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Abstract

Predicting lighting from standard images can effec-
tively circumvent the need for resource-intensive High
Dynamic Range (HDR) lighting acquisition. However,
this task is often ill-posed and challenging, particularly
within indoor scenes, due to the intricacy and ambigu-
ity inherent in various indoor illumination sources. We
propose an innovative transformer-based method called
SGformer for lighting estimation through the model-
ing of Spherical Gaussian (SG) distributions—a com-
pact yet expressive lighting representation. Diverging
from previous approaches, we explore underlying local
and global dependencies in lighting features, which are
crucial for reliable lighting estimation. Additionally, we
investigate the structural relationships spanning vari-
ous resolutions of SG distributions, ranging from sparse
to dense, aiming to enhance structural consistency and
curtail potential stochastic noise stemming from inde-
pendent SG component regressions. By harnessing the
synergy of local-global lighting representation learning
and incorporating consistency constraints from various
SG resolutions, the proposed method yields more accu-
rate lighting prediction results, which allow for more re-
alistic lighting effects in object relighting and composi-
tion. The code for the implementation of our work will be
publicly available online.

Keywords: Lighting estimation, transformer, Spherical
Gaussian, augmented reality

1. Introduction

In today’s world of gaming, digital effects, and the surg-
ing popularity of augmented and mixed reality (AR/MR)
applications, there is a growing demand for more realistic
lighting. Achieving this realism is essential to ensure con-
sistent shading and shadow alignment between virtual and
real objects. Traditionally, capturing a scene’s lighting in-
volves using light probes or omnidirectional 360◦ captur-
ing devices. However, the use of specialized devices is

time-consuming and often cost-prohibitive, which barriers
their widespread use. To overcome these limitations, recent
advancements in deep learning techniques [15, 17, 7] and
the availability of extensive lighting-related datasets have
prompted the development of methods that predict global il-
luminations from standard partial field-of-view images, pro-
viding a more accessible and cost-effective approach to ap-
proximate lighting [34, 21, 28].

The challenge of estimating indoor scene lighting, where
lighting source quantities, distribution, and intrinsic proper-
ties may vary significantly between scenes, is widely rec-
ognized. Various deep learning methods tackle this chal-
lenge by generating indoor lighting conditions using dif-
ferent lighting representations, including environment maps
or regressing lighting parameters like Spherical Harmon-
ics (SH) and Spherical Gaussian (SG). In contrast to envi-
ronment maps, which provide dense pixel-level representa-
tions, parametric lighting models offer condensed lighting
representation focusing on the distribution of key lighting
sources, making them favored for real-time rendering and
relighting applications [25, 36, 30]. Among these paramet-
ric lighting models, the SG model is notable for its com-
pactness and efficiency [14, 8]. It excels in capturing intri-
cate high-frequency lighting details, enabling robust render-
ing of specular reflections and highlights in images, and has
gained considerable attention recently [1, 32, 33].

Gardner et al. [8] introduced a set of SG parameters
representing light sources, considering their direction, po-
sition, color, and size. However, directly regressing such
light source-dependent SG parameters often leads to unsta-
ble model training and inference due to the unconstrained
lighting source quantities and floating lighting positions,
thereby limiting the accuracy of the predictions. Alterna-
tively, Li et al.[14] and Zhan et al.[33] employed a differ-
ent SG representation where multiple SG components are
evenly distributed over a unit sphere [27]. In this repre-
sentation, each SG component encodes the local light di-
rection and intensity, as well as the ambient lighting. This
Gaussian map representation effectively enhances inference
stability and enables more effective optimization. Subse-
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quent works [32, 1, 31] have built upon this SG map rep-
resentation to predict lighting conditions for direct object
rendering [14] or as a concise prior for improved environ-
ment map prediction [32, 31]. However, while Gaussian
map predictions have shown promise, increasing the num-
ber of Gaussian components for better high-frequency in-
formation approximation often results in noisy predictions
with more missing or superfluous Gaussian components.

In this paper, we introduce an innovative deep architec-
ture aimed at enhancing Gaussian map predictions for im-
proved indoor lighting estimation. Specifically, we lever-
age the Conformer architecture [18] to effectively extract
lighting features from low dynamic range (LDR) input im-
ages by modeling both local and global lighting features,
as well as their intricate relationships. Given that the input
information is considerably limited compared to the target
panorama, which is typically less than 10% of the full scene
in a standard image [13], a comprehensive understanding
of both local lighting cues (e.g., small specular highlights)
and global lighting cues (e.g., ambient lighting, shadows)
is essential for enhancing the network’s ability to infer reli-
able lighting conditions. Furthermore, to improve the struc-
tural distribution of predicted Spherical Gaussian compo-
nents, we propose a multi-head transformer decoder struc-
ture, accompanied by a distribution consistency loss across
multi-resolution SG distributions for better lighting struc-
ture learning. These innovations effectively mitigate poten-
tial noise in all spectra of SG map predictions and enhance
the overall spatial structure in predicted lighting. Our exper-
imental results demonstrate that our boosted transformer-
based framework effectively enhances Spherical Gaussian
map predictions, leading to more realistic object rendering
and more accurate guidance for environment map predic-
tions. Our contributions are summarized as follows:

• We propose SGformer, a novel transformer-based net-
work that combines a Conformer encoder with a multi-
head transformer decoder to enhance SG predictions.

