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Abstract Asymmetric image retrieval methods have
drawn much attention due to their effectiveness in resource-
constrained scenarios. They try to learn two models in an
asymmetric paradigm, i.e., a small model for the query side
and a large model for the gallery. However, we empirically
find that the mutual training scheme (learning with each
other) will inevitably degrade the performance of the large
gallery model, due to the negative effects exerted by the
small query one. In this paper, we propose Central Similarity
Consistency Hashing (CSCH), which simultaneously learns
a small query model and a large gallery model in a mutually
promoted manner, ensuring both high retrieval accuracy and
efficiency on the query side. To achieve this, we first introduce
heuristically generated hash centers as the common learning
target for both two models. Instead of randomly assigning
each hash center to its corresponding category, we introduce
the Hungarian algorithm to optimally match each of them by
aligning the Hamming similarity of hash centers to the se-
mantic similarity of their classes. Furthermore, we introduce
the instance-level consistency loss, which enables the explicit
knowledge transfer from the gallery model to the query one,
without the sacrifice of gallery performance. Guided by the
unified learning of hash centers and the distilled knowledge
from gallery model, the query model can be gradually aligned
to the Hamming space of the gallery model in a decoupled
manner. Extensive experiments demonstrate the superiority
of our CSCH method compared with current state-of-the-art
deep hashing methods. Code is available here.
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Fig. 1 Retrieval performance of the large gallery model jointly
trained with either a large (L-L) or small (L-S) query one. We
calculate mAP only using the large gallery model to evaluate the
effects of the query model. DAPH exhibits a noticeable decrease in
retrieval accuracy due to the mutual training with the small query
model. Instead, our CSCH decouples the aforementioned training
scheme, and has no negative effects on the gallery model.

Keywords asymmetric image retrieval; deep hashing; Hun-
garian algorithm; decoupled manner

1 Introduction
Learning to hash has been widely used in several computer
vision tasks, e.g., image retrieval [15, 18, 33, 38, 42], video
retrieval [28, 44], and person re-identification [36, 43, 45, 48],
due to its remarkable efficiency for data storage and retrieval.
The key idea is to convert high-dimensional image data into
compact binary codes while preserving the semantic similarity
between them. Then the retrieval system can calculate the
Hamming distance to measure the similarity between the
images. Recently, deep hashing methods [15, 23, 25, 29,
33, 38, 39, 42, 44, 46, 49, 50] have greatly improved the
performance over traditional hashing methods [11, 12, 37] by
harnessing the power of deep learning [5, 13, 16, 21, 47].

In modern image retrieval systems, one practical chal-
lenge is to balance the retrieval accuracy and efficiency
in resource-constrained scenarios. Most hashing methods
[3, 15, 25, 29, 51] usually use the same large model to encode
query and gallery images symmetrically for better retrieval
performance, named as symmetric image retrieval [2]. How-
ever, it is inefficient to deploy such a large model on query side
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with limited computing resources. Consequently, asymmetric
image retrieval [2, 40], which indexes the gallery images with
a large model while encoding the query images with a small
one, is proposed to tackle the balance between the accuracy
and efficiency.

Several deep hashing methods [18, 33] have been proposed
to asymmetrically learn compatible hashing models. DAPH
[33] is the first deep hashing method that introduces two
different models for query and gallery images. Specifically,
DAPH jointly trains two models to learn pairwise similarity
preserving codes in an alternative manner. However, empirical
results show that such mutual training scheme will inevitably
degrade the performance of the large gallery model. As in Fig.
1, DAPH exhibits a clear retrieval decline on both datasets,
due to the negative effects of the small query model. To tackle
this, the vanilla knowledge distillation [1, 14, 40], which
pre-trains a large gallery model by existing hashing methods
and then transfers the knowledge to a small query model, is
a simple yet effective solution. However, the performance
of the query model heavily relies on that of the gallery one,
which will degrade the asymmetric retrieval accuracy once
the gallery model fails to learn discriminative hash codes.

In this paper, we propose a novel deep hashing framework,
Central Similarity Consistency Hashing (CSCH), which de-
couples the aforementioned alternative optimization and fully
exploits the potential of the two models under the power of
central similarity (shown in Fig. 1). First, we design a heuristic
algorithm to find the optimal match between hash centers
and their corresponding image categories. To avoid the large
model being constrained by the small one, each model directly
maximizes the cosine similarity between the continuous hash
codes and their corresponding hash centers, respectively. This
scheme can be considered as the center-level consistency,
providing a superior unified learning target for both models.
In light of the superior representation capability of the large
gallery model, we further introduce an instance-level consis-
tency loss, encouraging the small query model to mimic the
large gallery one. As a result, hash codes generated by both
models are as similar as possible to the corresponding hash
centers. The main contributions are summarized as follows:

• This paper proposes a novel deep hashing framework,
named Central Similarity Consistency Hashing (CSCH).
To the best of our knowledge, CSCH is the first deep
hashing approach for asymmetric image retrieval, which
can jointly optimize both the small query model and the
large gallery model in an end-to-end manner.

• We introduce the Hungarian algorithm to optimally
align the Hamming similarity of hash centers to the

semantic similarity of their classes. Furthermore, code
consistency loss is proposed to ensure both the center-
level and instance-level consistency between hash codes
generated by query and gallery models.

• Comprehensive experiments show that our method out-
performs the state-of-the-art deep hashing methods by a
large margin consistently.

