlining the
need for a more versatile panoptic segmentation model.

2.3 Open-Vocabulary Object Detection

Semantic segmentation in 2D visual scenes has largely been limited to closed vocab-
ularies. However, the emergence of open-vocabulary semantic segmentation [14, 16,
17] has opened new research directions, enabling the recognition and classification of
entities not in the training set. DetPro [14] employs pre-trained models to learn continu-
ous prompt representations for open-vocabulary object detection and outperforms ViLD
[17] across multiple metrics. Such advancements in 2D environments have influenced
3D segmentation, inspiring models like LERF [18].

To translate the successes of 2D open-vocabulary semantic segmentation into the 3D
realm, LERF employed CLIP. The CLIP model has been a cornerstone in many NLP
applications, including VQGAN-CLIP[12] and ClipCap[28]which can perform caption
generation and other applications[25, 35] which can detect instances. Its capability to
map visual and textual embeddings in a shared space made it a suitable choice for object
detection in 3D reconstructions.

Despite its advantages, CLIP has limitations in distinguishing closely related or nu-
anced categories[19]. It can also be computationally demanding and lacks precision
in mask generation. These drawbacks necessitate the exploration of more specialized
approaches for 3D object detection. In this context, recent developments in generative
models have been promising. Techniques using GANs[3, 22, 40] and diffusion mod-
els[13, 33] for semantic segmentation[37] have shown effectiveness. Therefore, our
work incorporates ODISE [37], which employs a text-to-image diffusion model and
offers significant improvements in mask accuracy and object differentiation, making it
a compelling alternative for open-vocabulary 3D scene reconstruction.

2.4 Zero-shot Learning in 3D

In the realm of three-dimensional semantic understanding, the majority of the litera-
ture has predominantly centered on point cloud representations. These endeavors have
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unearthed the profound potential of imbuing point cloud data with zero-shot language
capabilities [1, 6, 10, 11]. The point cloud, given its explicit and structured nature, pro-
vides a fertile ground for achieving such intricate semantic tasks. However, when tran-
sitioning to the domain of Neural Radiance Fields (NeRF) [26], this zero-shot prowess
seems to dwindle. Notably, the inherent implicit representation of NeRF poses chal-
lenges for directly porting over the same zero-shot capabilities that thrived in point
cloud spaces.

Yet, amidst these challenges, a few ventures, such as LERF [18], have boldly em-
barked on the journey to amalgamate the zero-shot language abilities within NeRF.
LERF, in particular, was seminal in integrating language into NeRF using the prowess
of CLIP, facilitating real-time zero-shot queries.

While these works deeply discovered the possibility of empowering point cloud
with zero-shot language ability, few researches have tried such implementation in NeRF
like LERF does because NeRF representation is usually less explicit than point cloud.
Our work, building on this nascent foundation, further investigates how to achieve a
more refined and comprehensive semantic understanding in NeRF. We leverage the
rich semantic and visual knowledge offered by CLIP to bolster the NeRF framework’s
ability to cater to intricate semantic queries and representations.

2.5 Cross-modal Knowledge Distillation

Knowledge distillation across modalities, particularly from 2D image domains to 3D
representations, has shown to be a promising avenue in enhancing the understanding
of three-dimensional scene structures. In the realm of Neural Radiance Fields (NeRF),
a noteworthy attempt in this direction is epitomized by Panoptic Lifting[32]. It profi-
ciently infuses the insights gained from 2D segmentations into a 3D NeRF framework.
However, like some other pioneering endeavors[21, 24, 31], Panoptic Lifting, while ex-
celling at partitioning structures and accuracy, does not support open-vocabulary labels.
Consequently, these methods fall short in facilitating zero-shot querying capabilities,
which restricts their adaptability in dynamic and real-time applications.

Although these works may be very good at partitioning upon point clouds or pix-
els, they are weak in zero-shot ability. In our work, we managed to make significant
improvements using 2D segmentation knowledge without any detriment to zero-shot
capabilities.