• We design a novel SG consistency loss to improve
lighting structure predictions by exploring the spatial
relationships across different SG resolution levels. To
the best of our knowledge, this is a pioneering work
to harness multiple SG resolutions for lighting predic-
tion.

• Our SGformer model can effectively serve as a tool to
enhance environment map generation and enable more
realistic object rendering.

2. Related work

Lighting Representations: Extensive research efforts have
been dedicated to devising methods for representing envi-
ronmental lighting conditions. One widely adopted repre-

sentation is the environment map [19, 20], which character-
izes lighting using dense 2D images. Typically, an environ-
ment map is derived from the projection of a high-dynamic-
range (HDR) spherical image, employing techniques such
as equirectangular projection or cube mapping. Environ-
ment maps are extensively employed in image-based ren-
dering pipelines. However, their high dimensionality poses
significant challenges when predicting individual pixels.
Additionally, the non-uniform sampling on a spherical sur-
face often introduces distortions or irregular shapes in the
image, differentiating them from traditional images and pre-
senting estimation challenges.

Alternatively, lighting parametric models provide com-
pact representations commonly used as prior lighting infor-
mation for real-time rendering. Various parametric mod-
els, such as SG [29, 26] and SH [11, 2] lighting models,
have been introduced. The SG model characterizes en-
vironmental lighting using Gaussian lobes, each defined
by several parameters like size, central direction, and fat-
ness/sharpness. Utilizing more SG components/functions
often leads to a more precise description of the lighting
conditions. In comparison to SH models with a predefined
set of orthogonal polynomial functions[16], SG provides
greater flexibility in configuring the shape, number, and dis-
tribution of basis functions. It effectively mitigates potential
ring artifacts introduced by high-order SH functions while
approximating full-frequency lighting. With a similar num-
ber of parameters, SG excels in capturing specular reflec-
tions and highlights. In this paper, we primarily concentrate
on estimating parametric lighting from a single standard im-
age. We make the first attempt at investigating the spatial
relationships among spherical Gaussian components across
various SG resolutions.

Learning-based Lighting Parameter Regression: Sev-
eral works focus on regressing lighting parameters from
partial-view images using deep learning methods, primar-
ily targeting real-time rendering and relighting applications.
Garon et al.[10] and Cheng et al.[6] introduced a deep learn-
ing model for predicting scene illumination by regressing
spherical harmonic (SH) coefficients. Gardner et al. [8]
employ a parameterization scheme where each light source
is represented by a single spherical Gaussian (SG) func-
tion. They developed a deep learning model to regress
key lighting attributes, including light directions, light in-
tensities, and light colors, for each individual light source.
EMlight [33] introduced a method for predicting Spheri-
cal Gaussian (SG) maps that encompass a fixed number of
lighting components, referred to as anchors, which are uni-
formly distributed on a unit sphere. A spherical mover’s
loss was introduced to precisely regularize the distribution
of SG components within the SG maps. These predictions
are utilized as initial lighting structure guidance for the syn-
thesis of panoramic illumination maps. GMlight [32] ex-



tended this work to incorporate depth information. It reg-
ularizes the Gaussian map learning in a geometric space
using a geometric mover’s loss guided by depth, enabling
spatially varying lighting estimation. DSGlight introduced
a graph-based framework to enhance SG map estimation. It
employs a graph convolutional network (GCN) module to
refine the color and depth of each SG component at a se-
mantically structural level. Finally, Xu et al. [31] proposed
a transformer-based model with self-attention mechanisms
to improve contextual modeling of SG distributions, serv-
ing as a pre-processing step for further environment map
estimation.

Prior methods have mainly concentrated on enhancing
the stability of regression models during training [33], and
they have attempted to introduce additional regularization
techniques to improve the regression of lighting distri-
butions for better preservation of full-frequency informa-
tion [33, 32]. However, these efforts have primarily cen-
tered on improving the regression decoder [1, 31], often
neglecting the significance of the feature extraction mod-
ule, which has a more critical impact on the final results.
Additionally, regularization has typically been applied at
the highest resolution, to maintain high-frequency details,
which can be particularly challenging when working with
very limited input information.

To enhance the accuracy of our predictions, we propose
improving the extraction of lighting features by considering
both local and global lighting characteristics and their inter-
relationships through the Conformer network [18]. Further-
more, we introduce a multi-head transformer decoder ac-
companied by an SG consistency loss to regularize SG dis-
tributions by using multi-resolution information, spanning
from sparse to dense, to promote a more profound under-
standing of their structural aspects.

