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Abstract

In this paper, we propose a novel Redirected Walking
(RDW) strategy that enables users to navigate to speci-
fied physical locations while avoiding obstacles in virtual
reality (VR) walking experiences using curvature gain.
Our method is capable of computing a range of paths
to the specified target under the constraint of a curva-
ture gain threshold. To enhance user immersion, the
proposed strategy minimizes the frequency of changes
in the steering direction of curvature gain, requiring
no more than one adjustment before reaching the tar-
get. We introduce a descriptor to represent the com-
puted paths and our approach is analytical, providing
accurate solutions in a controlled time, and is adapt-
able to various space and obstacle layouts and target
specifications. By exploiting the continuity of obstacle
edges, our method quickly and accurately excludes oc-
cluded paths by considering only the endpoints of ob-
stacle edges. We introduce applications such as maxi-
mum walkable distance estimation and reachable area es-
timation with our method to improve the performance
of RDW controllers. We conducted extensive simula-
tion experiments in both common single-player RDW
scenarios and a novel multiplayer online RDW scenario
with various physical space layouts to evaluate the effec-
tiveness of our approach. Experimental results demon-
strate that our approach significantly reduces the num-
ber of resets compared to state-of-the-art methods. We
also conducted a live user study to evaluate our method
and compare it with state-of-the-art methods, and the
results also verified the effectiveness of our method in
terms of user experience and number of resets.
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1. Introduction

In recent years, Virtual Reality (VR) has undergone rapid
development thanks to breakthroughs in hardware and soft-
ware technology. This has transformed the way humans in-
teract with computers and others, offering broad application
prospects in various fields such as socializing, education,
entertainment, training, and creation. However, there are
still many challenges in providing users with an immersive
locomotion experience when they wish to move in the VR
environment. For example, real walking is considered the
most natural way for locomotion in virtual reality, but the
physical space of the user is often smaller than the virtual
space, which forces users to frequently reset their position
or orientation to continue their virtual journey.

Redirected Walking (RDW) [30, 40, 13, 23] is a tech-
nique that reduces user collisions in limited physical spaces
by remapping the movements between virtual and physical
spaces. It mainly takes advantage of the imprecision in hu-
man proprioception and vision, which is known as gains, to
subtly manipulate the virtual environment. Curvature gain
is one of the most frequently used gain types in the RDW
algorithms. When the user walks straight to a target in the
virtual space, curvature gain [36] can be applied to deflect
the user’s physical path by slowly rotating the virtual envi-
ronment in every frame, enabling the user to follow a circu-
lar arc in the physical space.

In VR applications, users typically move in a straight
line to reach virtual objects, locations or points of inter-
ests (POIs) rather than walking in curves, which gives
RDW algorithms ample opportunities to apply curvature
gains [1, 2, 44, 26, 10, 39, 45, 46]. By applying different
magnitudes and directions of curvature gains, it’s conceiv-
able that the physical position of the user upon completing
a segment of virtual straight walking will also differ. There-
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Figure 1: Redirecting the user to a specified target while bypassing obstacles in the physical space with curvature gain. (A)
Redirecting the user with a trivial steering strategy to the specified target, where the path is easily blocked by obstacles. (B)
With the trivial steering strategy, the area a user can reach (in orange) is rather limited. (C) Our method can find a series of
collision-free paths to a specified target while satisfying the curvature gain threshold, and our paths only need to change the
steering direction at most once before reaching the target. (D) Our method can steer the user to a wider area in the physical
space (in green), thereby enhancing RDW controller design and assisting in redirecting the user to favorable positions to
reduce the need for resets.

fore, the key question we aim to address here is, when the
user walks straight in the virtual space, whether it is pos-
sible to steer the user to a specified position in the phys-
ical space without encountering any obstacles with cur-
vature gain? Achieving this goal brings considerable ben-
efits for designing RDW toolkit, such as we can designate
a spacious position or a reset-friendly position as the user’s
physical destination, thus maximizing the user’s walkable
range after turning around or resetting.

Many influential RDW methods reduce collisions by op-
erating on curvature gains. For example, heuristic-based
method such as steer-to-center (S2C) [32] uses curvature
gain to steer the user to the space center; artificial potential
function based methods [44, 26, 4, 10] use curvature gain
to push users away from obstacles; reinforcement learning
based methods [21, 22, 39, 7] predict the gains and targets
for steering the user; alignment-based methods [43, 45, 46]
steer the user in the direction that the physical space and
the virtual space are aligned, etc. However, these works can
only decide the curvature gain based on the current state of
the user, and cannot guarantee that the user will reach or
pass through a certain physical position in the subsequent
walking. As the physical location of arrival is not control-
lable, it is also impossible to specify the future location of
the user in the physical space. To the best of our knowledge,
there is currently no general RDW method to steer the user
to specified positions while bypassing obstacles in complex
physical spaces with curvature gain.

One trivial method to steer the user to a specified posi-
tion is to steer the user with an arc path that passes through
both the starting position and the specified position, while
the tangent of the arc at the starting position is exactly the
user’s starting orientation, as shown in Fig. 1(A). However,

this approach yields only a single path to the destination,
which can be easily obstructed by obstacles in a complex
physical environment. Additionally, the user’s accessible
area is also significantly limited with this trivial steering
strategy (Fig. 1(B)).

In this paper, we propose a general redirected walking
technique to steer the user to a specified physical position
with curvature gain while bypassing all obstacles in a com-
plex physical space. To minimize any discomfort that may
arise from changes in curvature gain, we use a constant
magnitude of curvature gain to steer the user, and only al-
low the direction of the curvature gain to flip once before the
user reaches the specified position. We developed a method
for computing the blocked path using the obstacle point,
and by only computing paths occluded by certain endpoints
on an edge, we can accurately exclude a batch of occluded
paths that are blocked by obstacle edges. The paths found
by our method are not singular, and our method can find a
series of collision-free paths to one specified target while
satisfying the curvature gain threshold, allowing for more
selectivity in steering the user to the given target. Our ap-
proach is entirely analytical, avoiding iterative optimization
methods or search strategies, so the results of our method
are accurate and the computation time of our method is only
linearly related to the number of obstacle edges.

Our method is general and can be used with different ob-
stacle layouts and targets. The generality of our approach
enables it to be applied to design variety of RDW toolkit
with great effectiveness. For instance, our method could
be used to efficiently estimate the maximum walkable dis-
tance from a given pose, or the reachable physical area for a
given virtual distance. Through these applications, we can
quantify the spaciousness and resetting benefit of physical



positions and select the best reachable physical position to
steer the user.