3 Method

3.1 Overview

We tackle the challenge of fuzzy CLIP feature generation in LERF by bring in prior
knowledge. Given a sequence of NeRF standard images, we first extract semantic prior
knowledge from training images using panoptic segmentation and cut out image tiles
with continuous semantics. While LERF having problems due to uniformly divided
image tiles, we override the division tiles centered at known segmentation with corre-
sponding preprocessed segmentation tiles. By restricting scale selection, each segmen-
tation tile will be used at most once, preserving still sufficient non-prior information
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Fig. 2. Optimization Pipeline: Top: Extracting language prior using panoptic segmentation,
which is for the refinement of image pyramid. Mid: Uniformly multi-scale image cropping to
generate original image pyramid, and utilize segmented tiles provided above to do scale overrid-
ing as the reconstruction of image pyramid. Then send the image pyramid to CLIP Image Encoder
to build the ground truth CLIP feature pyramid. Buttom: Basic NeRF method as backbone. For
computing the feature loss of CLIP field, we use the reconstructed ground truth pyramid and ren-
dered features. Loss functions remain the same as in LERF.

.

in multi-scale image patches. Therefore the outcome CLIP embedding could hold both
precise and abundant information, providing more precise queried relevancy maps.

In the following sections we will detail our method (See Figure 2) and also provide
a new metric for effectively evaluating the results.

3.2 Field Structure

LERF builds upon the foundational approach of NeRF, grounding CLIP embeddings
into a 3D field within NeRF by learning a field of language embeddings over volumes
centered at the sample point.

Given a viewing ray parameterized as

r(t) = o+ td (1)

where o is the ray’s origin and d its direction, the integral[26]:

C(r) =

∫ tfar

tnear

T (t)σ(r(t))c(r(t),d)dt (2)

captures the accumulated color for the ray, considering its traversal through the volume.
Here, T (t) represents the accumulated transparency along the ray up to point t.

Apart from NeRF method, LERF augments a language Flang(x, s) ∈ Rd that takes
an input position x and physical scale s, and outputs a view-independent d-dimensional
language embedding.
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The rendering of these embeddings into the 3D scene is executed as[18]:

ϕ̂lang =

∫
t

w(t)Flang(r(t), s(t))dt (3)

Here, w(t) represents the rendering weights.
In order to build better CLIP field, we need to effectively supervise each rendered

frustrum with an image crop of size simg centered at ray origin. While CLIP operates
over image patches, it is necessary that for each ray the supervising image crop should
be given in multi-scale, ensuring objects of different sizes in one scene can all be allo-
cated with appropriate attention and accurate CLIP embeddings. Meanwhile, because
it is unaffordable to compute CLIP embedding for every ray with multiple scales, we
can only pre-compute a image pyramid including part of ray origins and perform trilin-
ear interpolation to compute other CLIP features. While normally the image pyramid
used for trilinear interpolation is required to have the scale of each layer half the size
of previous layer, we argue this to be a must because results of CLIP encoder hardly
varies upon small size changes. Therefore, for image scales between smin and smax,
we override certain image tiles at original pyramid levels with our calibrated tiles that
have similar scales yet better CLIP feature after image encoding. Finally we can super-
vise CLIP fields of each scale using the ground truth embedding φgt

lang generated from
this reconstructed pyramid, which will be further introduced later. During query, we
will go through CLIP fields of all pre-defined scales and choose the best field to render
relevancy map.

3.3 Semantic Prior Extraction

To bring in prior knowledge, we choose image segmentation for guidance. In LERF’s
pre-computing of image pyramid, many objects were either not entirely included in one
small crop or too tiny to contribute enough information in big crops. These defective
crops lead to lower relevancy after image encoder, and get vaguer for other image points
when performing interpolation. In terms of this issue, we propose to first extract pixels
containing complete and continuous semantic and then send for encoding of relevant
ray origins, which no longer need to be at the center of encoding image tiles. Specifi-
cally, we perform image segmentation to pre-crop training images. Based on segmen-
tation masks, for each segmentation index, we cut out its image tile from (top,left) to
(bottom,right) of the targeted mask and perform zero padding (with extracted image
tiles at center of padded images) to create a calibrated segmentation tile with the size
of max(verticalint , horizontalint). The reason why we choose image tiles instead of
cut-out pixels of the same label and do zero padding for empty spaces is that we need
to preserve the surrounding information for long-tail label queries. For example, if we
only use the pixels of a coffee cup, CLIP encoder will simply ignore the surround-
ing information of coffee on the table and resulting in failure while querying “spilled
coffee”. Such knowledge will also be needed when computing the CLIP features of
nearby ray origins.