Learning-based Environment Map Generation: Several
deep learning method have been introduced to estimate en-
vironmental maps from standard images [34]. The origins
of these studies can be traced back to the pioneering work
of Gardner et al.[9], which has since inspired a series of
subsequent efforts[4, 22, 24]. These efforts address vari-
ous critical aspects in this field, including the ability to han-
dle spatial variations in indoor scenes [23, 24], lightweight
solutions for mobile applications [13], and the capacity to
generalize to a wide range of input variations [35]. No-
tably, some recent work [33, 32, 31] has explored the use
of sparse lighting representations as guidance for generat-
ing dense, pixel-wise environment maps. In such cases, SG
maps and/or SH diffuse maps serve as instructive priors for
directing the generation of lighting sources for the final en-
vironment map.

3. Method

We employ the following equation to represent illumina-
tion in the form of the SG map [33], denoted as D:

D =
N∑
i=1

(Ai ∗ Lhdr>Is)eα∗(di∗u)−1 + Lhdr<Is (1)

The original HDR environment map of the scene is parti-
tioned into two components: the light source component
(Lhdr>Is ) and the ambient component (Lhdr<Is ), based on
an intensity threshold (Is = Imax ∗0.05 in our case), which
depends on the maximal pixel value Imax of the environ-
ment map. The lighting source regions are approximated
using multiple SG functions [8], evenly distributed across a
sphere, where N represents the number of SG functions or
anchor points. di represents the direction of anchor point i,
predefined using the method proposed by Vogel [27]. The
symbol u denotes an arbitrary direction vector on a unit
sphere, and α stands for the inverse of angular size, which
we set to constant 1. Each light source is associated with
neighboring anchor points based on a minimum radial dis-
tance criterion. The RGB value of each anchor point Ai is
calculated as follows [33]:

Ai =
∑
pi
Lpi,hdr>Iswhere pi ∈ argmin{d{phdr>Is , di}} (2)

where pi represents the collection of pixels nearest to the
anchor point with direction di.

In the following sections, we will start by analyzing the
capability of SG maps with different resolutions in repre-
senting lighting features. This analysis will demonstrate the
importance of our SG learning framework’s design. Fol-
lowing that, we will introduce our network structure and its
associated learning scheme.

3.1. Multi-Resolution SG Analysis

The resolution of the SG map, crucial for accurately cap-
turing lighting information from a scene, is determined by
the number of SG functions, denoted as N . Figure 1 illus-
trates examples of scenes and their SG maps at different res-
olutions. Lower-resolution SG representations, character-
ized by fewer anchor points, provide a more abstract depic-
tion of lighting conditions. They offer a rough but still infor-
mative overview of the primary light source’s position and
their central intensity. On the other hand, higher-resolution
SG representations, with a greater number of anchor points,
excel at conveying intricate lighting source details. It effec-
tively captures nuances such as shape, intensity variations,
and directional shifts. Across different resolutions, SG rep-
resentations maintain consistent distribution patterns. As
the resolution increases from sparse to dense, a core spatial
distribution is preserved, while each single light source can



Figure 1. Illustrations of scenes and their SG maps at various resolutions.

SG Light Source #1 Light Source #2 Light Source #3 Light Source #4 Light Source #5
Intensity Angular Intensity Angular Intensity Angular Intensity Angular Intensity Angular

8 12.92 39.76 11.62 37.22 12.00 36.53 11.13 35.74 11.25 35.36
16 13.45 27.77 11.23 26.56 11.35 25.59 10.73 25.66 10.62 24.23
32 13.25 17.47 10.93 18.12 11.27 17.06 10.32 17.05 10.14 16.80
64 13.39 12.05 10.31 12.27 10.95 12.53 9.95 12.18 9.62 12.34

128 12.12 9.51 9.35 10.19 10.86 9.29 9.42 9.27 9.05 9.12

Table 1. The intensity and angular errors of various SG resolutions in representing the primary lighting sources. The table lists the top 5
lighting sources, ranked by their intensity.

encompass multiple anchor points in light shaping. Thus
it creates complex semantic relationships between different
anchors.

To assess the accuracy of different SG map resolutions
in representing the lighting sources, we conduct a compari-
son of angular and intensity deviations between the ground-
truth lighting sources in the HDR environment map and
those extracted from different SG maps. Following the ap-
proach of Gardner et al. [8], we detect the ground-truth
lighting source regions using a region expansion method
applied to the HDR environment map. This process be-
gins with light peaks as initial seeds and incrementally ex-
pands until the intensity falls below one-third of the peak
value. Subsequently, region merging is carried out based on
overlapping regions. To extract lighting sources from SG
maps, we aligned anchor points with their closest ground-
truth lighting source regions. We ranked the top five lighting
source regions based on peak intensity, arranging them from
highest to lowest. For each of these regions, we conducted
a statistical analysis of all anchor points within that specific
region. The anchor point displaying the highest lighting in-
tensity was designated as the extracted light source center.
The outcomes, as presented in Table 1, demonstrate that as
SG resolution increases, the deviations in intensity and an-
gular accuracy stemming from the lighting representation
diminish. This highlights the significance of high-resolution
SG maps in achieving precise lighting representation.