2 Related Work
Asymmetric Image Retrieval. Existing asymmetric image

retrieval methods [2, 40, 41] typically involve training a
large gallery model. Subsequently, the small query model is
optimized using elaborately designed metric losses, all while
the pre-trained gallery model remains unchanged. AML[2]
proposes an asymmetric metric learning framework that
adopts different optimization objectives to encourage the
small query model to align with the large gallery model.
CSD[40] further introduces a contextual similarity distillation
framework which constrains contextual similarity consistency
to keep features generated by the query model compatible with
that of the gallery model with no labels. AFF[41] enhances
current asymmetric retrieval systems by taking into account
the complementarity of various features, particularly on the
gallery side. However, such the distillation scheme is time-
consuming, and the feature quality of the small model largely
lies in the large model. Instead, we learn compatible query
and gallery models in an end-to-end way while optimizing
both models with the unified target to reduce the dependency
of small model on large model.

Deep Hashing Methods. Deep hashing methods [15, 18,
25, 33, 42, 44] have shown prominent performance improve-
ments over non-deep hashing methods with hand-crafted
features [11, 12, 37]. Recently, central similarity based sym-
metric deep hashing methods have attracted more attention
and presented better performance [10, 15, 35, 44]. CSQ [44]
first generates hash centers via Hadamard matrix, and then
pulls hash codes towards their corresponding centers with
binary cross entropy loss. Similarly, OrthoHash [15] proposes
to maximize the cosine similarity between the continuous
codes and their corresponding hash centers. Besides, many
asymmetric deep hashing methods have been proposed to
learn hash codes for query and gallery images with different
models. DAPH [33] jointly trains two different models to learn
pairwise similarity preserving codes in an alternative manner.
However, the larger model is constrained to be aligned with
the smaller one. Different from previous asymmetric hashing
methods, we leverage central similarity as the unified learning
target to train two models in an end-to-end way, which can
significantly improve the performance of both models.
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Fig. 2 Pipeline of our CSCH method. Firstly, the two models maximize the cosine similarity between the continuous codes and their
corresponding hash centers with center consistency loss respectively. Here, hash centers are designed specifically to find the optimal
assignment to classes. Finally, the instance consistency loss directly aligns continuous codes from the query model with binary codes from
the gallery model for better asymmetric retrieval performance.

Knowledge Transfer. Knowledge transfer is a widely-
adopted model compression technique that aims to transfer
knowledge from a large model to a smaller model. A pioneer-
ing study by Hinton et al. [14] trains a student model with the
aim of matching the softmax distribution of a teacher model.
RKD[31] transfers mutual relations of data examples, such as
distances and angles. Recent researches[2, 40] distill knowl-
edge from the pre-trained teacher model to the student model
focusing on various metric losses. However, the performance
of the student model heavily depends on the teacher model.
Instead of training with the fixed teacher model, we propose
an end-to-end training scheme and additionally introduce a
superior teacher, i.e., optimally matched hash centers, for both
models. By mimicing both the teacher model and the optimal
hash centers, the student model is able to generate hash codes
compatible with the teacher model, thereby facilitating the
asymmetric image retrieval task.

3 The Proposed method
3.1 Preliminaries

Assume that we have a training set of N images X =

{xi}Ni=1 ∈ RN×D, and the corresponding labels Y =

{yi}Ni=1 ∈ {0, 1}N×C , where D is the dimension of images
and C is the number of total classes. The goal of deep hashing
is to learn a hashing function H: x 7→ b ∈ {−1, 1}B from
input space RD into Hamming space {−1, 1}B via deep net-
works, where b = sgn(h) is B-bit binary codes transformed
from the continuous codes h ∈ RB through a sgn function.
We pre-define a set of hash centers T = [t1, · · · , tC ]⊤ ∈
{−1,+1}C×B , where ti denotes binary class center belongs
to the i-th class. For any two hash centers, 1 ⩽ i, j ⩽ C, ti

and tj should have sufficient distance in Hamming space,
e.g., DH (ti, tj) > d, where DH(·) denotes the Hamming
distance, and d is the minimum Hamming distance.

Under the asymmetric image retrieval setting, we use a
small model Hq(·) for the query side and a large model
Hg(·) for the gallery side. Given an image x, the hash codes
generated from the query / gallery model are denoted as
bq = Hq(x) / bg = Hg(x). Our goal is to make the query
model Hq(·) and the gallery model Hg(·) align with each
other. In other words, we aim to encourage bq and bg to be
as similar as possible (ideally bq = bg), while preserving the
semantic information behind the images.

3.2 Framework Overview

As illustrated in Fig. 2, the proposed Central Similarity
Consistency Hashing (CSCH) framework includes two com-
ponents: hash center generation and assignment, code con-
sistency loss. Powered by central similarity, we first generate
hash centers heuristically and assign each hash center to its
optimal class label. Then, we adopt two different backbones
for both query and gallery sides to learn hash codes in an
end-to-end manner. Finally, the code consistency loss ensures
the consistency between hash codes generated by query and
gallery models, which consists of a center consistency loss
and an instance consistency loss. The center consistency loss
focuses on preserving the central similarity between query
and gallery hash codes with the guidance of the common hash
centers. Meanwhile, given each image, the instance consis-
tency loss tries to align the hash codes of the two models,
enabling the knowledge transfer from the large gallery model
to the small query model.
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Fig. 3 An illustration of hash center assignment with Hungarian
algorithm.

3.3 Hash Center Generation and Assignment

Hash Center Generation. Previous methods [26, 44] usu-
ally use the Hadamard matrix to generate strictly orthogonal
hash centers, which means the distances between each pair
of hash centers are identical. In fact, the semantic distances
between classes are not equal as expected, e.g., the semantic
distance between a cat and a dog is smaller than that between
a cat and an airplane. Thus, it is crucial to acquire hash
centers that contain semantic information while ensuring an
adequate Hamming distance. Inspired by [15], we attempt to
heuristically generate hash centers while guaranteeing that the
minimum Hamming distance between hash centers is greater
than a specified distance d:

min
1⩽i,j⩽C

DH (ti, tj) > d (1)

Hash Center Assignment. In [15, 35, 44], the hash centers
are randomly assigned to classes. However, this will result
in the mismatch between the semantic space of images and
Hamming space of hash centers with the same classes, ulti-
mately leading to a degradation of performance. Thus, it is
essential to find the optimal assignment between each hash
center and its corresponding class.