After extraction, these generated tiles can provide better CLIP features concerning
the segmented parts compared with many uniformly divided tiles which can not be fully
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captured by CLIP image encoder. Moreover, this step is label-free which means we do
not need segmentation labels. One of the difficulties of grounding language informa-
tion within 3D scenes is the inconsistency of segmentation labels between images. For
example, in the sequential images of the NeRF data set, a hand can be given labels
from “hand” and ”person” to “handle” in spite of accurate segmentation, making it im-
possible to ground semantic information by training with label ids. But since we are
now using CLIP, even if one object in different segmentations may have varied labels,
the encoded vectors are still close in space, which solves the problem of 3D semantics
inconsistency.

Explicitly, we require every pixel to have one segmentation label, instead of only fo-
cusing on foreground objects, thus panoptic segmentation is chosen. We find panoptic
segmentation very effective because it also provides clear masks for different back-
ground and irrelevant parts. By sending these parts for supervising the CLIP features
around interested objects, surrounding pixels will bring less interference compared with
supervising these areas with uniformly divided image tiles, which could usually crop
parts of foreground objects and result in incorrectly high relevancy concerning sur-
rounding background parts of queried targets. In practice, we used ODISE[37] which
supports open-vocabulary labels and works well in the tested scenes. The segmentation
model used here can be replaced, but we discovered that many models may need much
more refinement to provide enough segmentation tiles concerning LERF’s in-the-wild
scenes.

3.4 CLIP Pyramid Reconstruction

The processed segmentation tiles are used for reconstructing the CLIP feature pyra-
mid, but it is important to decide how much tiles built upon prior knowledge should
be implemented concerning the base pyramid patches. If we override all tiles using
only the patches extracted by image segmentation, the zero-shot ability will be largely
affected and reduced to segmentation label sets, or even renders wrong outline (See
Figure 6.right).

In order to improve accuracy without affecting the original zero-shot ability, we
override uniformly cropped tiles using segmentation tiles with matched points and
scales. First, the original tile should be centered at certain segmentation (some pixels are
not given labels in segmentation if not belong to the label set). Second, the scale of this
tile must be close to the corresponding segmentation tile. During processing, while the
original tile has the scale si in smin to smax, we require the target segmentation tile to
have a scale sx that si−1∗1.1 < sx ≤ si+1∗1.1 or sx ≥ smax. With this restriction, one
segmentation tile can only override at most one tile at a certain scale. The overridden
tiles can generate the most precise CLIP feature for center points and increase periph-
eral relevancy through trilinear interpolation, resulting in better relevancy map in this
scale level. This brings an extra benefit that other overridden tiles centered at different
segmentation now have CLIP features that are closer to other segmented stuff, meaning
lower relevancy concerning current query and better rendered high relevancy outline.
Moreover, for objects with other sizes or stuff ignored by the segmentation model, their
CLIP features are still stored in other scale levels in the CLIP feature pyramid, and can
also be queried.
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3.5 Relevancy Evaluation Metric

Because the way LERF grounds language information into NeRF is rather novel and
unique, commonly used metrics in NeRF or image segmentation such as PSNR and
MIoU may not be appropriate for evaluating the quality of results based on LERF rep-
resentations. While LERF do provide high-quality results that have segmentation-like
outlines in certain views, most queries can only get a vague relevancy map. Therefore,
we propose a metric based on LERF’s pixel relevancy score to explain LERF’s visual
results with precise data.

Basically, in order to generate a better query result, we need both pixels inside
the queried object to obtain high relevancy scores and outside pixels to have low rele-
vancy scores (See also Figure 1 as an example). Normally, take Insegove, Outsegove
as average pixel relevancy scores inside and outside queried objects, we can easily use
Ratioacc = Insegove ÷Outsegove to represent the accuracy of pixel relevancy. How-
ever, this ratio cannot be restricted to a specific range and may be largely affected across
scenes. Thus, we propose Drelevancy .

Take:

Rgt(x, y) =

{
1, if pixel (x, y) inside query
0, if pixel (x, y) outside query

(4)

as ground truth relevancy scores for all pixels, then

Drelevancy =

∑
(Rgt(x, y)−R(x, y))2

imgheight × imgwidth
,

x, y ∈ [0, imgheight), [0, imgwidth)

(5)

where R(x, y)represents the predicted pixel relevancy.
The reason why we define Rgt (x,y) to be 1 or 0 is because the best result should

be only pixels belonged to queried object are presented with absolute relevancy and
other irrelevant pixels having zero relevancy. As for the counted D-value, we process it
using square value instead of absolute value because we want to filter small D-values
and focus on large ones which are more definitive concerning the final visual results.
By doing so, Drelevancy ranges from 0 to 1 and can now effectively demonstrate the
gap between ground truth and rendered results.