The task becomes more challenging when aiming to
predict high-resolution SG maps, primarily because it in-
volves dealing with a substantially larger number of param-

eters. Unlike low-resolution predictions, which focus on es-
timating average positions and intensities, high-resolution
predictions must delve into more intricate details, includ-
ing the shapes of light sources and subtle intensity varia-
tions. Therefore, a more comprehensive set of representa-
tive lighting features becomes essential. Additionally, as the
number of SG components increases, preserving the struc-
tural semantics of numerous discrete points becomes crucial
for creating a meaningful representation of lighting sources.
Ensuring structural consistency across resolutions can serve
as a valuable regularization technique in this context, effec-
tively reducing noise in high-resolution predictions and ad-
dressing sparsity issues in low-resolution predictions.

3.2. Network Architecture

Given a partial view image captured in a scene, we intro-
duced SGformer for predicting the lighting conditions in a
scene, and Figure 2 presents an overview of the entire archi-
tectural structure. We utilize a Conformer encoder [18] to
extract lighting features, which are then input into a multi-
head transformer-based decoder. Subsequently, a fully con-
nected layer is employed to convert these lighting features
into SG lighting parameters for each resolution. This in-
cludes estimating the anchor point distributions, along with
associated global average lighting intensity and RGB ra-
tios [33, 31]. The network model is trained holistically, and
we augment it with a structural consistency loss for addi-
tional regularization.
Conformer Encoder: Considering the limited scene infor-
mation available from the input image and the wide varia-



Figure 2. The overall architecture of SGformer takes a standard LDR image as input and produces SG parameters at various resolutions as
output. It comprises a Conformer encoder and a multi-head transformer decoder. Additionally, we introduce a novel SG consistency loss
to enhance the regularization of the lighting structure learning.

tions in lighting conditions in indoor illumination, learning
discriminative lighting-specific features concealed within
the input photos is crucial for a meaningful understand-
ing and inference of lighting. Real-world lighting distri-
butions exhibit intricate properties, with lighting features
sometimes confined to small areas, like a specular highlight
on an object’s surface, and at other times extending widely,
such as with large window light or shadows. Different local
and global lighting features often interact with each other;
for instance, a specular highlight can be generated by a light
source located far away from the viewer’s perspective.

Convolutional networks excel at capturing local features
but tend to struggle when it comes to learning long-distance
global relationships. On the other hand, the vision trans-
former is proficient in learning global representations but
often overlooks finer local feature details. In our prelim-
inary experiments, we observed that relying solely on a
Transformer as the feature extractor is susceptible to inac-
curacies in predicting lighting intensity. To tackle this chal-
lenge, we get inspiration from the recent trend of combin-
ing these two technologies in various visual and non-visual
tasks [18, 5, 37, 12]. In the context of light estimation, Xu
et al. [31] leveraged the DETR method [3, 38] that blends
convolutional layers and Transformers to extract lighting
features. While this approach provided some relief to the
issue, it still exhibited limitations in effectively modeling
the interaction between local and global features within a
cascade paradigm.

We propose a new lighting feature extraction module
based on Conformer [18] to enhance local and global fea-
ture extraction at various resolutions in an interactive man-

ner. It comprises both a CNN branch and a transformer
branch, with each layer featuring a dedicatedly designed
feature coupling unit (FCU) to manage conflicts and com-
plementarities among lighting features at different levels.
When combined with our multi-head decoder design, the
Conformer encoder’s feature extraction capabilities are bol-
stered by considering data from different SG resolutions.
Multi-head Transformer-Based Decoder: We propose
a new multi-head decoder based on the aforementioned
transformer-based DETR [31] method. In contrast to pre-
vious lighting prediction methods [31], which primarily fo-
cused on a single SG resolution, our approach introduces
a multi-head decoder that simultaneously estimates various
SG parameters across different resolutions. This architec-
tural approach enhances feature learning, enabling the en-
coder to generalize to a variety of tasks with differing lev-
els of complexity. The DETR decoder consists of multi-
ple transformer blocks that include self-attention and cross-
attention mechanisms, along with a learnable anchor query
system for the simultaneous prediction of multiple targets.
In our multi-head decoder structure, distinct anchor queries
are used to handle different SG embeddings, in addition to a
global query for obtaining global embeddings. Subsequent
fully connected layers serve as the prediction head, trans-
forming these feature embeddings into the respective SG
parameters.