We evaluated our method with both simulation experi-
ments and live user study. For the simulation experiments,
we use both a common single-user RDW task and a more
challenging multi-user online RDW task [48] to test our
method. The latter requires synchronous resetting of all
users for an interactive and fair VR game environment,
which poses a greater challenge for reducing the number of
resets. We test our method with a variety of complex envi-
ronment layout combinations. We also conducted live user
studies to verify the experience of our method both objec-
tively and subjectively. Our method is able to find a longer
walkable way for the user and steer the user to a wider phys-
ical area, and the experimental results show that our method
can make all users have a significant smaller number of re-
sets than state-of-the-art methods, and cause less sickness
increase.

The main contributions of our work are as follows:

• We propose a general RDW method of steering the
user to a specified target while bypassing obstacles,
which can be used for many applications.

• For better user immersion, our method uses a con-
stant magnitude of curvature gain to steer the user and
strategically limits the direction of the curvature gain
to only flip once before the user reaches the specified
position.

• All processes of our method are analytical, and our
method can get a series of collision-free paths to one
specified target in a controlled time.

• We conducted comprehensive evaluations including
simulation experiments and live user studies to vali-
date the effectiveness of our proposed method.

2. Related Works

2.1. Research on Curvature Gain and Associated Gains

Razzaque et al. [33] proposed to manipulate the user’s
walking trajectory by constantly rotating the virtual scene
about the user while the user is walking in 2001, which
was actually an operation of the curvature gain. Steinicke et
al. [35, 36] later named this locomotion gain as Curvature
Gain and defined its value as the inverse of the physical path
radius (the curvature of the physical path).

A number of studies have been conducted to determine
the detection threshold of curvature gain. Steinicke et
al. [36] suggested that the radius of curvature of the cur-
vature gain should not be less than 22 meters. Hodgson et
al. [15] proposed to use 7.5 meters as the minimum radius
of curvature gain. Grechkin et al. [14] found that the esti-
mated minimum curvature radius can be 6.41m for the no

translation gain condition, and can be even lower when re-
testing the users. Currently, a significant number of works
follow the value recommended by Hodgson et al., taking
7.5 meters as the minimum radius of curvature gain.

The above works show that, the detection threshold for
curvature gain isn’t set in stone. Nguyen et al. [28] in-
vestigated the effect of environment size on curvature gain
thresholds with the 2-alternative forced choice method.
They also investigated the role of gender on curvature redi-
rection thresholds [29], and found that women have higher
curvature redirection thresholds than men. Bölling et al. [6]
tested users’ adaptation to long-term exposure to curvature
gain and found that prolonged exposure to curvature gain
led to a rise in the detection threshold. Matsumoto et al. [25]
deceive users about path curvature by making users touch
a curved wall while displayed a straight wall in the virtual
space, and found that haptic cues can significantly affect the
detection threshold for curvature gain.

Curvature gain is often used in combination with trans-
lation gain [35, 18, 17] and rotation gain [35, 31, 47], but
their effects are distinct. Translation gain only scales the
path length and does not change the path shape, whereas ro-
tation gain only works when the user turns around in place.
Since the curvature gain can modify the user’s trajectory
while the user is walking, many RDW strategies employ
curvature gains to steer the user and avoid collisions with
obstacles. In addition to considering straight walking, re-
cently there are also some studies extending the concept of
curvature gain to bending gains [19, 34], taking into account
the user’s bending movement in virtual environments.

Besides curvature gain, there exist other techniques to
manipulate the mapping between the physical space and the
virtual space, such as change blindness [41] and saccade
blindness [20, 27, 42]. Nevertheless, curvature gain does
not need to change the appearance and content of the virtual
environment, nor does it require any additional equipment
or sensors. Therefore, curvature gain is still a popular and
common way for redirecting users.

2.2. Redirected Walking Strategies using curvature
gains

Razzaque et al. [32] propose three heuristic strategies to
steer users with curvature gain: steer-to-center (S2C), steer-
to-orbit (S2O) and steer-to-multiple-targets (S2MT). They
try to steer the user to the center of the space, a prede-
fined circular orbit and a set of predefined waypoints, re-
spectively. Hodgson et al. [15] integrate S2C into S2MT to
steer the user back to the center faster than S2MT.

As the principle of the heuristic strategies is fixed, they
tend not to handle the pysical space with complex obstacles
well. Recently Artificial Potential Functions (APF) based
methods [44, 26, 4, 10] have been proposed to reduce col-
lisions in arbitrary layouts. Taking the work of Thomas et



al. [44] as an example, they generate a potential field with
an artificial potential function in the physical space, and
push the user away from obstacles or pull the user towards
the open space according to the potential field. They also
introduce three reset strategies based on the potential field.

The reinforcement learning-based methods [21, 22, 39,
7] are another kind of strategies to steer users. Deep neural
networks can be used to recommend targets for steering the
users [21, 22], or directly predict locomotion gains [39, 7].

Based on the consideration that the user will not actively
encounter obstacles in the virtual space, the alignment-
based strategies [43, 45, 46] are also proposed to steer the
user. They steer the user to the direction where obstacles in
the physical space are more aligned with that in the virtual
space.

There are some other RDW strategies with curvature
gains designed specifically for dynamic environments and
multiplayer. Chen et al. [8] proposed two greedy strate-
gies, namely steer-to-farthest and trapezoidal road map, to
adapt RDW to irregularly shaped, dynamic physical envi-
ronments. Additionally, they introduced various techniques
for planning algorithms to support irregularly shaped and
dynamic physical environments. Bachmann et al. [5] and
Azmandian et al. [2] explored how to steer two users at the
same time. Dong et al. [12] presented a method for redi-
recting three users in a shared space. Dong et al. [11] fur-
ther proposed a density-based RDW to steer multiple users
and avoid collisions among users. Xu et al. [48] proposed
a solution for multi-user online VR games. They make the
resets of different users in different physical spaces to oc-
cur simultaneously, thereby improving the interactivity and
fairness of online VR games.

However, the above methods lack the ability to steer the
user to a specified position with the curvature gain. Con-
trollably steering the user to specified positions can en-
hance the authenticity of passive haptic feedback and im-
prove their interaction with the surrounding physical en-
vironment [37, 38, 43, 9]. Although Xu et al. [48] plan
paths to specified positions based on predefined circles,
it lacks flexibility and suffers from obstacles. Recently
Xu et al. [49] proposed a method to steer the user to the
specified physical position and orientation using curvature
gain. However, their method can only generate a single path
through iterative optimization and cannot account for obsta-
cles. Furthermore, their method may change the curvature
gain direction multiple times during walking, increasing the
risk of user discomfort.