Figure 3 illustrates the assignment of hash center with
Hungarian algorithm. Firstly, we need to accurately measure
the semantic space of images. In fact, almost all deep hashing
methods deploy a network pre-trained on ImageNet[6] as
the initialization. Thus, the continuous codes generated by
the initialized network have enough semantic information
to quantify the semantic space. Specifically, we feed all
training images into the initialized hash network to obtain
the normalized class centers C = {ci}Ci=1, where ci can be

calculated as:

ci =

∑
hj∈Hi

hj∥∥∥∑hj∈Hi
hj

∥∥∥
2

(2)

and Hi denotes the set of continuous hash codes of images
belonging to class i. Under asymmetric retrieval setting, we
need to train two models with different backbones for both the
query and gallery sides. We conduct sufficient experiments to
evaluate the assignment based on the query model (Aq) or
the gallery model (Ag) or both of them (Ab).

The next step is to effectively assign hash centers to their
respective classes. Here, we adopt the Hungarian algorithm
[22, 24] as our assignment algorithm to obtain the optimal
match Γ∗ = {δ∗i }Ci=1 between hash centers and normalized
class centers:

Γ∗ = argmin
{δi}i

1

C

C∑
i=1

∥tδi − ci∥ (3)

Finally, the optimal hash centers T∗ can be assigned as:

T∗ = [tδ∗1 , tδ∗2 , · · · , tδ∗C ]
T (4)

3.4 Code Consistency Loss

As shown in Fig. 2, we adopt two different backbones as
deep hash functions for both the query and gallery sides
to learn consistent hash codes. We replace the classification
layer in the original neural network with a new hash layer
which includes a fully-connected (FC) layer and a batch
normalization (BN) layer. Here, the batch normalization layer
makes the hash codes more balanced[15]. Thus the deep hash
functions for the query and gallery sides are formulated as:

bq = Hq(x) = sgn(f(x; θq))

bg = Hg(x) = sgn(f(x; θg))
(5)

where θ∗ denotes the parameters of the query or gallery model
and f(·) denotes the output of the hash layer.

Center-level Consistency. Since Hamming distance be-
tween the binary hash codes can be interpreted as cosine
similarity [15]. Specifically, for any two continuous hash
codes hi and hj (1 ⩽ i, j ⩽ N ):

DH (bi, bj) ≃
B

2
(1− cos (hi, hj)) (6)

where bi = sgn(hi), bj = sgn(hj). In other words, maxi-
mizing the cosine similarity between continuous hash codes
is equal to maximizing the Hamming similarity between the
binary hash codes. Thus, we calculate the cosine similarities
between continuous hash codes hq , hg and the optimal hash
centers T∗, to obtain the classification outputs Oq and Og,
e.g., Oq can be defined as:
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Oq =
[
cos

(
hq, tδ∗1

)
, cos

(
hq, tδ∗2

)
, · · · , cos

(
hq, tδ∗C

)]
(7)

Then, we maximize the cosine similarity of the continuous
hash codes hq / hg and their corresponding hash center
ty ∈ T∗ by minimizing the cross entropy loss between Oq /
Og and their corresponding label y, andLq can be formulated
as:

Lq = − log
exp (cos(hq, ty))∑C

i=1 exp
(
cos(hq, tδ∗i )

) (8)

In addition, we utilize scaled cosine similarity with margin
[7, 34] to further align hq and hg with ty, encouraging hq

and hg to move closer to each other implicitly. Equation (8)
can therefore be rewritten as:

Lq = − log
exp ((cos(hq, ty)−m)/τ)∑C

i=1 exp
(
(cos(hq, tδ∗i )−m)/τ

) (9)

where τ and m are hyper-parameters. And Lg can be formu-
lated in the same way. Finally, the center consistency loss can
be formulated as the sum of Lq and Lg:

LC = Lq + Lg (10)

Instance-level Consistency. Center consistency loss tries
to align continuous hash codeshq , hg with their common hash
center ty, which aligns hq with hg implicitly. It is equally
essential to explicitly bring the small query model close to
the large gallery model to further enhance performance in
real-world asymmetric retrieval scenarios. Specifically, in this
work, we explicitly constrain the instance-level consistency
between the query continuous hash code hq and the gallery
binary hash code bg = sgn(hg) with the L2 distance metric,
ensuring the query model is close to the gallery model while
keeping the large model from being unintentionally affected
by the smaller one. This is reasonable to directly keep hq

close to bg since we adopt bg as the gallery code during
asymmetric retrieval. Concretely, the instance consistency
loss is defined as:

LI = ∥bg − hq∥22 (11)

In a nutshell, by merging Eq. (10) with Eq. (11), we arrive
at the definitive formulation of code consistency loss for
training:

L = LC + γLI (12)

where γ is a hyper-parameter that makes a trade-off between
different loss terms.

Multi-Label Hash Codes Learning. As for multi-label
images, we also utilize the cross entropy loss to optimize
them. Each image, however, belongs to multiple categories,

which means one image corresponds to multiple hash cen-
ters. Different from previous hashing methods [15, 17] that
maximize the similarity between the hash code and its cor-
responding multiple hash centers, we first obtain the hash
centroid z of the centers like [44] does. Specifically, z can be
calculated as:

z = sgn(
1

∥y∥1

C∑
i=1

tyi
) (13)

If the final result is 0 at some bits, we sample from the
Bernoulli distribution to set these bits 1 or −1. Then, we
maximize the similarity between hash codes and the corre-
sponding hash centroid. Thus, the center consistency loss of
the query model Lq is formulated as:

Lq = − log
exp (Sim(hq, z))

exp (Sim(hq, z)) +
∑

i∈NegC exp
(
Sim(hq, tδ∗i )

)
(14)

where Sim(hq, z) = (cos(hq, z) −m)/τ and NegC rep-
resents a subset of categories that image x does not belong
to. And Lg is formulated in the same way. With this learn-
ing scheme, both models are able to learn the explicit hash
centroid of multi-class labels.