3.3. Loss Functions

SG Consistency Loss: Within the multi-head SG decoder,
separate transformer decoders handle the decoding of light-
ing features for different SG resolutions. Consequently,



Figure 3. Comparison between downsampled SG maps from higher resolutions (top row) and the corresponding ground truth SG maps
(bottom row). The top-left corner shows the corresponding environment map, while the bottom-left corner displays the ground-truth SG
map with the highest resolution of N=128.

there is no inherent guarantee of consistency among them.
To enhance structural uniformity in predictions and simul-
taneously optimize both lighting encoding and decoding in
a holistic manner, we introduce the SG consistency loss.
This loss aligns SG maps across different resolutions via a
spherical SG downsampling technique. It calculates the loss
between the downsampled SG map and the real SG map of
the current resolution, serving as a regularization term for
model optimization.

The SG map downsampling is performed by searching
for neighboring anchor points on the spherical surface be-
tween two adjacent SG map resolutions. We define the
downsampling procedure as follows:

Ai,dn = max(A(j,rup)) where j ∈ ||dj,rup − di,rc || < R), (3)

where the downsampled value for anchor point i at the cur-
rent resolution, represented as Ai,dn, is determined by se-
lecting the maximum intensity value from all its neighbor-
ing anchor points j in the higher resolution that is located
within a radian range R of it. In our configuration, we set
the resolutions to N=[8, 16, 32, 64, 128], and R is adjusted
to [0.65, 0.4, 0.3, 0.3] accordingly to identify these neigh-
boring points. The downsampling process is applied dy-
namically to the predicted SG parameters during training to
compute the consistency loss. Figure 3 provides an exam-
ple of SG downsampling between different SG resolutions
and their comparisons with actual SG maps. The SG con-
sistency loss is calculated by applying both Earth Mover’s
distance and L2 norm on the predicted SG Apd, the ground
truthAgt, and the downsampled SGAdn, as outlined below:

Lcns = β1Cgm + β2Cl2 (4)

where

EM(Ai, Aj) = minT

(∑N
i=1

∑N
j=1 DistijTij

)
= minT < Dist, T >

Cem = EM(Adn, Apd)− EM(Adn −Agt) + EM(Apd −Agt)
Cl2 = L2(Adn, Apd)− L2(Adn −Agt) + L2(Apd −Agt)

Here, EM(·) represents the spherical Earth Mover’s dis-
tance [31]. It measures the minimum amount of probability
required to move points from one distribution to another,
taking into account a cost matrix T(ij) determined by the
predefined anchor positions and their radian distances along
the sphere (Dist(ij)) [27]. Unlike L2 or cross-entropy met-
rics, the Earth Mover’s distance can effectively leverage
spatial information between distributed points when assess-
ing the dissimilarity between two distributions.
Multiple Resolution Loss: To individually supervise the
generation of each SG resolution, we propose the following
multiple-resolution loss function:

Lsg =
∑l
i=1(α1L

i
em + α2L

i
l2 + α3L

i
log + α4L

i
rgb + α5L

i
IG)

(5)
For each resolution level i, Lem, Ll2, Llog represent the

loss terms that control the intensity distribution of SG reso-
lution n. Llog is a log-transformed version of the root mean
square error of the intensity distribution, designed to miti-
gate extreme values [31]. Lem is the Earth Mover’s loss.
LIG and Lrgb are losses related to global intensity and RGB
ratios. The weights α from 1 to 5 are empirically set to [103,
103, 10−6, 102, 10−1].Additionally, for high-resolution SG
map prediction with n = 128, we incorporate the render
loss proposed by [31], which proves beneficial for model-
ing high-frequency lighting features.

During the training process, the multiple resolution loss
function is initially employed to supervise each individual
branch together. Once the model’s training reaches a rela-
tively stable state, the SG consistency loss across different
resolutions is then applied to further refine the model holis-
tically.

4. Experiments

We evaluate our proposed method on the Laval Indoor
HDR Dataset [9]. Each panoramic image in the dataset is
cropped into eight images and tone-mapped into standard



Figure 4. Visualization of SG maps generated by SGformer and the corresponding synthesized environment maps guided by them through
a GAN-based environment map neural projector.

partial-view images as our inputs. To account for the spa-
tially varying indoor lighting within a fixed position, we fol-
low the approach outlined in [4, 35, 9, 31]. This involves
applying spatial warping and re-centralization operations to
the panoramic images, resulting in the final ground truth.
By applying this transformation, the lighting representation
is adjusted to better reflect the illumination conditions at
the position where the object would be composited, rather
than relying solely on the 360◦ camera’s position, which
could be situated at varying distances from the composition
place. Our training dataset consists of randomly selected
1200 scenes, providing a total of 1200 ∗ 8 training pairs.
The remaining 512 scenes are used for testing. The input
crop size is set to (128, 128), and SG parameters in different
resolution levels are extracted from the HDR environment
map with dimensions (256, 128).