3. Bypassing Obstacles with Curvature gain

3.1. Paths to a specified position and its representation

Suppose the user’s starting position in the physical space
is (xs,ys) and the starting physical orientation is θs. For the

convenience of expression, we turn to the local coordinate
system for observation, where we take (xs,ys) as the origin
and θs as the positive direction of the x-axis. In order to
do this, we only need to transform any point

(
xglb,yglb

)
in

the world coordinate system according to the following re-
lationship, and then we can get its coordinates (xloc,yloc) in
the local coordinate system:[

xloc
yloc

]
=

[
cosθs sinθs
−sinθs cosθs

][
xglb − xs
yglb − ys

]
(1)

In the local coordinate system, the user’s starting posi-
tion becomes (0,0), and the user’s starting orientation be-
comes the positive x-axis. Unless otherwise specified, in
the following we use the local coordinate system for analy-
sis.

Now our goal is to steer the user to a specified physi-
cal position (xe,ye) with the curvature gain when the user
walks straight in the virtual space. As it often requires an
unrealistic walking length to steer the user to the back side
of their starting position due to the gain threshold limitation,
this goal only makes sense when (xe,ye) is on the front side
of the user, i.e. xe ≥ 0. For practical consideration, we don’t
try to steer the user to any target behind them and determine
(xe,ye) is unreachable when xe < 0.

To achieve our goal, a trivial way is to steer the user
with an arc that passes through both the starting position
(0,0) and the specified destination (xe,ye), and the tangent
of the arc at the starting position is exactly the user’s start-
ing orientation, as shown in Fig. 2(A). We denote this path
as Pmid (xe,ye). It is easy to find out that the center of arc
Pmid (xe,ye) is located at:(

0,
x2

e + y2
e

2ye

)
(2)

However, Pmid (xe,ye) is not the only possible path to
reach (xe,ye). Imagine that there happens to be an obsta-
cle on Pmid (xe,ye), it is just unwise to mark (xe,ye) as un-
reachable since we can still utilize the open space around
Pmid (xe,ye) to bypass the obstacle. To bypass the obsta-
cle, the curvature gain of the path must not be set in stone.
Just as other methods like S2C or APF constantly adjust
the steering direction to steer the user to the center of space
or away from obstacles, we should also appropriately ad-
just the steering direction to bypass the obstacle and reach
(xe,ye).

Different from the previous methods, we prioritize user
immersion by minimizing changes in steering direction, al-
lowing only a single alteration per path to the specified po-
sition. Furthermore, we do not vary the magnitude of the
curvature gain in the path. Under this constraint, we can
still obtain two types of paths by reducing the path radius
based on Pmid (xe,ye) and changing the steering direction at
an appropriate position. The two types of paths are “turning
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Figure 2: The potential paths to a given position. By steer-
ing the user left then right or right then left with different
curvature gains, we can make the user reach the target with
only one change in steering direction.

left then right” paths and “turning right then left” paths. As
the radius of curvature continue to decrease, we can get a
series of non-intersecting paths distributed on the left and
right sides of Pmid (xe,ye), as shown in Fig. 2(B).

Since these paths have different radii of curvature and
different steering direction orders, we need to find a simple
descriptor to represent them. Since the first stage of the path
must be tangent to the x-axis at (0,0) as the user’s staring
orientation is given, the center of the first path arc must lie
on the y-axis. In turn, given the y-coordinate of the first
arc center, the first stage of the path and further the whole
path to (xe,ye) can be uniquely determined. Therefore, we
use the y-coordinate of the center of the first arc as a
path’s descriptor, and denote the path corresponding to the
descriptor value f as Pf (xe,ye).

For the path Pf (xe,ye), its radius of curvature is | f |, and
the center of the first path stage is (0, f ). In order to make
the path reach (xe,ye), we can derive that the center of the
second arc should be:


xII =

(
1
2
+

3 f 2

2D2

)
xe +

f
| f |

(√
∆

2D2

)
(ye − f ) ( f ̸= 0)

yII =

(
1
2
+

3 f 2

2D2

)
(ye − f )− f

| f |

(√
∆

2D2

)
xe + f ( f ̸= 0)

(3)

Where D2 = xe
2 + (ye − f )2 and ∆ =(

D2 − f 2
)(

9 f 2 −D2
)
. The steering changing point of

the path Pf (xe,ye) is actually the midpoint of the centers of

(𝑥𝑒, 𝑦𝑒)

𝑥

𝑦 (0,0)

Steering changing point
𝑟1

2𝑟1

𝑟2

2𝑟2

Figure 3: The path with the largest and smallest (on both
sides) radius of curvature to the target. The centered path
is the path with the largest radius. Let’s denote the mini-
mum path radii on the left and right sides as r1 and r2, and
by analysis we know that they make the distance from the
steering changing point to the target exactly twice their own.

the two arcs, which we denote as Tf (xe,ye):

Tf (xe,ye) =

(
xII

2
,

yII + f
2

)
(4)

To obtain all the potential paths to (xe,ye), we need to
find out the feasible range for descriptor f . On the one
hand, to avoid the path radius being too large that the path
cannot reach (xe,ye), the path radius | f | should not exceed
the radius of Pmid (xe,ye). On the other hand, to avoid the
path radius being too small that (xe,ye) exceeds the path’s
maximum travel range, the path radius | f | should be no
smaller than a radius r that makes the distance from (xe,ye)
to the steering changing point reaches 2r, as shown in Fig.3.
If the radius continues to decrease, the distance from the
steering changing point to (xe,ye) will exceed the second
arc’s diameter, making (xe,ye) unreachable. Based on the
above inference, we can derive that the feasible f for reach-
ing (xe,ye) should lie in:

F (xe,ye) =

[
−x2

e + y2
e

2 |ye|
,
−ye −

√
8x2

e +9y2
e

8

]

∪

[
−ye +

√
8x2

e +9y2
e

8
,

x2
e + y2

e
2 |ye|

] (5)

In fact, F (xe,ye) is also the solution set for ∆ > 0 in

Equation (3). It’s worth noting that both ± x2
e+y2

e
2|ye| in Equa-

tion (5) describe the path Pmid (xe,ye), the only difference
is which of the first or second arc is interpreted as 0. Note
that due to the limitation of the curvature gain threshold,
f should also be in L = [−∞,−R]∪ [R,∞], where R is the



minimum radius allowed by the curvature gain threshold.
Therefore, the final feasible range of descriptor f for all po-
tential paths to (xe,ye) is:

Γ(xe,ye) = F (xe,ye)∩L (6)

As a result, we can choose any f ∈ Γ(xe,ye) to obtain a
path to (xe,ye). To make the user reach (xe,ye) along a cer-
tain path Pf (xe,ye), the RDW controller only need to steer
the user with the curvature gain 1/| f | to the side of (0, f )
point, and when the user reaches the steering changing point
Tf (xe,ye), steer the user to the opposite side until the user
reaches the specified target. In order for the RDW controller
to steer the user in the global coordinate system, any local
coordinate (xloc,yloc) can be restored to its global coordi-
nate by the following formula:[

xglb
yglb

]
=

[
cosθs −sinθs
sinθs cosθs

][
xloc
yloc

]
+

[
xs
ys

]
(7)

And if Γ(xe,ye) is an empty set, we can conclude that
there is no path to (xe,ye) due to the curvature gain thresh-
old.