In the end, we summarize the whole learning algorithm for
CSCH in Algorithm 1. For further details, please refer to our
open-source code.

4 Experiment
4.1 Dataset

We conduct empirical evaluations of our proposed method
on three widely used datasets: CIFAR-10, ImageNet and
MS-COCO.

CIFAR-10 [20] consists of 60,000 32×32 images in 10
classes. Following [25, 33], we randomly sample 100 images
per class as the test set, and the rest are used as the database.
Then we randomly select 500 images per class from the
database as the training set.

ImageNet [6] contains 1.2M training images and 50K
validation images from 1,000 classes. We follow [10, 15] to
randomly select 100 classes. Then we use all the images of
these classes in the training set as the database and use all the
images in the validation set as the test set. Furthermore, we
randomly sample 130 images per class from the database as
the training set.

MS-COCO [27] contains 82,783 images in the training set
and 40,504 images in the validation set. Each image belongs
to one of the 80 classes. Following [4], we obtain 122,218
images with category information. Then, we randomly select
5,000 images as the test set, and the rest are used as the
database. Finally, we randomly sample 10,000 images from
the database as the training set.
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Algorithm 1 The learning algorithm for CSCH
Input:
N : number of samples; M : batch size; C: number of
classes; θ∗: parameters of hash model; T: randomly
generated hash centers; η∗: learning rate; optimizer∗:
optimizer.
Output:
T∗: optimal hash centers; fθ∗ : hash model.
Hash Center Assignment:
compute normalized class centers C according to (2);
find the optimal match Γ∗ between T and C with
Hungarian algorithm;

T∗ ← assign(Γ∗,T).
Asymmetric Models Optimization:
repeat

foreach j = 1 to N
M do

hq ← f(xj , θq);
hg ← f(xj , θg);
if xj is single-label image then

compute LC using (hq,hg,T
∗) according

to (9, 10);
else

compute LC using (hq,hg,T
∗) according

to (14, 10);
end if
compute LI using (hq,hg) according to (11);
L ← LC + γLI ;
δθq ← ∂θqL;
δθg ← ∂θgL;
θq ← optimizerq(θq, δθq, ηq);
θg ← optimizerg(θg, δθg, ηg);

end foreach
until models converge or reach the max epoches;

4.2 Baselines and Backbone Networks

Baselines. We chose 4 state-of-the-art hashing methods (in-
cluding DAPH [33], CSQ [44], OrthoHash [15], and MDSH
[35]) as our backbone methods. Specifically, DAPH is the
first deep hashing method that proposes two different models
for both the query and gallery aspects. CSQ, OrthoHash, and
MDSH exemplify recent advances in hashing methods, and
we compare their performance against CSCH, focusing on
hash center assignment strategy and center consistency loss.
Besides, under the asymmetric retrieval setting, the last three
baselines are modified as two-stage knowledge distillation
varieties, which first pre-train a large gallery model using
corresponding approaches, and then transfer knowledge to a
small query model with L2 distance metric loss.

Table 1 Comparison of FLOPS and parameter numbers in different
backbones.

Query
Backbone

Gallery
Backbone

GFLOPS PARAM(M)
ABS. % ABS. %

RN50 RN50 4.12 100.0 23.57 100.0
RN101 RN101 7.84 100.0 42.50 100.0

ViT-B/16 ViT-B/16 16.86 100.0 85.67 100.0
MNetv3-S RN50 0.06 1.46 1.55 6.58
MNetv3-L RN101 0.23 2.93 4.24 9.98
MViT-XXS ViT-B/16 1.09 6.47 1.91 2.23

Backbone Networks. We adopt RN50 (ResNet50)[13],
RN101 (ResNet101)[13] and ViT-B/16[9] as the large gallery
models. MNetv3-S (MobileNetv3-small)[16], MNetv3-L
(MobileNetv3-large) [16] and MViT-XXS (MobileViT-
XXS)[30] are used as the small query models. Precisely,
we conduct experiments with three kinds of combinations,
i.e., MNetv3-S and RN50, MNetv3-L and RN101, MViT-
XXS and ViT-B/16. All backbone networks are pre-trained on
ImageNet. Table 1 shows the computational complexity (in
FLOPS) and the number of parameters of different backbones.

4.3 Implementation Details and Metric

Implementation Details. The proposed CSCH is imple-
mented with PyTorch [32]. We train 150 epochs for all three
datasets with the batch size of 64. Adam [19] is adopted as
the optimizer. The learning rate of MNetv3-S is set to 1e-5
on CIFAR-10, and 2e-5 on ImageNet and MS-COCO respec-
tively, while that of the rest is set to 1e-5 on all datasets. The
weight decay is set to 5e-4. We set the hyper-parameter γ to
10 on ImageNet, and 100 on CIFAR-10 and MS-COCO. The
hyper-parameter τ is set to 1/8, m is set to 0.3 on CIFAR-10
and 0.2 on ImageNet and MS-COCO. All the experiments
are conducted on a PC equipped with an Intel Xeon Silver
4214 CPU@2.20GHz, 128GB RAM, and an NVIDIA RTX
3090 GPU.