We conduct a comprehensive evaluation, encompassing
both qualitative and quantitative assessments, to thoroughly
assess the performance of SG predictions and their impact
on environmental map generation. Our evaluation includes
comparisons with state-of-the-art techniques and in-depth
ablation studies. For a quantitative assessment of SG pa-
rameter predictions, we utilize the Root Mean Square Er-
ror (RMSE), ranked matching error (RME) [31], and L2
error for measuring global intensity and RGB ratio. And
to measure the quality of environmental map generation,
we employ well-established metrics such as RMSE, scale-
invariant RMSE (si-RMSE), and angular lighting error.

4.1. Comparisons

To illustrate the impact of our improved SG predictions
on environment map generation and rendering, we utilize a
neural projector model proposed by Xu et al.[Xu22] [31]
for environment map generation. This model is distin-

guished among GAN-based neural projectors for its capa-
bility to generate high-frequency environments, attributed
to its integration of both high-frequency SG and low-
frequency SH as lighting priors. We conduct comparisons
by generating environment maps based on our SG predic-
tions and contrasting them with state-of-the-art approaches
introduced by Gardner et al. [9], LeGendre et al. [13],
Chalmers et al. [4], Zhao et al. [35], Zhan et al. [33], and
Xu et al. [31], here we denoted as [Gardner17], [LeGen-
dre19], [Chalmers20], [Zhao21], [Zhan21], and [Xu22],
respectively. It’s noteworthy that the results presented in
[Gardner17], [LeGendre19], [Chalmers20], and [Zhao21]
are generated by each author using the testing data we pro-
vided. In the case of comparisons with [Zhan21], we have
generated the results ourselves based on their publicly avail-
able code and model. It is important to mention that our
method and [Xu22] share the same neural projector and SH
generation model, with the difference being that we utilize
SGformer to generate SG lighting priors.

Figure 4 displays the predicted SG maps (N=128) gen-
erated by SGformer alongside the synthesized environment
maps. These environment maps are produced using the pre-
dicted SG maps as a prior input to the GAN-based environ-
ment map neural projector. Our results indicate that SG-
former can generate authentic SG maps that are close to
the ground truth. These predictions play a dominant role
in shaping the final environment map synthesis, particu-
larly in influencing the lighting structure under the SPADE
paradigm within the neural projector module. Precise SG
map priors yield the creation of high-fidelity environment
maps featuring realistic lighting representations.

In comparative evaluation against various environment
map estimation methods, our approach excels in both qual-
itative and quantitative evaluations. Figure 5 presents the



Figure 5. Visual comparison of environment map generation and their rendering results alongside state-of-the-art methods. Four examples
are presented, with the upper part displaying the generated environment map and the lower part showing the input crop containing an
inserted virtual ball (with roughness levels of 0.2 for rows 2 and 4, and 0.5 for rows 6 and 8) rendered using the predicted environment map
in each case. Additional environment map synthesis results can be found in the supplementary material.

visual results, showcasing both the generated environment
maps and their rendering effects on a virtual object (virtual
ball). It is observed that our method outperforms competing
approaches in several aspects, including lighting distribu-
tion, color tones, and intensity variations. While methods
proposed by [Gardner17], [LeGendre19], [Chalmers20],
and [Zhao21] have gradually improved the approximation
of lighting distributions, their generated environment maps
often lack detail and clarity when rendering objects with
low-roughness materials.

The introduction of GAN loss, as seen in [Zhan21] and
[Xu22], enhances the fidelity of generated environment
maps. However, these methods still struggle with accurate
lighting distribution due to limitations in feature encoding

and lighting decoding capabilities. Artifacts is apparent in
specular and texture reflections on composite object sur-
faces with roughness=0.2 (Figure 5, rows 2 and 4, columns
5 and 6). Moreover, discrepancies are observed in color
tones, intensity, and the highlight areas on object surfaces
with roughness=0.5 (Figure 5, rows 6 and 8, columns 5 and
6). Our results demonstrate a distinct advantage in lighting
predictions, compelling in the creation of the most authen-
tic environment map and realistic object rendering effects.
The overall structure of the environment map is improved.
The composition of virtual objects within the scene is seam-
lessly integrated, with preferable detail and accurate high-
light distribution.