3.2. Computation of paths occluded by obstacles

Though we find all potential paths to the specified po-
sition (xe,ye), some paths may be occluded by obstacles if
there are complex obstacles distributed in the space. A triv-
ial way to screen out unoccluded paths is to sample some
paths in Γ(xe,ye) and judge whether they are occluded by
obstacles. However this calculation is too slow for the RDW
controller, and the unoccluded paths cannot be fully recalled
either.

Obstacles are usually represented as polygons. For an
edge of an obstacle, since it is continuous in space, the path
sandwiched between two paths occluded by its endpoints
must also be occluded. If we can accurately find the de-
scriptors of the paths occluded by its two endpoints, we can
quickly exclude a batch of paths occluded by the entire ob-
stacle edge based on spatial continuity. So we first investi-
gate the problem of which path in Γ(xe,ye) will be blocked
by a given obstacle point (xobs,yobs).

It is worth noting that since all paths in Γ(xe,ye) are
distributed in the heart-shaped region shown in Fig.3, if
(xobs,yobs) lies outside this region, it does not occlude any
paths in Γ(xe,ye). Conversely, (xobs,yobs) will occlude only
one path, since all paths in Γ(xe,ye) do not intersect each
other.

Suppose the descriptor of the blocked path is f̂ . Let’s
start by assuming that (xobs,yobs) blocks the first arc of
f̂ , as shown in Fig. 4(A). Therefore, we can directly com-
pute the descriptor f̂ for the occluded path by substituting

(xobs,yobs) into Equation (2): f̂ =
x2

obs+y2
obs

2yobs
. Then follow-

ing Equation (3) and (4), we calculate the steering chang-
ing point T f̂ (xe,ye) of the path f̂ to (xe,ye). Finally, we

(0,0)

(𝑥𝑒, 𝑦𝑒)

𝑥

𝑦

(𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)

(0,0)

(𝑥𝑒, 𝑦𝑒)

𝑥

𝑦

(𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)

Steering changing point

Obstacle point

(A) (B)

Figure 4: Two possible cases of an obstacle point blocking
a path.

only need to verify whether the user will reach the obstacle
before reaching the steering changing point, i.e. whether
(xobs,yobs) is on the arc between (0,0) and T f̂ (xe,ye), we
can determine whether the path f̂ is really blocked by the
obstacle point (xobs,yobs). The order of the points on an arc
can be quickly determined through the mixed product oper-
ation of vectors:

[xobs,yobs,0]
T ×TTT f̂ (xe,ye) ·

[
0,0,Sgn

(
f̂
)]T

(8)

Where Sgn(·) is the sign function. If (8)> 0, which
means that (xobs,yobs) is closer to the starting position than
the steering change point, f̂ is the desired occluded path.
Otherwise, we should continue to assume that (xobs,yobs)
blocks the second arc of f̂ , as shown in Fig. 4(B). In this
case, since the distance from the center of the second arc
to (xe,ye) and (xobs,yobs) is

∣∣ f̂ ∣∣, and the distance between
the centers of the two arcs is 2

∣∣ f̂ ∣∣, we can formulate the
following equations:

(xII − xe )2 +(yII − ye )2 = f̂ 2

(xII − xobs)
2 +(yII − yobs)

2 = f̂ 2

(xII − 0 )2 +
(
yII − f̂

)2
= 4 f̂ 2

(9)

Where (xII ,yII) is the center of the second arc of path f̂ .
By eliminating xII and yII , we get a quartic equation with
respect to f̂ . Here we directly give its solutions:

f̂ =
−b
4a

∓∓∓ 1
2

√
b2

4a2 − 2c
3a

+δ

±±± 1
2

√√√√√ b2

2a2 − 4c
3a

−δ ∓∓∓
−b3

a3 + 4bc
a2 − 8d

a

4
√

b2

4a2 − 2c
3a +δ

(10)

The two ∓∓∓ signs in (10) take both the upper and lower
halves, so f̂ has 4 solutions in total, where a,b,c,d,e are the



coefficients of the quartic equation:

a = 2(ye − yobs)
2

b =2
(
(xe − xobs)

2 +(ye − yobs)
2
)
(ye + yobs)

+4(xeyobs − xobsye)(xe − xobs)

c =
1
2
(xe − xobs)

4 +
1
2
(ye − yobs)

4 +
(

x2
e − x2

obs

)(
y2

e − y2
obs

)
−2(xexobs + yeyobs)(xe − xobs)

2 −4xexobs (ye − yobs)
2

d =−
(
(xe − xobs)

2 +(ye − yobs)
2
)

×
((

x2
e + y2

e

)
yobs +

(
x2

obs + y2
obs

)
ye

)
e =

1
2

(
x2

e + y2
e

)(
x2

obs + y2
obs

)(
(xe − xobs)

2 +(ye − yobs)
2
)
(11)

And the intermediate factor δ can be calculated as follows:

δ =
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3 3√2a

δ1 = c2 −3bd +12ae

δ2 = 2c3 −9bcd +27ad2 +27b2e−72ace

(12)

The reason f̂ has four solutions is that (xII ,yII) in Equa-
tion (9) is essentially the common intersection of three cir-
cles, and since the third circle has at most 4 intersections
with the first two circles, by varying f̂ each of them may
become the common intersection. To find the only solution
that truly represents the occluded path, we filter the 4 solu-
tions based on three rules:

1. For path f̂ , the calculated steering changing points
should be the same when (xe,ye) and (xobs,yobs) are
substituted into Equation (3) and (4).