During experiments, we found Drelevancy consistent with visual results that lower
Drelevancy maps usually have better visuality. We believe this metric may also be useful
for the evaluation of future works based on LERF representation.

4 Experiments

4.1 Settings

We conduct extensive experiments upon the LERF datasets[18] with most variables in-
cluding CLIP model (OpenClip ViT-B/16 model), NeRF method (Nerfacto) and trained
steps consistent with LERF to examine the effects of introducing prior knowledge. We
also use the same DINO[5] regulation which is proved to be essential in refining high
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quality maps by LERF. We implement ODISE[37] as our open-vocabulary panoptic
image segmentation model for extraction, with all labels chosen. Segmented tiles are
zero-padded and original tiles are moved to the center of padded images to have bet-
ter CLIP encoding. While the pixel relevancy and visual results change with rendering
resolution, we test based on resolution 256×138, 512×298 and 994×738 (the resolu-
tion of training images)rendered using Nerfstudio[34]. In Table 2 image resolution is
fixed to 512×298 and only pixels with relevancy more than 0.5 are highlighted. We use
the metric mentioned in Sec 3.5 and text query tables provided by LERF. Each query
is tested across 4-10 viewing angles depending on the original complete appearance
frequency in training images. Camera FOV used in rendering is 50.
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Fig. 3. Results in different scenes and views, with Drelevancy in the bottom right corner. In most
views, we have lower Drelevancy , and our method shows much better localization ability in
LERF’s failed maps. We also show a case where we have a bit higher Drelevancy but a more
even distribution of similarity and clearer outline in “refrigerator”.

4.2 Qualitative Results

We implement the same visualization of relevancy score as in LERF for visual compari-
son. In Figure 3 and 4 we provide some outstanding results in different scenes that prove



Leveraging Panoptic Prior within LERF 11

LERF OURS

Fig. 4. Query “cookies” where exists both cookies on the plate and text “cookies” on the bag.
Both should be given enough attention concerning single text query “cookies” after image en-
coding if trained correctly.

the effectiveness of our method in generating better localization maps. General data re-
sults across scenes are shown in Table 2, where we also provide average relevancy score
for evaluation.

Table 1. Query Recall In LERF and our methods, we consider a label within certain view a suc-
cess if at least nine out of ten highest relevancy (top 10 percent) pixels land inside the segmen-
tation. In OWL-ViT we consider an object detection correct if the highest confidence prediction
matches the label bounding box (if there are other predictions with similar confidence but fall
upon the wrong object, we still consider it a mismatch). Each label is tested across 3-6 original
views and OWL-ViT is tested based on training images.

DataSets OWL-ViT LERF OURS
hand-hand 91.39% 89.62% 93.24%
waldo-kitchen 93.87% 91.82% 89.80%
ramen 88.44% 84.63% 88.56%
donuts 84.84% 87.83% 90.81%
teatime 87.71% 92.32% 93.54%
overall 90.52% 89.54% 91.18%

In most views, both our method and LERF can successfully localize queried tar-
gets, and our method has higher recall rate because we outperform LERF in its failed
cases. We can also have higher detection ability compared with 2D open-vocabulary
object detection model OWL-ViT[27] which also has zero shot capability (See Table
1). Sometimes, LERF’s rendered quality can be really fuzzy and deranged in certain
demanding views especially novel views. In novel view query “porcelain hand”, when
LERF fails to localize model hand, ours method provides high quality results. When
given demanding tasks such as querying part of “chopsticks”, “table” and “donut”, our
method also shows higher relevancy and better outline. In these views, we also have
much lower Drelevancy , meaning closer relevancy grounding compared with ground
truth segmentation. Our method succeeds across tested scenes in having lower aver-
age Drelevancy and can handle many demanding views which LERF fails to localize,
proving our improvements compared with LERF.

Moreover, when querying “cookies” in a demanding view (See Figure 4), our method
shows not only higher accuracy in localizing cookies on the plate, but also gives the text
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“cookies” on the bag equal attention, while LERF renders text “cookies” are less rele-
vant. This means our method better grounds the text feature and can handle ambiguous
queries. These results show that our method is more robust under general situations.

Table 2. Average Drelevancy in different LERF datasets. Each label is tested across 5-8 views
including novel views.