These findings are consistent with the quantitative out-



Method RMSE↓ si-RMSE↓ Angular Error↓
[Gardner17] 0.528 0.184 37.5

[LeGendre19] 0.422 0.180 31.2
[Chalmers20] 0.356 0.167 30.23

[Zhao21] 0.303 0.159 28.2
[Zhan21] 0.256 0.149 27.1
[Xu22] 0.203 0.141 25.3
Ours 0.181 0.135 23.2

Ours vs. [Xu22] 10.84% 4.26% 8.30%
Table 2. Quantitative comparisons of the quality of estimated en-
vironment maps, as evaluated through RMSE, si-RMSE, and An-
gular error metrics.

comes presented in Table 2, where we have compiled the
average RMSE, si-RMSE, and angular error metrics [8] in
comparison to prior works. The results indicate the ad-
vancements achieved by our approach in terms of both im-
age quality and lighting direction within the generated en-
vironment maps. Our method achieved lower RMSE, si-
RMSE, and angular error values associated with the main
light source compared with others. It’s worth noting that
our method, as well as [Xu22], utilizes the same environ-
ment map generator, but our unique strength lies in our abil-
ity to produce more accurate environmental details and pre-
cise lighting directions. These improvements are primarily
attributed to the advanced SG predictions generated by SG-
former, which is essential in the paradigm of lighting pre-
dictions.

4.2. Ablation Study

To understand the individual contributions of each com-
ponent within SGformer towards SG predictions, we con-
ducted the ablations study that encompasses both encoder
variants and decoder structures alongside the consistency
loss design. Both quantitative and qualitative evaluations
have been performed. The quantitative assessments involve
evaluating RMSE, L1 error, and the Ranked Matching Er-
ror (referred to as RME) [31]. Additionally, we analyze the
L2 shift in intensity and RGB ratio values within the SG
parameters. It’s worth noting that, in contrast to the ap-
proach taken by Xu et al. [31], our RME calculations are
specifically concentrated on the first half of the sorted an-
chor points. This adjustment allows us to place more em-
phasis on evaluating the primary lighting aspects.

4.2.1 Encoder Variants

To investigate the impact of different encoders on the ex-
traction of lighting features and their subsequent influence
on lighting predictions, we conducted an ablation study
comparing the performance of DenseNet and DETR when
used as the encoder alongside Conformer. For consistency,
we employed the same DETR decoder with anchor points
set at N = 128 for all encoder variants to generate the SG

Figure 6. Comparison of SG maps with anchor number N = 128
using DLA-SK and Conformer encoders. The same transformer-
based decoder is employed for testing.

Encoder RMSE↓ L1↓ RME↓ Intensity↓ RGB↓
DenseNet 0.063 3.624 0.425 33.513 0.614
DERT (DLA-SK) 0.053 3.385 0.314 31.715 0.532
Conformer 0.046 2.835 0.233 28.178 0.304

Table 3. Comparison of SG predictions using different encoders.

parameters.
DenseNet encoder is CNN-based and functioned as the

primary feature encoder in previous works by Zhan et
al.[33] and[32]. DETR encoders is a mixer of CNN and
Transformer, introduced by Xu et al. [31] in their deep
learning architecture for lighting predictions. In this con-
figuration, a particularly designed CNN module, DLA-SK,
is used for local feature extraction, while a Transformer
module is for global feature extraction. However, this
concatenated structure overlooks the nuanced interplay be-
tween local and global features. In contrast, the Conformer
we proposed to use adopts a concurrent structure that en-
ables a more interactive combination of local lighting fea-
tures from the CNN branch and long-context global light-
ing features from the Transformer branch. This approach
better addresses the conflict and mutual enhancement of
these features. Both the output of the CNN branch and
the Transformer branch can be used as the lighting features.
Here we used CNN output and fed them into the following
transformer-based decoder to estimate the SG parameter.

Figure 6 visually illustrates the significant advantages of
the Conformer over the DERT encoder in inferring lighting
cues and generating highly accurate lighting tones, as ex-
emplified in rows 2 and 3, where bluish lighting predictions
can be observed as expected in Conformer results. Further-
more, this distinction becomes evident in challenging sce-
narios, such as row 4, where only minimal lighting cues, the
faint lighting reflections on the door and wall, are present in
the input images. Quantitative results further validate the
Conformer’s effectiveness (Table. 3), as it consistently im-
proves across all metrics. This indicates the essential role of
the encoder in deducing lighting cues and emphasizes the
Conformer’s capability in capturing both local and global



Baseline (DERT (DLA-SK)) Conformer Conformer+Multihead Conformer+Multihead+Consistency
RMSE↓ RME↓ I↓ RGB↓ RMSE↓ RME↓ I↓ RGB↓ RMSE↓ RME↓ I↓ RGB↓ RMSE↓ RME↓ I↓ RGB↓

SG8 0.320 0.353 32.581 0.523 0.230 0.263 31.109 0.599 0.201 0.168 28.321 0.568 0.190 0.143 27.654 0.546
SG16 0.164 0.362 33.309 0.323 0.159 0.243 31.282 0.243 0.147 0.183 30.103 0.177 0.1221 0.177 28.876 0.183
SG32 0.224 0.309 31.252 0.738 0.152 0.258 28.424 0.688 0.102 0.218 27.705 0.627 0.032 0.183 25.236 0.587
SG64 0.047 0.292 34.683 0.834 0.039 0.251 32.603 0.702 0.035 0.216 29.238 0.652 0.022 0.197 27.607 0.579
SG128 0.053 0.314 34.612 0.532 0.046 0.233 32.211 0.304 0.039 0.182 31.688 0.223 0.031 0.175 28.187 0.195

Table 4. Ablation study on SG regression across different SG resolutions.

lighting features while enhancing their synergy for superior
lighting predictions.