2. The calculated steering changing point cannot be be-
hind the user (x coordinate should > 0).

3. The path f̂ must go through (xobs,yobs) before reaching
the target (xe,ye).

The above three rules help screen out the only truly oc-
cluded path among f̂ ’s 4 solutions. After solving the prob-
lem of which path in Γ(xe,ye) is blocked by an obstacle
point, we can quickly determine the set of paths blocked
by an obstacle edge based on the endpoints of the obsta-
cle edge. As shown in Fig.5, for a given obstacle edge E,
we first calculate its part E ′ that falls in the overall passable
area, i.e. the heart-shaped region shown in Fig.3. As the
overall passable area is bounded by 4 known arcs, E ′ can
be quickly calculated by a line segment-arc intersection al-
gorithm. If E ′ does not exist, then E does not block any
path in Γ(xe,ye) at all.

Otherwise, since the sign of the path descriptors on both
sides of Pmid (xe,ye) are different, we further divide E ′ into

(0,0)

(𝑥𝑒, 𝑦𝑒)

𝑥

𝑦

Steering changing point
Obstacle edge

Figure 5: Illustration of the computation of paths occluded
by an obstacle edge.

E ′
− and E ′

+ by Pmid (xe,ye). Note that E ′
− and E ′

+ may not
both exist. We process E ′

− and E ′
+ separately. Taking E ′

+ as
an example, we compute the two paths f̂l and f̂r occluded
by its two endpoints. It is easy to know that f̂l and f̂r have
the same signs. From the continuity of the edge, it can be
seen that all the paths in

[
f̂l , f̂r

]
will all be occluded and

thus can be excluded from Γ(xe,ye). Therefore, by calcu-
lating only two occluded paths, we can exclude a batch
of paths in one fell swoop. In practice, in order to prevent
E ′
+ from being too long so that a few paths may enter E ′

+ in
the middle and then go out, we can divide E ′

+ into sub-edges
of smaller length (such as 1m) to calculate their occlusion
intervals separately, and take the union of them as the oc-
clusion interval of E ′

+. The union of the occlusion intervals
of E ′

− and E ′
+ is the occlusion interval of E. Finally, by

merging the occlusion intervals of all obstacle boundaries,
we get all occluded paths in Γ(xe,ye), and all the remaining
feasible paths I (xe,ye)⊆ Γ(xe,ye).

As a result, we can choose any f ∈ I (xe,ye) to obtain
path to (xe,ye) without encountering obstacles. And if
I (xe,ye) is an empty set, we can conclude that there is no
path to (xe,ye) due to the obstacles. Different from numer-
ical optimization computations, all the above processes are
analytical and the amount of computation is only linearly
related to the number of obstacle edges, so we can get the
exact path range to the specified target without encountering
obstacles in a controlled time. Our method can work under
various obstacle layouts with different specified targets.

4. Applications

Due to the generality of our method, by changing the
query target and starting pose, our method can be applied to
various meaningful RDW tasks. For instance, our method
can be used for estimating the user’s maximum walkable
distance and the reachable areas from a given pose. These
tasks are helpful for the RDW controller to maximize the



user’s walking distance, evaluate the spatial properties of
physical positions and steer the user to better positions. And
these tasks could be quite tricky when there are complex
obstacles in the space for RDW methods that cannot cope
with obstacles when planning a path. Below we describe in
detail how our method works in these intractable tasks.

4.1. Maximum walkable distance from a given pose

When a user starts from a given pose and walks straight
in the virtual space, how far the physical space allows him
to go is a spatial property of the starting pose. This property
is useful for measuring how spacious a physical position is,
and whether it is suitable for resetting users, etc.

Since the maximum walkable distance is caused by the
restriction of the obstacles, the longest possible path from
the starting pose must end at the edge of an obstacle. Since
the layout of obstacles is unpredictable, finding this dis-
tance is actually an NP problem. However, our method
can quickly estimate this distance. We sample some equally
spaced points at the edge of the obstacle (as the method of
Zhang et al. [50] does). Taking the input pose as the starting
pose (xs,ys,θs), and taking the sampling points on the edge
of the obstacle individually as the target point (xe,ye), we
can calculate the feasible path set I (xe,ye) without encoun-
tering obstacles to (xe,ye) respectively.

The length of each path in I (xe,ye) can be derived from
the sum of the lengths of its two arcs. It can be proved
by the monotonicity and continuity of the path length that
the descriptor of the longest path to (xe,ye) should be at
the endpoints of a certain interval in I (xe,ye). Therefore,
by calculating the path lengths at the endpoints of the in-
tervals in I (xe,ye), we can get the maximum distance to
I (xe,ye) without encountering obstacles. And the maxi-
mum value of the maximum distance to all sampling points
is the maximum walkable distance from (xs,ys,θs), denoted
as L(xs,ys,θs).

In practice, in order to get L(xs,ys,θs) quickly, we can
use the bounds of Γ(xe,ye) to find the maximum path dis-
tance to the sampling points without considering obstacles
first, and sort the sampling points by these distances. If the
currently found maximum walkable distance is greater than
the maximum path distance to the next sampling point with-
out considering obstacles, the remaining sampling points
can be skipped directly. So we can get L(xs,ys,θs) quickly
without computing collision-free paths for all sampling
points.

For a position (xs,ys), by sampling the directions, we
can also calculate the average and maximum of the maxi-
mum walkable distance in all its directions. The larger the
average maximum walkable distance is, the more spacious
that position is; the larger the maximum maximum walka-
ble distance is, the farther the user can go after being reset
at that position.

Unreachable sampling point

Reachable sampling point

Figure 6: Maximum walkable distance estimation using our
method. Our method finds all collision-free paths to each
sampling point, and the figure shows the longest one to
each sampling point. The path with the maximum walkable
distance is marked in green. By pre-sorting the sampling
points, our method can also obtain the maximum walkable
distance without computing collision-free paths for all sam-
pling points.

4.2. Reachable physical area for a given virtual distance

Now we know the quantitative measurement of how spa-
cious a position is and how beneficial it is for resets. If we
further know the user’s reachable physical area for a given
virtual distance, we can choose the optimal destination to
steer the user.

For a given virtual distance lv, its corresponding physical
length is easy to find according to the translation gain:

Svir (lv) =
[

lv
gmax

t
,

lv
gmin

t

]
(13)

Where gmax
t and gmin

t are the maximum and minimum
thresholds of the translation gain. For a sampled point
(xe,ye) in the physical space as target, we judge whether
the path from the current pose to the specified target exists,
that is, whether I (xe,ye) is not empty.