Evaluation Metric. We evaluate the asymmetric image re-
trieval performance of our proposed CSCH and other baseline
methods using Mean Average Precision (mAP), Precision-
Recall curves (PR curves) and precision with respect to
top-K returned images (P@Top-K). Particularly, different
from previous symmetric hashing works [4, 10, 15, 25, 44],
we encode hash codes of query images utilizing a small query
model and obtain hash codes of database images via a larger
gallery model to asymmetrically calculate mAP. Equally, we
plot PR curves and P@top-K curves employing similar ways.
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Table 2 Comparisons of mAP (asymmetric retrieval) with representative hashing methods using CNN-based backbones on CIFAR-10,
ImageNet and MS-COCO. Black bold: best results. †: our re-implementation for asymmetric retrieval.

CIFAR-10@ALL ImageNet@1K MS-COCO@5K
Methods Query

BackBone
Gallery

BackBone 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
Using different backbones for query and gallery models
DAPH† [33] 0.5970 0.8196 0.8253 0.8539 0.0577 0.4065 0.6591 0.7331 0.6218 0.6921 0.7066 0.7733
CSQ† [44] 0.8262 0.8356 0.8399 0.8481 0.6845 0.7451 0.7574 0.7694 0.6944 0.7926 0.8132 0.8333
OrthoHash† [15] 0.8658 0.8757 0.8841 0.8885 0.6861 0.7468 0.7646 0.7728 0.7441 0.8094 0.8242 0.8449
MDSH† [35] 0.8410 0.8508 0.8460 0.8590 0.6928 0.7557 0.7650 0.7804 0.7036 0.8027 0.8213 0.8450
CSCH

MNetv3-S RN50

0.8665 0.8792 0.8870 0.8924 0.7291 0.7837 0.7962 0.8073 0.7798 0.8288 0.8440 0.8580
CSCH (Upper Bound) RN50 RN50 0.8802 0.8964 0.9023 0.9091 0.8572 0.8816 0.8899 0.8982 0.7906 0.8558 0.8671 0.8880
DAPH† [33] 0.6182 0.8545 0.8597 0.8578 0.0681 0.5426 0.7437 0.8106 0.6301 0.6943 0.7326 0.7844
CSQ† [44] 0.8403 0.8437 0.8622 0.8616 0.7690 0.8251 0.8289 0.8418 0.7224 0.8138 0.8233 0.8584
OrthoHash† [15] 0.8841 0.8950 0.9010 0.9038 0.7701 0.8286 0.8370 0.8462 0.7695 0.8389 0.8546 0.8754
MDSH† [35] 0.8594 0.8735 0.8678 0.8749 0.7894 0.8335 0.8417 0.8543 0.7330 0.8321 0.8482 0.8752
CSCH

MNetv3-L RN101

0.8890 0.8974 0.9017 0.9057 0.8126 0.8535 0.8604 0.8675 0.8016 0.8557 0.8705 0.8841
CSCH (Upper Bound) RN101 RN101 0.8968 0.9085 0.9206 0.9268 0.8638 0.8986 0.9018 0.9088 0.8039 0.8652 0.8817 0.8969

Table 3 Comparisons of mAP (asymmetric retrieval) with repre-
sentative hashing methods using Transformer-based backbones on
MS-COCO.

MS-COCO@5K
Methods Query

Backbone
Gallery

Backbone 12 bits 24 bits 32 bits 48 bits
Using different backbones for query and gallery models
DAPH† [33] 0.6381 0.7181 0.7217 0.7802
CSQ† [44] 0.7425 0.8149 0.8312 0.8407
OrthoHash† [15] 0.7781 0.8437 0.8573 0.8690
MDSH† [35] 0.7570 0.8323 0.8422 0.8580
CSCH

MViT-XXS ViT-B/16

0.8079 0.8590 0.8649 0.8751
CSCH (Upper Bound) ViT-B/16 ViT-B/16 0.8651 0.9132 0.9235 0.9369

4.4 Accuracy Comparison

mAP Comparisons with Representative Hashing Meth-
ods. We compare the mAP performance between SOTA deep
hashing methods and CSCH on CIFAR-10, ImageNet, and
MS-COCO. Table 2 reports the mAP comparisons (symmet-
ric or asymmetric retrieval) of using CNN-based backbones
with different lengths of hash code.

Our CSCH outperforms current state-of-the-art by clear
margins consistently. Specifically, CSCH surpasses DAPH by
significant margins on three datasets (average mAP by 11.7%
on CIFAR-10, 31.1% on ImageNet, and 14.2% on MS-COCO)
for asymmetric retrieval. When the dataset is relatively simple
and easy to learn (like CIFAR-10), both CSCH and Ortho-
Hash achieve high performance. And the retrieval accuracy
using both small and large backbones nearly matches the
performance achieved when solely employing a large back-
bone. It emphasizes the importance of a strong teacher model
for the small query models. On more sophisticated datasets
e.g., single-label dataset ImageNet and multi-label dataset
MS-COCO, CSCH achieves superior performance due to the
optimal hash centers as additional teachers for the two models.
On ImageNet, CSCH outperforms MDSH in average mAP by
2.5%. On MS-COCO, the asymmetric retrieval performance
of CSCH is better than OrthoHash in average mAP by 2%.
Moreover, it still maintains competitive asymmetric perfor-

Table 4 Comparisons of mAP with representative asymmetric
image retrieval methods and different training strategies. †: our
re-implementation.

∇G LI
MS-COCO@5K

12 bits 24 bits 32 bits 48 bits
- - 0.7568 0.8112 0.8302 0.8486

✓
AML-Reg†[2] 0.7675 0.8193 0.8296 0.8496
AML-Contr†[2] 0.6910 0.6986 0.7269 0.7640

✗

AML-Reg†[2] 0.7744 0.8253 0.8399 0.8554
AML-Contr†[2] 0.6985 0.7009 0.6963 0.7195
Ours 0.7798 0.8288 0.8440 0.8580

mance when compared to the corresponding larger model
only used for symmetric retrieval.