DataSets LERF OURS
hand-hand 0.2123 0.1587
waldo-kitchen 0.2460 0.2436
ramen 0.2423 0.2240
donuts 0.1375 0.1333
teatime 0.1307 0.1201

4.3 Ablation Study

In order to demonstrate why it is important that our method brings in prior knowledge
only for partial reconstruction of CLIP feature pyramid across scales, we provide simple
yet intuitive experiment results for understanding.

Fig. 5. Comparison of three methods. In the first training view three methods share similar
results, then in the next training view LERF fails to localize and single scale result starts to show
obvious retrogress but can still generally localize. In the last novel view our method still shows
strong localization ability while LERF and single scale results keep getting worse.
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Fig. 6. Full segmentation supervision outcome.Left: Query “porcelain hand” shows high rele-
vancy and clear outline. Right: Query “hand” yet high relevancy outline follows whole person.
This is because segmentation label is “person”.

Single scale overriding We override all image tiles of the the biggest scale in the
image pyramid with segmented tiles and keep other scales of the image pyramid un-
changed, so that the scales of segmented tiles are being ignored and the tiles are used
directly for overriding in the same scale of image pyramid. Although this method can
also localize “porcelain hand” in the previous viewing angle (See Figure 5), in most
views the segmentation information is ignored or even wrongfully used. This is because
many segmentation tiles could be much smaller than the biggest scale and their mixed
use with correct scale tiles in interpolation could mislead the computed CLIP feature,
causing worse relevancy. This method may result in even lower Drelevancy than LERF
in many views.

Full segmentation supervision In this experiment, we removed the tiles overriding
procedure along with the multiscale CLIP feature pyramid. Instead, we supervise the
CLIP features of all training rays by calculating the CLIP embeddings for each ray. The
image tiles sent to CLIP image encoder are preprocessed segmentation tiles where the
rays originate so that all training rays are supervised using prior knowledge obtained in
image segmentation. This requires calculating CLIP outcomes for massive training rays
and can be very time-consuming. We trained 9000 out of 30,000 steps within 12 hours
when we already have usable relevancy maps. See outputs in Figure 6.

Although this could render the highest relevancy that gets close to segmentation
outcome in certain views (Figure 6.left), the zero-shot ability is destroyed and reduced
to segmentation labels. The rendered results are now highly consistent with image seg-
mentation results and may fail to query part of segmented tiles (Figure 6.right), not to
mention the unbearable training time.

To sum up, based on the above experiments, we believe our method is a rather suit-
able way of grounding image segmentation prior knowledge within LERF to have bet-
ter open vocabulary query results in reconstructed scenes. Meanwhile, it is still worth
noticing that full segmentation supervision successfully grounds high quality image
segmentation information within NeRF reconstructed scenes, which some other works
are struggling with. We believe this result proves CLIP’s outstanding ability in such
tasks and can serve as a very important tool for future works concerning 3D segmenta-
tion should they find a way to boost training efficiency.
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5 Limitations

Our method shares the same “bag-of-words” behavior shown in CLIP and LERF that
for example, takes “not red” similar to “red”. Such proposals need more demanding
language understanding and may not be correctly encoded. Future works could try to
improve the performance of embedding open-vocabulary queries with directed focus on
similar negative proposals.

Although we do train a 3D-consistent field, the image encoding and rendering are
all based on 2D image, thus it is not available to query using spatial information. It
may need to encode contextual information to solve this problem. Meanwhile, we still
require queried objects to be captured with appropriate sizes across a couple of views,
ensuring its attention and accurate CLIP embedding for high quality results. We sug-
gest future works employ cross view attention and image augmentation concerning this
limitation.

We have also limitations concerning segmentation models. For instance, ODISE
fails to segment “expo markers” on the table in many views, causing us to lose that part
of prior knowledge. A model capable of more precise segmentation could bring better
results.

6 Conclusions

We present a method of introducing prior knowledge obtained image segmentation into
LERF and outperforms LERF with higher quality relevancy maps without any reduction
in zero-shot ability. We found it very effective to store both prior and non-prior knowl-
edge together for high recall, yet also possible to supervise using dense segmentation
information through CLIP encoder to achieve accurate object outline in NeRF scenes.
We provide this very baseline for future works concerning semantic NeRF scenes to bal-
ance between recall and precision. Our metric will also hopefully serve later research
in the evaluation of relevancy maps.
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