If I (xe,ye) is not empty, i.e. the overall passable area
from the current pose to the sampling target (xe,ye) is not
completely blocked, we find the longest and shortest paths
in it. From the descriptors at the endpoints of the intervals
in I (xe,ye), we can easily find the path with longest length
to (xe,ye). We denote the longest path length to (xe,ye) as
smax. And considering that the descriptor of the shortest



path may lie inside an interval in I (xe,ye), it can be found in
I (xe,ye) by gradient descent searching. However, since the
minimum length is very close to the length of Pmid (xe,ye), it
can be estimated from the descriptors at the endpoints of the
intervals too. We denote the found shortest path length to
(xe,ye) as smin. So the length of the paths to (xe,ye) should
lie in Sphy (xe,ye) = [smin,smax].

If Sphy (xe,ye)∩ Svir ̸= /0, it means that (xe,ye) is reach-
able at the given virtual distance lv. By varying the trans-
lation gain, we can obtain different paths to (xe,ye) with
different curvature gain. To get the user to a specific target
(xe,ye) at the given virtual distance, we choose a specific
path length s ∈ Sphy (xe,ye)∩ Svir, then the desired transla-
tion gain gt can be easily derived: gt = lv/s. In turn, we are
also able to find a path of length s in I (xe,ye), which can
be achieved by binary search in I (xe,ye). For the stability
of the position reachability, we choose s that makes gt close
to 1.0, which is helpful to make (xe,ye) stably reachable in
case lv is floating, as we can shift the translation gain to
compensate for the corresponding physical length. In addi-
tion, a gt close to 1.0 also contributes to user comfort.

As the obstacle layout is unpredictable, the reachable
physical area of distance Svir (lv) is also an NP problem. So
we take a series of uniform sampling points in the physical
space as targets, and we can estimate the reachable physical
area at the given virtual distance by verifying the reachabil-
ity of the sampling positions.

Since the sampling positions can be pre-determined and
their spaciousness and reset benefit can be pre-computed,
we can steer the user to the optimal reachable sampling po-
sition based on the virtual distance lv. In principle, when
the user is about to reach the virtual target, we steer the user
to a spacious position so that the user can turn around; oth-
erwise, steer the user to a position that is conducive to reset
so that a larger distance can be obtained after reset.

5. Evaluation and Performance

5.1. Evaluation Task

Above we presented our RDW method for steering users
to a specified physical position while bypassing obstacles,
and some of its meaningful applications. We first evalu-
ate our algorithm using a conventional single-user RDW
scenario. Further, to test the usability of the method and
its derived applications, we apply them to a comprehensive
real-world RDW task, i.e., multi-user online RDW.

Different from redirecting a single user or multiple users
in a shared physical space, in the multi-player online VR
games, multiple users are located in off-site physical spaces.
If there is no unified management of the users’ reset,
users in the online virtual space will frequently reset asyn-
chronously, which has a great impact on online games.
Imagine that in the online virtual space, sometimes user A

gets stuck due to reset, and sometimes user B gets stuck
due to reset, which will greatly reduce the interactivity and
playability of the game. A good solution is to always reset
users together, but how to minimize the number of common
resets for all users is a key issue.

Xu et al. [48] has proposed a promising solution to this
problem. The key idea is that, for users who cannot reach
the virtual target before encountering an obstacle, find the
user with the smallest maximum walkable distance and steer
other users to the position that is most favorable for reset in
that user’s walking time. However, their method only relies
on a series of inscribed circles to plan potential paths gener-
ated by curvature gains and cannot avoid obstacles in com-
plex spaces, thus its flexibility and performance are limited.

We follow the method of Xu et al. [48] to implement a
new multi-user online RDW controller, and the difference
is that we implement the estimation of the maximum walka-
ble distance and the reachable area for a given virtual dis-
tance with our method. We compare our method with the
method of Xu et al. [48] and several other state-of-the-art
RDW methods. We believe that applying the method to a
comprehensive real-world task is more effective for validat-
ing the method and its derived applications.

5.2. Implementation Details and Evaluation Designs

In our implementation, in order to estimate the maximum
walkable distance for a given pose with our method, we
set the sampling distance on the obstacle boundary to 0.5m.
Similarly, we also set the sampling density of the physi-
cal space to 0.5m to estimate the reachable physical area
for a given virtual distance with our method. The mini-
mum radius allowed by the curvature gain threshold is set
to R = 7.5m, and the thresholds of minimum and maximum
translation gain are set to gmin

t = 0.86 and gmax
t = 1.26, re-

spectively [1, 5, 15, 44, 22, 4, 26, 10, 11, 45, 46]. Our
method runs in real-time on a PC with Intel Core i7-9750H
CPU and 8GB of RAM.

Simulation is widely recognized as an effective way to
evaluate RDW methods [5, 1, 2, 44, 26, 10, 39, 45, 46] as
it facilitates extensive experiments in various configurations
and environments to eliminate the effect of randomness on
evaluation results. Azmandian et al. [3] demonstrates that
simulations can conservatively estimate the average perfor-
mance of real users and is empirically valid for RDW meth-
ods evaluation. So we use extensive simulation experiments
to test our method.

As with a number of previous methods [1, 44, 45, 21],
we set the user’s velocity in virtual space to 1m/s, and the
rotation rate to π/2 rad/s to simulate each user’s movement
in the common virtual space. The target point of each user
in the online virtual space is randomly generated at a ran-
dom angle ranging from −π to π , and at a distance between
2m and 6m from the previous target. The target points of
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Figure 7: The physical environment layouts used for evaluation.

different users are different.

For the single-user RDW task, we evaluate our method
across 4 distinct physical environments, as depicted in
Fig. 7 (S). To facilitate comparison among these varying
environments, we set these environments based on the pres-
ence or absence of obstacles and different sizes.

For the multi-user online RDW task, we test our method
using 6 combinations of physical environments with com-
plex obstacles, and their layouts are shown in Fig. 7 (A)˜(C).
We classify these test environment layouts into 3 levels ac-
cording to the complexity of obstacles. In level (A), each
simulated user is located in an identical square space of size
5m× 5m without obstacles. To evaluate the impact of the
number of users on the number of resets, we tested 3 and
6 users using these identical physical spaces, as shown in
Fig. 7(A-1) and (A-2). In level (B), the simulated users are
located in different physical spaces with complex obsta-
cles. Some of these spaces are non-convex and some have
obstacles in the middle. To evaluate our method in different
types of spaces, we also tested our method with two differ-
ent combinations of obstacle layouts of level (B), as shown
in Fig. 7(B-1) and (B-2). In level (C), the simulated users
are located in different physical spaces with very complex
obstacles. There are multiple obstacles in most physical
spaces, and the distribution and shape of obstacles are com-
plex and irregular. We also used two different combinations

of obstacle layouts for testing, as shown in Fig. 7(C-1) and
(C-2). Level (C) represents extreme testing situations.