4.2.2 Regression on Multi-Resolution SG

To progressively investigate the impact of each key com-
ponent within SGformer, including encoder, decoder struc-
ture, and loss function design within SGformer, we con-
ducted ablation studies using the models created under three
distinct setups: 1) Train our backbone network with Con-
former encoder and a single decoder separately for each SG
resolution (referred to as “Separate” in Figure 7, the 4th
row); 2) Training the network with Conformer encoder and
multiple decoders (as illustrated in Figure 2, referred to as
“Multihead” in Figure 7, the 3rd row ), and 3) Training with
Conformer encoder and multiple decoders, augmented by
our proposed consistency loss (referred to as “Ours” in Fig-
ure 7, the 2nd row). These setups were evaluated across a
spectrum of SG resolutions, ranging from anchor points N
set at 8 to 128.

Figure 7. An ablation study on SG regression was conducted
across various resolutions. Two exemplars are provided, where in
each case, the top row exhibits the ground truth SGs, and the sec-
ond row presents our results. The third row showcases the results
of the ‘Multihead’ model. The fourth row displays the results of
the ‘Separate’ model. For additional results, please refer to the
supplementary material.

As illustrated in Figure 7, the results obtained from our
model that encompasses all setup variants exhibit the clos-
est alignment of anchor distributions with the ground truth

across all SG resolutions (as seen in both “Ours” rows). In
contrast, the separately trained model tends to exhibit ran-
dom shifting or fading of anchors across different SG reso-
lutions due to the isolation in their learning. Additionally,
it struggles to precisely predict lighting shapes and locate
lighting sources in high-resolution SG prediction (observed
in the “Separate” row, “N=128” columns). The incorpo-
ration of a multi-head decoder, which utilizes a common
encoder and facilitates joint learning for diverse SG regres-
sion tasks, enhances the consistency of anchor distributions
across various SG resolutions. The introduction of a con-
sistency loss further regulates the variations in anchor dis-
tributions spanning the spectrum of SG resolutions, result-
ing in improved lighting shape (as seen in the “Ours” row,
“N=128” column) and spatial distributions. We assessed the
mean similarity between the estimated SG maps and their
corresponding ground truth by employing the Structural
Similarity Index (SSIM) metric. We can see that the esti-
mated SG maps exhibit the highest similarity to the ground
truth compared to other methods.

The quantitative results are provided in Table 4, encom-
passing various metrics including RMSE, RME, and L2
shift of Intensity and RGB ratio values. The baseline net-
work, introduced by Xu et al. [31] with a DETR encoder, is
trained across different SG resolutions and serves as the ref-
erence point. The outcomes illustrate that the introduction
of the Conformer encoder results in notable improvements
over the baseline, particularly on RMSE, RME, and global
intensity metrics. The integration of multi-head decoding
and consistency loss further enhances the model’s capabili-
ties, resulting in consistent improvements across all metrics.
This enhancement is particularly evident in the reduction of
RME, indicating optimized main lighting source distribu-
tions.

4.3. Discussions

Our proposed method aims to estimate environmental
lighting from a standard image, avoiding the need for direct
panoramic image capture with expensive devices to obtain
global illumination. While our supervised deep-learning
method requires ground truth data during the training stage,
once the model is trained, it can be applied to any arbitrary
standard image captured by lightweight cameras, such as
mobile phone cameras. The training ground truth in Laval
Dataset has been publicly available, and we make full use of



it in a one-off manner, consistent with the approach taken in
most developments of machine/deep learning applications.

5. Conclusions and future work

In summary, this paper introduced an advanced deep
transformer-based approach to enhance indoor lighting es-
timation performance from single standard images. Our
novel network architecture combines a Conformer model
for global and local lighting feature extraction with a multi-
resolution transformer-based decoder for simultaneous SG
parameter predictions across various resolutions. We are the
first to explore the interplay of spatial distributions across
multiple SG resolutions and utilize this to enhance the
spatial distribution of lighting sources. To improve light-
ing structure modeling, we introduced an SG consistency
loss designed to ensure consistency in spatial distributions
across different SG resolutions. Our comprehensive experi-
ments have demonstrated significant improvements in light-
ing estimation, enhancing predictions of lighting source
shapes, color tones, and lighting directions. As a powerful
tool, SGformer effectively enhances the realism of environ-
ment map estimation, providing precise guidance for highly
realistic environment map synthesis and realizing seamless
object rendering. Looking ahead, our future research will
focus on advancing methods to gain a deeper understand-
ing of the visual context and semantics within scenes, with
the goal of achieving even more accurate and context-aware
illumination predictions.
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