Following the current trend in other computer vision tasks,
we report the mAP comparisons of using Transformer-based
backbones on MS-COCO, which is shown in Table 3. As re-
ported, Transformer exhibits outstanding performance across
all methods consistently. Moreover, our CSCH continues to
surpass other methods by substantial margins, resulting in sig-
nificantly improved retrieval performance and upper bound.
This showcases the superiority of our proposed framework.

mAP Comparisons with Representative Asymmetric
Image Retrieval Methods. Representative asymmetric image
retrieval methods, e.g., AML[2], adopt different instance
consistency losses LI to encourage the small query model to
align with the large gallery model. Table 4 shows the mAP
comparisons between SOTA asymmetric image retrieval
methods and our CSCH with different training strategies
on MS-COCO. The mark ✓ denotes back propagating LI ’s
gradients to update the gallery model∇G, whereas the symbol
✗ signifies no update is needed. AML-Reg and AML-Contr
are representative instance consistency losses proposed by
AML. To be specific, AML-Reg refers to the enforcement
of instance-level consistency between hq and hg with L2

distance. On the other hand, AML-Contr employs contrastive
loss to constrain hq and hg(s) that share the same label.
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Table 5 The mAP comparisons with different combinations of losses.

Lq LI
ImageNet@1K MS-COCO@5K

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
✓ 0.7156 0.7764 0.7872 0.8056 0.7568 0.8112 0.8302 0.8486

✓ 0.6939 0.7493 0.7653 0.7791 0.7783 0.8253 0.8417 0.8527
✓ ✓ 0.7291 0.7837 0.7962 0.8073 0.7798 0.8288 0.8440 0.8580

Table 6 The mAP results with different strategies of hash center assignment.
Assignment

Strategy
ImageNet@1K MS-COCO@5K

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
Ar 0.7212 0.7780 0.7908 0.8015 0.7556 0.8209 0.8327 0.8538
Aq 0.7291 0.7837 0.7962 0.8073 0.7798 0.8288 0.8440 0.8580
Ag 0.7302 0.7806 0.7922 0.8016 0.7818 0.8279 0.8412 0.8557
Ab 0.7263 0.7789 0.7934 0.8050 0.7792 0.8300 0.8418 0.8577

The first row in Table 4 reports the results without LI . We
can observe that our proposed LI = L2(hq,bg) yields supe-
rior results when compared with AML-Reg and AML-Contr.
As discussed before, L2(hq,bg) directly constrains hq and
bg . This is more appropriate than AML-Reg for asymmetric
retrieval, where bg serves as the gallery code rather than hg .
As for AML-Contr, much like DAPH, it necessitates that hq

be implicitly close to hg(s) with a corresponding label in a
mini-batch, and vice versa. Considering that we don’t have an
adequately large batch size to incorporate a sufficient number
of negative samples (i.e., samples with different labels), and
our primary aim is just to ensure that the hash code of the
image remains consistent across both models. Thus, AML-
Contr is unsuitable for instance consistency loss, and even
offers negative effects on retrieval performance. Moreover,
the training strategies related to the backward propagation
of gradients for the gallery model also affect the asymmetric
retrieval performance. This confirms our assertion about the
negative effects of a small query model impacting a larger
gallery one. As a result, our designed instance consistency
loss L2(hq,bg) enables the small query model to learn better
with the guidance of the large gallery model compared with
other asymmetric retrieval methods.

4.5 Ablation Study

Impact of Different Loss Terms. We first evaluate different
combinations of losses Lq and LI . It should be noted that Lg

is necessary for all empirical settings. Hash center assignment
is based on the query model. As shown in Table 5, when
removing LI (1st row), the performance reduces significantly
on MS-COCO for all bits. We summarize the reason as
the misalignment between the small query model and the
large gallery model. Concretely, the small query model is
unable to learn the hash centroid well when compared to the

large gallery model on a multi-label dataset. Fortunately, the
instance consistency loss can transfer knowledge and assist
the small query model in enhancing its learning capabilities.
When removingLq (2nd row), the mAP decreases consistently
for all bits, especially on ImageNet. It demonstrates that the
optimal hash centers are beneficial for the query model on
the single-label dataset.

Hash Center Assignment Strategy. We assess various
strategies for determining the optimal hash centers, which
are based on the normalized class centers generated by small
query model Aq, large gallery model Ag, and both of them
Ab, respectively. Recall that we feed all training images into
the initialized hash model to obtain the normalized class
centers. Here, the initialized hash model includes a CNN
backbone pretrained on ImageNet and a hash layer initialized
by a normal distribution with a mean of 0 and a variance of 0.1.
The hash layer aims to convert high-dimensional features into
low-dimensional hash codes while preserving the semantic
similarity among the features. Similar to LSH[11], the hash
codes, as the outputs of the initialized hash layer, are able to
encompass the semantic similarity present within the features.
Besides, the well-matched hash centers, obtained through
the Hungarian algorithm with normalized class centers, are
also more compatible with the currently initialized hash
model(s). Thus, as in Table 6, our proposed assignment
method shows superiority compared with random assignment.
Specifically, the mAP of Aq assignment almost achieves the
best results compared to the others for all bits. We argue that
the performance of asymmetric retrieval heavily relies on that
of the small query model, and Aq assignment can notably
enhance the performance of the small query model. This is
also in line with our conclusion that randomly assigning hash
centers to class labels Ar will lead to misalignment between
Hamming space and semantic space.
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Fig. 4 Precision-Recall curves on CIFAR-10, ImageNet and MS-COCO with 32 bits.
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Fig. 5 Precision@top-1K curves on CIFAR-10, ImageNet and MS-COCO with 32 bits.