We compare our method with several state-of-the-art
methods of different types, namely Thomas et al.’s APF
(TAPF) [44], steer-by-reinforcement learning (SRL) [39],
steer-to-center (S2C) [15] and steer-to-orbit (S2O) [15]. As
our multi-user online RDW task comes from the task of Xu
et al. [48], we also compare our method with Xu et al.’s
multi-user online RDW method [48]. It’s worth noting that
their method can also be applied in the single-user RDW
scenario as a special case of off-site multi-user. For the re-
set orientation of the methods, both our method and Xu et
al.’s method [48] adopt the reset strategy proposed by Xu
et al. [48]. The other methods use the step-forward reset to
gradient (SFR2G) strategy [44], where the gradient is cal-
culated by TAPF. This reset strategy was demonstrated to
outperform the other two reset strategies in TAPF.

We simulate each method 50 times for each environ-
mental configuration. In each time of the simulation, we
let each simulated user walk 400m in virtual space. Since
the progress of different users may be different, the experi-
ment ends when all users have finished walking. The Open-
RDW [24] platform is used to help implement the simula-
tion.
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Figure 8: The box-plots of the number of resets under different environment layout configurations in single-user and multi-
user online RDW task.

5.3. Results and Discussion

The distributions of the number of resets for all methods
across different environmental configurations in both RDW
tasks are shown in the box-plots in Fig.8. The results of all
methods for single-user RDW task are shown in the upper
portion of Fig.8, while the results for the multi-user online
RDW task are shown in the lower portion. Since the sizes
and layouts of physical spaces vary greatly under different
environment configurations, the distribution of number of
resets in different environment configurations is also very
different. However, from the box-plots in Fig.8, we observe

that our method generally performs better than all the other
methods under most of the environment layouts. We can
also find that the method of Xu et al. [48] also has notice-
ably lower numbers of resets than other comparison meth-
ods.

We further analyze the number of resets with the
Kruskal-Wallis H test. Kruskal-Wallis H test on the ex-
periment results suggests that there is indeed a statistical
difference in the distribution of the number of resets for
the 6 methods under each environment layout configura-
tion. Except in environment layout (S-2), the post hoc pair-



wise comparison by Mann-Whitney U test finds satisfac-
tory significance between our method and all other methods
(p < .001). Moreover, the method of Xu et al. [48] also
has statistical differences in performance compared to other
methods (p < .001) in the majority of the environment lay-
outs. These results effectively verify our observations. In
environment layout (S-2), our approach is slightly weaker
than TAPF, but the difference in results was not statisti-
cally significant. This may be because (S-2) is not only
large in size, but also lacks obstacles. As our method’s
strength lies in its ability to utilize curvature gain to redirect
users around obstacles, it performs better in environments
with more complex obstacles, while its advantages may not
be fully realized in obstacle-free environments. TAPF is
one of the most excellent general RDW algorithms which
employs a strategy of pushing users away from obstacles
and attracting them towards open spaces. That’s why our
method’s median is slightly weaker than TAPF only in the
large, obstacle-free layout (S-2) (yet the difference isn’t sta-
tistically significant). But our method outperforms the com-
parison methods in all the other experimental layouts.

In the environment layouts of level (A), the simulated
users are located in regular physical spaces with identical
shapes and sizes. The physical space is relatively small in
these configurations, with only a size of 5m×5m. Because
these spaces are identical and have no obstacles in side,
the performance difference of all methods turns out to be
not very large. We find that TAPF generally performs bet-
ter than the other three comparison methods SRL, S2C and
S2O. This may be because TAPF uses its own reset strategy
SFR2G, while the other three methods can only use TAPF’s
reset strategy. By comparing the number of resets in (A-1)
and (A-2), we find that the number of resets does increase as
the number of users increases. This is in line with intuition,
because in a multi-user online VR game, the more users,
the greater the probability that someone will trigger a reset
at a certain moment. Although there are no obstacles, our
method can generate more flexible paths and longer walk-
ing distances through the curvature gain, so method still has
the most satisfying performance among the experimented
methods.

In the environment layouts of level (B), the physical
spaces are irregularly shaped with complex obstacles inside,
and users are located in different physical layouts. As can
be seen from Fig.8, although the larger physical space area
makes the number of resets decreases to a certain degree,
the difference in the number of resets for each method be-
comes more evident. Since we adopt the strategy of Xu et
al. [48] to maximize the walking distance of the user with
the shortest maximum walkable distance and steer other
users to selected positions, our method and Xu et al. [48]
significantly outperform the other methods. However, as
our method could steer the user to bypass obstacles and al-

low the user to reach a wider spatial extent, our method fur-
ther has a significant advantage over the method of Xu et
al. [48].

In the environment layouts of level (C), the obstacles in
physical spaces are even more numerous and irregular than
those in level (B), which poses a greater challenge to the
RDW controllers. We can see from the box-plots in Fig.8
that the performance of TAPF, SRL, ZigZag drops drasti-
cally under environment layouts at level (C). This is largely
because these methods are not designed for the multi-user
online VR scenarios, as they can only reduce the number
of resets for each user individually, but cannot take into ac-
count the synergy between resets for all users. Our method
and the method of Xu et al. [48] still maintain satisfac-
tory results, which shows that the two methods both adapt
well to the multi-user online VR scenarios. However, our
method is not originally designed for this kind of scenario,
but due to the generality of our method and its derived ap-
plications, it can achieve good results in this novel scenario.
Since our method can steer the user to bypass obstacles and
reach the desired position, our method shows better perfor-
mance than Xu et al. [48] in these complex spaces.

6. User Study

6.1. Setup

In addition to the extensive simulations mentioned
above, we design a user study to further investigate the
practicality of our method. We do not target the multi-user
online scenario, for the following two reasons: First, we
have already shown that our method can be implemented
into a multi-user online RDW controller that significantly
outperforms several state-of-the-art methods in the simula-
tions. Second, conducting experiments in this scenario re-
quires more instructions and collaboration between users,
which may lead to more interference factors. Therefore, a
single-user RDW scenario is applied to efficiently examine
our method.