Table 7 Comparisons of mAP with different types of center
consistency loss.

LC
MS-COCO@5K

12 bits 24 bits 32 bits 48 bits
BCE[44] 0.7591 0.8213 0.8362 0.8536
Label-smoothing[15] 0.7725 0.8192 0.8370 0.8534
Ours 0.7798 0.8288 0.8440 0.8580

Effects of Center-level Consistency. In order to verify the
effectiveness of our designed center consistency loss in Eq.
(14) on the multi-label dataset, we compare it with binary
cross entropy (termed as BCE) loss [44] and cross entropy loss
with label-smoothing [15] on MS-COCO. Table 7 shows the
results when adopting different center consistency losses. Our
designed loss achieves the highest mAP at all bits consistently.
Within BCE loss, a unique hash centroid is derived for every
multi-label image. Cross entropy loss with label-smoothing,
on the other hand, computes cosine similarity between hash
codes and hash centers as a classification output. By integrat-
ing the benefits of these losses, our designed loss yields hash
codes with superior quality.

Effects of Hash Centers. To validate the effects of hash
centers, we add them to the DAPH method and report the
results with 32 bits in Fig. 6. DAPH+Tr denotes adding
randomly assigned hash centers to DAPH. DAPH+Tq de-
notes adding optimal hash centers with Aq assignment to
DAPH. We can observe that hash centers significantly im-
prove DAPH’s performance, especially on ImageNet, and the
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Fig. 6 The mAP comparisons of different methods for 32 bits w/
and w/o hash centers on ImageNet and MS-COCO.

optimal hash centers improve the performance even further.
This empirically verifies that the central similarity (i.e., hash
center) plays an important role in asymmetric retrieval. This
global similarity guides query and gallery models to optimize
towards the unified objective, and allows the gallery model to
get over the restriction of the query model.

Impact of Image Size. During training phase, we perform
random resized crop with crop size of 224 × 224 for all
datasets. To validate the impact of image size on retrieval
performance, we adjust the crop size from 160 × 160 to
256×256. Table 8 shows the mAP comparisons with different
backbones on MS-COCO. As the image size increases, there’s
a noticeable enhancement in retrieval performance. This
implies that image dimensions significantly influence the
model’s performance.
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Table 8 The mAP comparisons with different image size.
Query

Backone
Gallery

Backbone
MS-COCO@5K

160× 160 196× 196 224× 224 256× 256

MNetv3-S RN50 0.8134 0.8337 0.8440 0.8494
MNetv3-L RN101 0.8452 0.8638 0.8705 0.8792
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Fig. 7 The mAP changes with different γ, m, τ at 32 bits code length on ImageNet and MS-COCO.

4.6 PR and P@top-K Comparisons

To further assess the retrieval quality of CSCH, we chose to
plot the PR curves and precision curves for the top 1K retrieved
images at 32 bits. Figures 4 and 5 show that CSCH surpasses
all other deep hashing approaches by significant margins in
terms of these two evaluation metrics. Importantly, CSCH
achieves favorable retrieval results with higher precision at
lower recall levels and a larger number of top samples retrieved
compared to all other methods. These results highlight the
effectiveness of CSCH in real-world retrieval scenarios.

4.7 Parameter Sensitivity

We conduct experiments under different values of γ, m and
τ on ImageNet and MS-COCO datasets to further analyze
the sensitivity of these parameters. γ is the hyper-parameter
that makes a trade-off between center consistency loss and
instance consistency loss in Eq. (12). As mentioned in Eq.
(9) and Eq. (14), the margin parameter m improves the
minimization of intra-class variance between hash codes.
And the scale parameter τ controls the size of the hypersphere
space associated with feature representation. Figure 7 plots
the changes in mAP with different parameter settings at a
code length of 32 bits.

As illustrated in Fig. 7 (a), we tune γ in the range of
[0, 1000]. We find that the trade-off value of γ is dataset-
dependent, and the values of γ differ when obtaining the
highest performance on different datasets. In Fig. 7 (b), we
record the mAP results by varying m from 0 to 0.5. We
can observe that an appropriate m will minimize the intra-
class variance and contribute to high-quality hash codes.

When m = 0.2, our models achieve the best mAP. Finally,
we investigate the effects of τ in Eq. (9) and Eq. (14), and
we show the mAP results in Fig. 7 (c). τ will affect the
density of feature representation within a hypersphere space.
Obviously, a relatively smaller τ will bring higher mAP
retrieval performance. Empirical results show that τ = 1

8

significantly affects our designed center consistency loss,
resulting in the highest mAP.

4.8 Visualization

T-SNE Visualization. As illustrated in Fig. 9, we visualize
the t-SNE[8] of hash codes generated by large gallery model
trained with a large or small one on CIFAR-10. DAPH shows
clear degradation in the quality of hash codes, and fails
to correctly divide ten groups of images into ten clusters
when mutually trained together with a small query model.
Instead, CSCH is still able to generate hash codes with
good discrimination and visibly distinguishable boundaries,
regardless of whether it is trained with a large or small query
model. This indicates that our decoupled training approach
in CSCH is better suited for asymmetric image retrieval.

Retrieval Results. We randomly select three query images
from the single-label dataset ImageNet and the multi-label
dataset MS-COCO to conduct the similarity retrieval. Figure
8 illustrates the visualization of the top 5 returned retrieval
images of CSCH and DAPH. Our CSCH demonstrates the
capability to generate high-quality semantic hash codes,
leading to more relevant and desired retrieval results for users.
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Fig. 8 Top-5 images returned by CSCH and DAPH on ImageNet and MS-COCO. Red boxes denote wrong returned images.

L-L L-S

(a) DAPH

L-L L-S

(b) CSCH

Fig. 9 The t-SNE of hash codes obtained by the large gallery model
is jointly trained with either a large (L-L) or small (L-S) query one.

4.9 Efficiency Comparison

Training Efficiency. We further report the training time
of CSCH and DAPH with MNetv3-L and RN101 backbones
using Aq assignment on ImageNet and MS-COCO. The
results are plotted in Fig. 10 (a), and the code length is 32.
Solid / dotted lines plot the results on ImageNet / MS-COCO.
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Fig. 10 Comparisons of training and inference efficiency.

As shown in Fig. 10 (a), our CSCH is able to converge to a
better mAP with fewer training epochs under the guidance of
optimal hash centers and the large gallery model compared
with DAPH.

Inference Efficiency. Under asymmetric image retrieval
scenarios, in addition to asymmetric retrieval accuracy, the
inference time for queries on edge devices such as mobile
phones is a crucial metric. Thus, we employ our CPU to
approximate this situation, revealing the inference times for
various backbones when processing 100 query images at a
224×224 resolution. As illustrated in Fig. 10 (b), the inference
time for MNetv3-S/MNetv3-L is observed to be five times
faster as compared to that of RN50/RN101.
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5 Conclusion
This paper proposes a novel Central Similarity Consistency
Hashing (CSCH) for asymmetric image retrieval. CSCH
adopts a small model for the query side with limited computing
resources, while utilizing a large model for the gallery side
to generate hash codes offline. To the best of our knowledge,
CSCH is the first deep hashing approach for asymmetric
image retrieval. We first introduce the Hungarian algorithm
to optimally align the Hamming similarity of hash centers to
the semantic similarity of their classes. Then, we elaborately
design the code consistency loss to guarantee the consistency
of binary hash codes from both models, while preserving
semantic similarity between images. Extensive experiments
across three benchmarks consistently demonstrate that the
proposed CSCH can significantly enhance the performance
of the small query model and surpass state-of-the-art by
noticeable margins.

Limitation. Our proposed method CSCH has some lim-
itations. First, the optimal hash centers are generated by a
heuristic algorithm, whose Hamming space does not fully
align with the semantic space of images. Second, each optimal
hash center corresponds to one class label rather than a set
of class labels. While we can calculate the hash centroid of a
multi-label image, we have not fully taken into account the
semantics of the hash centroid. In the future, we will explore
how to generate hash centers / centroids with more semantic
information for single-label and multi-label images.

Acknowledgements

This work was supported by the National Key R&D Pro-
gram of China under Grant 2022YFB3103500, the Na-
tional Natural Science Foundation of China under Grants
62106258 and 62202459, and the China Postdoctoral Science
Foundation under Grant 2022M713348 and 2022TQ0363,
and Young Elite Scientists Sponsorship Program by BAST
(NO.BYESS2023304).

Declaration of competing interest

The authors have no competing interests to declare that are
relevant to the content of this article.

References
[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be

deep? In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors, Proceed-
ings of the International Conference on Neural Information
Processing Systems, pages 2654–2662, 2014.

[2] Mateusz Budnik and Yannis Avrithis. Asymmetric met-
ric learning for knowledge transfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 8228–8238, 2021.

[3] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep
cauchy hashing for hamming space retrieval. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1229–1237, 2018.

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S.
Yu. Hashnet: Deep learning to hash by continuation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5609–5618, 2017.

[5] Xiaohua Chen, Yucan Zhou, Dayan Wu, Chule Yang, Bo Li,
Qinghua Hu, and Weiping Wang. Area: Adaptive reweighting
via effective area for long-tailed classification. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 19277–19287, 2023.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 248–255,
2009.

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.
Arcface: Additive angular margin loss for deep face recogni-
tion. In Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4690–4699,
2019.

[8] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep
convolutional activation feature for generic visual recogni-
tion. In Proceedings of the 31th International Conference on
Machine Learning, pages 647–655, 2014.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In Pro-
ceedings of the 9th International Conference on Learning
Representations, 2021.

[10] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng
Chan. Deep polarized network for supervised learning of
accurate binary hashing codes. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence,
pages 825–831, 2020.

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. In Proceedings of
International Conference on Very Large Data Bases, pages
518–529, 1999.

[12] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent
Perronnin. Iterative quantization: A procrustean approach to
learning binary codes for large-scale image retrieval. IEEE
transactions on pattern analysis and machine intelligence,
35(12):2916–2929, 2012.



Central similarity consistency hashing for asymmetric image retrieval 13

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the 2016 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[14] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the knowledge in a neural network. CoRR, 2015.

[15] Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng
Chan, Yi-Zhe Song, and Tao Xiang. One loss for all: Deep
hashing with a single cosine similarity based learning objective.
In Proceedings of the International Conference on Neural
Information Processing Systems, pages 24286–24298, 2021.

[16] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le,
Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen,
Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun
Zhu. Searching for mobilenetv3. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision,
pages 1314–1324, 2019.

[17] Young Kyun Jang, Geonmo Gu, ByungSoo Ko, Isaac Kang,
and Nam Ik Cho. Deep hash distillation for image retrieval. In
Computer Vision - ECCV 2022 - 17th European Conference,
pages 354–371, 2022.

[18] Qing-Yuan Jiang and Wu-Jun Li. Asymmetric deep supervised
hashing. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, pages 3342–3349, 2018.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, Proceedings of the 3rd International Conference on
Learning Representations, 2015.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Im-
agenet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural
Information Processing Systems, pages 1106–1114, 2012.

[22] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2:83–97, 1955.

[23] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simul-
taneous feature learning and hash coding with deep neural
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3270–3278,
2015.

[24] Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang,
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