We borrow several configurations directly from the sim-
ulation experiments to set up the user study: First, we con-
tinue to use the OpenRDW [24] platform and maintain the
configurations including the redirection gains (described in
Section 5.2). Second, the task for the user remains the same
as in the simulations. As first proposed by Azmandian et al.
[1], the user is supposed to turn and walk to the prompted
waypoint. Third, the implementations for all controllers are
the same.

The physical space layout used for the user study is
shown in the Fig. 9 (a) and (b). Here, we employ an irregu-
lar shaped space layout with a square-shaped obstacle in the
middle as our tracking space. However, for the user’s safety,
we did not actually place an real obstacle inside the exper-
imental site, but instead we only used logical boundaries
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Figure 9: The environment configuration for the user study.
The user walks in an irregular physical tracking environ-
ment with an invisible obstacle inside. The virtual envi-
ronment is an open terrain where a blue crystal acts as the
waypoint. (a): The real photo of the experiment site. (b):
The physical space layout used for the user study. (c): The
virtual environment scene.

to represent an imaginary obstacle. We ensure that a reset
is triggered whenever the user reaches the real boundary or
touches the invisible obstacle. As illustrated in Fig. 9(c), the
corresponding virtual environment is an open terrain large
enough for free exploration. A blue crystal floating in the
air acts as the target point (waypoint) for the user, while
a green line always stretches from the user to the crystal.
Each time the user reaches the crystal, a new crystal is ran-
domly generated as the new waypoint. We instruct the user
to rotate in place and follow the green line to complete the
task.

We choose TAPF [44] mentioned in 5.2 as the represen-
tative for the comparing methods. The main reason is that
TAPF performs the best in the simple single-user environ-
ments such as (S-1) and (S-2) in Fig. 7 from the results of
simulation experiments. We did not test other methods ex-
amined in the simulation experiments since the method Xu
et al. proposed [48] is targeting and optimized for the multi-
user online scenario, and the remaining methods are gener-
ally outperformed by TAPF.

We use Vive Pro 2 headset for users’ VR experience. In
each trial, the user is first instructed to put on the headset
and adapt to the virtual environment. Then he/she walks for
thirty meters virtually before unequiping and resting. We
invite the user to fill out the Simulator Sickness Question-
naire (SSQ) [16] after each trial. Each user walks four tri-

Table 1: The means and standard deviations of the num-
ber of resets and total SSQ score for both methods in the
user study. The standard deviations are presented inside the
brackets.

Ours TAPF
Number of resets 9.00 (1.07) 9.75 (1.34)
Total SSQ score 1.80 (2.27) 2.95 (3.47)

als, with two using our controller and two using the TAPF
controller, respectively. The whole procedure takes about
fifteen minutes for each user.

For evaluation, we record the total number of resets dur-
ing each user walk, and also use the number of resets as the
primary metric for the user study to verify the effectiveness
of the methods. Besides, we also examine the SSQ to an-
alyze user discomfort caused by the RDW manipulations.
The SSQ score was computed from all 16 individual SSQ
items and served as a secondary metric.

6.2. Results and Discussion

We recruited twenty participants from the campus to par-
ticipate in the user study. The participants have an average
age of around 22, including 7 females and 13 males. There-
fore, a total of forty pairs of data is obtained, with each pair
containing the number of resets and the total SSQ scores
for both methods. We calculate the means and the standard
deviations for both metrics, as listed in Table 1.

We plot the distribution of the number of resets in figure
10. In general, our controller results in fewer resets. Beside
the means in Table 1, the median number of reset is 9 and
10 for our method and TAPF, respectively. From the results
we notice that our method is more stable since TAPF tends
to have poor performance sometimes. This corresponds
with our observation during the experiment that users some-
times get stuck around the invisible obstacle when testing
TAPF. Compared to TAPF, our method can adapt to irregu-
lar spaces and guide the user to bypass small obstacles bet-
ter. A Kruskal-Wallis H test shows that the number of resets
of the two methods has a significant difference (p = 0.010).
Therefore, we conclude that our method outperforms TAPF
in reducing the number of resets under the experiment task.

As for the total SSQ scores, our controller is rated with a
smaller score than TAPF, indicating that our method causes
less user discomfort. TAPF alters the curvature gain di-
rection dynamically according to the user orientation and
gradient, but our method ensures the user’s curvature gain
changes at most once before reaching the specified loca-
tion while bypassing all the obstacles. This may be the
reason why the SSQ score of TAPF is larger. We notice
that the scores have significant personal differences among
the participants (the results are in high standard deviations).



Figure 10: The distribution-plot of the number of resets for
our method and TAPF in the user study.

Nevertheless, the SSQ scores are generally small since each
walk only lasts for a short time. Therefore, both controllers
can be considered applicable in short-term virtual locomo-
tion. Comparably, our method has more potential to sup-
press user discomfort by reducing gain manipulations.

7. Limitations

Since our method exploits the curvature gain to bypass
obstacles, our method is in turn limited by the curvature
gain threshold. This is also a common limitation of methods
using curvature gain. Although curvature gain has many ad-
vantages, some new gain techniques, such as change blind-
ness, can redirect the user to a greater extent. If these novel
gains can be combined with curvature gains, it may be more
efficient to bypass obstacles in small spaces.

Since the computation time of our method is linearly re-
lated to the number of obstacle edges, the computational ef-
ficiency will decrease if the obstacle has a too large number
of edges, such as the obstacle consists of curved surfaces.
In this case, we can use the envelope surface to reduce the
complexity of the obstacle surface.

As outlined in Section 2.1, curvature gain is often used in
combination with translation gain and rotation gain. How-
ever, in our work, our only consider how to use curvature
gain to steer users bypassing obstacles to reach specified
positions for now, but we do not delve into the application
of translation and rotation gain. Incorporating translation
and rotation gain strategies into our method may further de-
crease the number of resets of our method.

8. Conclusion

In this work, we propose a general RDW method that
finds a series of paths to steer the user to a specified physical
position with curvature gain while bypassing all obstacles in
a complex physical space. While bypassing obstacles, our
method changes the steering direction at most once before
the user reaches the specified position, which can minimize
discomfort caused by curvature gain changes. The compu-
tation process of our method is analytical, so our method
can get accurate solutions in a controlled time. The compu-

tation time is only linearly related to the number of obstacle
edges. On this basis, we propose two meaningful applica-
tions of our method, namely maximum walkable distance
estimation and reachable physical area estimation. We test
our method with single user and multi-user online RDW
tasks using a variety of complex physical space layouts, and
conduct real-person user experiments under irregular space
layouts to validate our method. The experimental results
show that our method significantly outperforms the state-
of-the-art methods.
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